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Closely Coupled Array Processing and Model-Based
Compensation for Microphone Array
Speech Recognition

Xianyu Zhao and Zhijian Ou, Member, IEEE

Abstract—In conventional microphone array speech recogni-
tion, the array processor and the speech recognizer are loosely
coupled. The only connection between the two modules is the en-
hanced target signal output from the array processor, which then
gets treated as a single input to the recognizer. In this approach,
useful environmental information, which can be provided by the
array processor and also needs to be exploited by the recognizer,
is ignored. Inherently, the array processor can generate multiple
outputs of spatially filtered signals, as a multi-input-multi-output
(MIMO) module. In this paper, a closely coupled approach is
proposed, in which a recognizer with model-based noise com-
pensation exploits the reference noise outputs from a MIMO
array processor. Specifically, a multichannel model-based noise
compensation is presented, including the compensation procedure
using the vector Taylor series (VTS) expansion and parameter
estimation using the expectation-maximization (EM) algorithm.
It is also shown how to construct MIMO array processors from
conventional beamformers. A number of practical implemen-
tations of the conventional loosely coupled approach and the
proposed closely coupled approach were tested on a publicly avail-
able database, the Multichannel Overlapping Number Corpus
(MONC). Experimental results showed that the proposed closely
coupled approach significantly improved the speech recognition
performance in the overlapping speech situations.

Index Terms—Array signal processing, microphone array,
model-based compensation, robust speech recognition.

1. INTRODUCTION

ECENT research efforts in automatic speech recognition

(ASR) have been focused on improving the robustness of
ASR systems in practical applications, e.g., with spontaneous
casual speech, in adverse acoustic conditions, etc. Particularly,
in many real environments, such as vehicles, meeting rooms,
and information kiosks, the use of hand-held or head-mounted
close-talking microphones is undesirable for reasons of safety
or convenience. Users expect to speak at some distance from
the microphone in a hands-free mode. Unfortunately, in these
distant-talking settings, the performance of speech recognizers
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Fig. 1. Loosely coupled array processor and speech recognizer.

will be seriously degraded due to the microphone pickup of en-
vironmental noise and reverberation. It is known that the use of
a microphone array, rather than a single microphone, can sup-
press interfering signals coming from undesired directions by
providing spatial filtering to the sound field [1].

Many microphone array processing techniques for interfer-
ence suppression have been proposed, mainly to enhance the
signal-to-noise ratio (SNR) of the target signal. The simplest
and most common method is the delay-and-sum (DAS) beam-
forming [2]. Generalized sidelobe canceller (GSC) is a widely
used adaptive beamforming algorithm [3]. To mitigate the unde-
sirable effect of signal cancellation in reverberant environments,
the basic GSC can be augmented with coefficient-constrained
blocking matrix, adaptive mode control and norm-constrained
multiple canceller [4], [5]. Furthermore, the beamformer output
can be further enhanced by applying a post-filter [6]-[10]. It is
shown [6] that a typical beamformer such as GSC alone does
not provide sufficient noise reduction for a broadband input such
as speech, and so various post-filtering techniques are proposed
[7]-[10] to further filter out the residual noise in the beamformer
output.

When used for speech recognition, these microphone array
processing methods conventionally take in the multichannel
input and generate the enhanced target signal as a single-channel
output, which then gets treated as a single-channel input to the
recognizer [10]-[12]. The two modules, the array processor
and the speech recognizer, are thus loosely coupled, as shown
in Fig. 1. The only connection between them is the target signal
output from the array processor.

This loosely coupled approach has inherently two problems.
The first is the loose coupling of the design objectives of the
two modules. The array processor is designed to maximize the
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SNR, while the speech recognizer is designed to maximize the
likelihood of the acoustic observations under hypothesized word
string. To address this mismatch problem, a new approach called
likelihood-maximizing beamforming (LIMABEAM) was pro-
posed by Seltzer et al. [13]. The beamformer’s weights are de-
signed so as to maximize the likelihood of the filtered acoustic
data under the recognizer’s best hypothesis. Maximum likeli-
hood beamforming was further developed in the cepstral domain
by Raub et al. [14].

The second is the loose coupling of the operations of the two
modules, which is the main issue addressed in this paper. In-
herently, the array processor can generate multiple outputs of
spatially filtered signals, as a multi-input—multi-output (MIMO)
module. However, conventionally the array processor simply
operates as a multi-input—single-output (MISO) module without
any regard to the manner in which the speech recognizer oper-
ates. Useful environmental information that can be provided by
the microphone array processor and also needs to be exploited
by the recognizer is ignored. We could have the array processor
give multiple outputs: one for the enhanced target speech signal,
and the others for the estimates of the spatial noise field, which
we call the reference noise outputs. The recognizer could then
utilize the reference noise outputs in further model-based com-
pensation! for robust speech recognition.

