Trans-dimensional Random Fields (TDRF) for Sequence Modeling

We present the potential of applying random fields for sequence modeling, demonstrated by its success in language modeling.
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State-of-the-art LMs — Review

TDRF LMs — Motivation
p(x1; X2, xl) =7

Dominant: _’@

Conditional approach / Directed

Alternative: _@

Random field approach / Undirected

® Model training is difficult.
© Capture bidirectional context for language cognition.

* Dominant: Conditional approach
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® Computational expensive in both training and testing !

e.g. lexicon size V = 10k~100k, embedding dim h = 250 The cat is Qn the table.

The cat is in the house.
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! Partly alleviated by using un-normalized models, e.g. through

. , , _ . © Breakthrough in training with a number of innovations
noise contrastive estimation training.

Fixed-dim (e.g. image) -> Trans-dim (sequential modeling)

WSME vs TDRF

TDRF LMs — Model Definition

* Features (f;,i = 1,2, ..., F) can be defined flexibly. * Whole-sentence maximum entropy (WSME) (Rosenfeld, Chen, Zhu 2001)
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A mixture distribution with unknown weights, which differ from each
other greatly, e.g. 104° |
Poor sampling = poor estimation of gradient = poor fitting

* Trans-dimensional RF (TDRF) model
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Empirical length probabilities in the training data
Serve as a control device to improve sampling from multiple distributions!

‘meeting on DAY-OF-WEEK’ appearsin x = A;is activated
= A; isremoved

i) = {(1)

, Otherwise

© More flexible features, beyond the n-gram features, can be well
supported in TDRF LMs.

© Computational efficient in computing sentence probability
for testing.

Jelinek 1995: put language back into language modeling

TDRF LMs — Model Estimation

Experiments

* Maximum-likelihood training LM Training — Penn Treebank portion of WSJ corpus
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