Trans-dimensional Random Fields (TDRF) for Sequence Modeling

We present the potential of applying random fields for sequence modeling, demonstrated by its success in language modeling.

<i>Bin Wang¹</i> ¹ Dept. of Electronic Engineering, Tsinghua Univ.,	<i>Zhijian Ou¹</i> China ² Dept	<i>Zhiqiang Tan²</i> . of Statistics, Rutgers Univ., USA
State-of-the-art LMs – Review		TDRF LMs – Motivation
• Dominant: Conditional approach $p(x_1, x_2, \cdots, x_l) = \prod_{i=1}^l p(x_i x_1, \cdots, x_{i-1})$ • N-gram LMs	$p(x_1, x_2, \cdots, x_l) = i$ Dominant: Conditional approa	$(x_1) \longrightarrow (x_2) \longrightarrow (x_3) \longrightarrow \dots \longrightarrow (x_l)$
• N-gram LMs • Neural network LMs $p(x_i = k x_1, \dots, x_{i-1}) \approx \frac{w_k^T \phi[x_1, \dots, x_{i-1}]}{\sum_{k=1}^V w_k^T \phi[x_1, \dots, x_{i-1}]}, w_k \in \mathbb{R}^h$	Alternative: Random field appro	$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ \end{array} \\ \begin{array}{c} x_2 \\ x_3 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ x_3 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ x_3 \\ \end{array} \\ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_3 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \\ x_1 \\ x_2 \\ x_1 \\$

 $\sum_{k=1}^{V} w_k^T \phi[x_1, \dots, x_{i-1}]' \quad W_k \subset H$

^③ Computational expensive in both training and testing ¹ e.g. lexicon size $V = 10k \sim 100k$, embedding dim h = 250

¹ Partly alleviated by using un-normalized models, e.g. through noise contrastive estimation training.

| 🔅 Wodel training is difficult.

© Capture bidirectional context for language cognition.

The cat is on the table.

The cat is in the house.

Output Breakthrough in training with a number of innovations Fixed-dim (e.g. image) -> Trans-dim (sequential modeling)

TDRF LMs – Model Definition

- Features (f_i , i = 1, 2, ..., F) can be defined flexibly.
- Each feature brings a contribution to the sentence probability.

$$p(x;\lambda) = \frac{1}{Z(\lambda)} \exp\left(\sum_{i=1}^{F} \lambda_{i} f_{i}(x)\right), x \triangleq (x_{1}, x_{2}, \cdots, x_{l})$$

 $f_i(x) = \begin{cases} 1, & \text{`meeting on DAY-OF-WEEK' appears in } x \Rightarrow \lambda_i \text{ is activated} \\ 0, & \text{Otherwise} & \Rightarrow \lambda_i \text{ is removed} \end{cases}$

• Whole-sentence maximum entropy (WSME) (Rosenfeld, Chen, Zhu 2001) $p(l, x^{l}; \lambda) = \frac{1}{Z(\lambda)} \exp[\lambda^{T} f(x^{l})], x \triangleq (l, x^{l}), x^{l} \triangleq (x_{1}, x_{2}, \cdots, x_{l})$ $= \frac{Z_l(\lambda)}{Z(\lambda)} \cdot \frac{1}{Z_l(\lambda)} \cdot \exp[\lambda^T f(x^l)], Z_l(\lambda) = \sum_{xl} \exp[\lambda^T f(x^l)]$ A mixture distribution with unknown weights, which differ from each other greatly, e.g. 10^{40} !