Many techniques have been developed, in mono-microphone
situations, to augment the basic recognizer with additional com-
ponents to cope with environmental interference such as addi-
tive noise. One important class is model-based noise compensa-
tion, e.g., parallel model combination (PMC) [15], vector Taylor
series (VTS) [16]-[19], etc. Usually, we first assume an environ-
ment model, which describes how the clean speech is corrupted
by environmental interference to produce the distorted speech.
Based on the environment model, the compensation can then be
done in two forms: the model parameters are adapted (model
adaptation) [16], [17], or the clean speech is estimated (data
compensation) [17]-[19].

One critical step in these model-based compensation methods
is how to effectively model the environmental interference such
as additive noise. When using only one microphone for speech
acquisition, what the recognizer has is only the noisy speech.2
The additive noise model is usually obtained from the non-
speech frames at the start and/or the end of the noisy utterance.
It is also possible to reestimate the noise parameters, after ini-
tialization from the nonspeech frames. In these cases [15]-[19],
the noise model is used time-invariantly for the whole utterance.
However, the noise in real environments is often nonstationary.
For example, in meeting environments with several competing
speakers, the statistics of the overlapping speech are highly
time-varying [20]. Some complicated methods have been
proposed for time-varying noise compensation in the case of
using only one microphone [21]-[23]. However, microphone
arrays can naturally provide estimates of the environmental

ITo be more precise, here it is mainly to compensate for the effect of the
residual noise, which still exists in the enhanced target speech signal from the
beamformer.

2And in the loosely coupled approach to using microphone arrays, what the
recognizer has is only the single enhanced target speech signal from the beam-
former, still with residual noise.
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Fig. 2. Closely coupled array processor and speech recognizer.

noise through spatial filtering as pointed above. It is beneficial
to closely couple the operations of the array processor and the
speech recognizer, with the model-based noise compensation
exploiting the noise estimates coming from the MIMO array
processor.

In this paper, a new approach to microphone array speech
recognition is proposed, in which the operations of the array
processor and the speech recognizer are closely coupled [24],
as shown in Fig. 2. Specifically, we consider the integration of
MIMO processing of the microphone array with VTS model-
based noise compensation. Here, the array processor provides
multiple outputs, allowing more information to be used in
the recognizer. One is the enhanced target speech output; the
others are the reference noise outputs. The conventional VTS
algorithm is extended to utilize the reference noise outputs from
the array processor to compensate for the residual noise in the
enhanced target speech output. A multichannel environment
model is proposed for this compensation purpose. Moreover,
an iterative method using the expectation-maximization (EM)
algorithm [25] is developed to estimate the compensation
parameters. It is also shown how to construct MIMO array pro-
cessors from conventional beamformers. A number of practical
implementations of the conventional loosely coupled approach
and the proposed closely coupled approach were tested on the
Multichannel Overlapping Numbers Corpus (MONC) data-
base.3 Experimental results showed that the proposed closely
coupled approach significantly improved the speech recogni-
tion performance in the overlapping speech situations.

The rest of the paper is organized as follows. In Section II,
we focus on the recognizer module for the closely coupled
microphone array speech recognition. A multichannel environ-
ment model that considers multiple outputs of the MIMO array
processor is proposed, and then model-based noise compensa-
tion with such multichannel environment model is presented in
detail, including the compensation procedure and parameter es-
timation. In Section III, we discuss the array processor module
for the closely coupled approach by showing how to construct
MIMO array processors from some conventional beamformers
like DAS and GSC. In Section IV, a number of practical
implementations of the conventional loosely coupled approach
and the proposed closely coupled approach are presented and
evaluated through a series of speech recognition experiments
on the MONC database. Section V concludes the paper with a
summary.

3Multi-Channel Overlapping Numbers Corpus (MONC) Distribution. [On-
line]. Available: http://cslu.cse.ogi.edu/corpora/
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Fig. 3. Multichannel environment model.

II. CLOSELY COUPLED OPERATIONS FOR MICROPHONE ARRAY
SPEECH RECOGNITION: RECOGNIZER MODULE

In this section, we assume that the microphone array pro-
cessor operates as a MIMO module and describe how the speech
recognizer can make use of these multiple outputs for the pur-
pose of model-based noise compensation. (The implementation
of MIMO array processor will be presented in Section II1.) First,
amultichannel environment model is proposed, which takes into
account the relationship between the desired clean speech and
the array processor’s multiple outputs. Then, the model-based
noise compensation procedure based on VTS expansion of this
multichannel environment model is described in detail. To ad-
dress the problem of maximum-likelihood (ML) estimation of
the set of equalization filters used in the compensation proce-
dure, we develop an iterative method using the EM algorithm.