WSME vs TDRF

Poor sampling \rightarrow poor estimation of gradient \rightarrow poor fitting

 Over the support of the	ing sentence probability	• Trans-dimensional RF (TDRF) model $p(l, x^{l}; \lambda) = \pi_{l} \cdot \frac{1}{Z_{l}(\lambda)} \cdot \exp[\lambda^{T} f(x^{l})], \qquad l = 1, \cdots, m$ Empirical length probabilities in the training data Serve as a control device to improve sampling from multiple distributions!					
TDRF LMs – Mode	Estimation			Experiments			
• Maximum-likelihood training $\partial LogLikelihood = E \int [f(x)] = 0$		LM Training — Penn Treebank portion of WSJ corpus Test speech — WSJ'92 set, by rescoring of 1000-best lists model WER PPL (± std. dev.) #feat					
$\frac{\partial U \partial g H \partial U \partial U \partial U}{\partial \lambda} = E_{\tilde{p}(x)}[f_i(x)] - E_{p(x;\lambda)}[f_i(x)] = 0$	Туре	Features	KN4	8.71	295.41	1.6M	
Expectation under empirical distribution $\tilde{p}(x)$	Expectation under model distribution $p(x; \lambda)$	W	$ \begin{array}{c} (w_{-3}w_{-2}w_{-1}w_{0})(w_{-2}w_{-1}w_{0}) \\ (w_{-1}w_{0})(w_{0}) \\ \hline (c_{-3}c_{-2}c_{-1}c_{0})(c_{-2}c_{-1}c_{0}) \end{array} $	RNN WSMEs (200c) w+c+ws+cs w+c+ws+cs+cpw	7.96 8.87 8.82	$ \begin{array}{c} 256.15 \\ \approx 2.8 \times 10^{12} \\ \approx 6.7 \times 10^{12} \end{array} $	5.1M 5.2M 6.4M
• Consider $p(l, x^l; \lambda, \zeta) \propto \pi_l \cdot \frac{1}{e^{\zeta_l}} \cdot \exp[\lambda^T f(x^l)]$ where ζ_l is hypothesized values of the true $\zeta_l^*(\lambda) = \log Z_l(\lambda)$. The marginal probability of length l is: $p(l; \lambda, \zeta) = \frac{\pi_l e^{-\zeta_l + \zeta_l^*(\lambda)}}{\sum_j \pi_l e^{-\zeta_j + \zeta_j^*(\lambda)}}$. • Joint SA is used to find $\zeta_l^* = \zeta_l^*(\lambda^*)$ and λ^* that solves $[\pi_l = p(l; \lambda, \zeta), l = 1, \cdots, m]$		WS	$\frac{(c_{-1}c_0)(c_0)}{(w_{-3}w_0)(w_{-3}w_{-2}w_0)} = \frac{(w_{-3}w_0)(w_{-3}w_{-2}w_0)}{(w_{-3}w_0)(w_{-3}w_{-2}w_0)} = \frac{(w_{-3}w_0)(w_{-3}w_{-2}w_0)}{(w_{-3}w_0)} = \frac{(w_{-3}w_0)(w_{-3}w_0)}$	TDRFs (100c) w+c	8.56	$\sim 0.7 \times 10$ 268.25±3.52	2.2M
		CS	$ \begin{array}{c c} (w_{-3}w_{-1}w_{0})(w_{-2}w_{0}) \\ \hline (c_{-3}c_{0})(c_{-3}c_{-2}c_{0}) \\ (c_{-3}c_{-1}c_{0})(c_{-2}c_{0}) \end{array} $	w+c+ws+cs w+c+ws+cs+cpw w+c+ws+cs+wsh+csh	8.16 8.05 8.03	265.81 ± 4.30 265.63 ± 7.93 276.90 ± 5.00	4.5M 5.6M 5.2M
		wsh	$(w_{-4}w_0)(w_{-5}w_0)$	TDRFs (200c)	8.46	257.78±3.13	2.5M
		csh	$(c_{-4}c_0)(c_{-5}c_0)$	w+c w+c+ws+cs w+c+ws+cs+cpw	8.05 7.92	257.80 ± 4.29 264.86 ± 8.55	5.2M 6.4M
		cpw $ \begin{cases} (c_{-3}c_{-2}c_{-1}w_0)(c_{-2}c_{-1}w_0) \\ (c_{-1}w_0) \end{cases} $	w+c+ws+cs+wsh+csh	7.94	266.42±7.48	5.9M	
$\begin{cases} \pi_l = p(l; \lambda, \zeta), & l = 0 \\ 0 = E_{\tilde{p}(x)}[f_i(x)] - E_p(x) \end{cases}$	$(l,x^l;\lambda,\zeta)[f_l(x)]$			TDRFs (500c) w+c w+c+ws+cs	8.72 8.29	261.02±2.94 266.34±6.13	2.8M 5.9M

Comparison	Computation efficient in training	Computation efficient in testing	Bidirectional context	Flexible features	Performance
N-gram LMs					
Neural network LMs					
TDRF LMs					