A. Multichannel Environment Model

When working as a MIMO module as shown in Fig. 2, the mi-
crophone array processor takes several channels of signals ac-
quired by the array sensors as inputs. It also has several output
channels, which include the enhanced target speech y(n) and the
reference noise outputs, {r(n),r%(n),...,7™(n)}. Although
the SNR of the enhanced target speech y(n) is increased com-
pared with the microphone inputs, there is still some residual
noise in it [6]. We formulate the relationship between the de-
sired clean speech signal s(n), the array processor output of en-
hanced speech y(n), and the residual noise e(n) as follows:

y(n) = s(n) + e(n). ey

In addition, we assume that the residual noise e(n) could be
represented by a combination of the filtered reference noise out-
puts, as

M . .
e(n) = 3 ri(n) @ ¢ (n) @
7=1

where {g'(n),g%(n),...,g™(n)} stands for a set of equal-
ization filters, which account for the amplitude and phase
differences between e(n) and 77(n)’s. Combining (1) and
(2), the environment model considering the array processor’s
multichannel outputs is shown in Fig. 3.
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The aforementioned relationship can be represented using
power spectral density (PSD) as

VP = 1S@P+ Y [ @@ o

where |Y (w)[?, |S(w)|?, |R? (w)|?, and |G7(w)|? are the PSD of
y(n), s(n), r¥(n), and g7 (n), respectively, and for simplicity,
we assume that s(n) and {r/(n); j = 1,..., M} are mutu-
ally independent.# After taking natural logarithm on (3), we get
the relationship in the logarithm filter bank energy (log-FBE)
domain

log [Y (w)|” = log |S(w)|’

M
+log |1+ |Riw)|* - |G )|/ 1S@)*| . @

i=1

For brevity, we use y, s, {T{; j = 1,...,M}, and
{9/; 7 = 1,...,M} to represent log |V (w)|?, log|S(w)|?,
{log [Ri()[% j = 1,...,M}, and {log|G/ (W) j =
1,...,M}, respectively, where the subscript “I” denotes
log-FBE domain. After some algebraic manipulation, (4) can
be rewritten with these new symbols as

M
Y = s + log 1—|—Zexp(rlj—|—glj—sl) N E))

J=1

B. Multichannel Model-Based Noise Compensation With VTS

The clean speech signal s; is modeled by a K -Gaussian mix-
ture in the log-FBE domain as

K
plsi) =D p(v = k)N (15 ok, T 1) (6)
k=1

where p(v = k) is the a priori probability of the kth Gaussian
component which has mean 15 ;, and covariance matrix ¥ .

We treat the equalization filters {g{; j = 1,..., M} as un-
known constant parameters rather than random variables, be-
cause their values change more slowly compared with those of
speech and noise signals.

To facilitate model-based noise compensation, the nonlinear
model (5) can be approximated with its first-order vector Taylor
series expansion. For the kth Gaussian component in the clean
speech model, by treating {r7; j = 1,..., M} as observations
and expanding VTS around the mean of the clean speech (.1)
and the current values of equalization filters (g} ),j = 1,..., M,

e, {ps k. g7; 7 =1,..., M}, we get

M

w~ pap+log (143 exp (vf +51 = o)
i=1

M
+Ak(s1— pak) + > Bjk (gzj - ?f) )

i=1

4This will not be the real case, since leakage will cause that the enhanced
target signal and the reference noise outputs are correlated.
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where (diag is an operator of forming a diagonal matrix from a

vector)
_ oyl
k= e _
SUM el }
-1
M ' '
=diag [ 1 + Zexp (rl] +7 — Ns,k)
=1
oyl
ik = o
91| (. 30}
exp (] +7] = o)
=diag

M . .
1+ 3 exp (r{’ +7 - uk)
j'=1

Model-based compensation is done to the mean vector and
covariance matrix for each Gaussian component in the clean
speech model. With the modeling considerations from (5)—(7),
the noisy signal y; is also modeled as a Gaussian mixture, and
its mean and covariance matrix for the kth component can be
shown as

M

fyk = fhak +log [ 14+ exp (T{ +7 - /Lk) ®)
i=1
and
Yyk = ApXo kAL 9)

Since the interferences in real environments are often nonsta-
tionary (e.g., in the case of overlapping speech), the model com-
pensation is carried out frame by frame as follows. From now
on, we include frame ¢ in parentheses to explicitly express the
dependence on frame index.

M
py k() = pag +log [ 1+ exp (T?(t) +91 — Ns,k)

=1
(10)
and
Syk(t) = AR(t) Sk AL (1) (11)
where
o
At =52
St {Hs,kaﬁf}
—1
=diag [ 1+ Y exp (Tf ) +7] - us,k>
=
oy
Bj(t) = P
i {ns1:30 }
exp (1](8) + 5] = o)
=diag

M ] ]
1+ > exp (r{ (t)+9] — usJC)
j’'=1
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After model compensation, the clean speech is estimated
based on the minimum mean square error (MMSE) criterion.
Thus, we have

s(t) =B [su(®)lu(). {r{ ()25 = 1...... M}]

M}) Gt k)
(12)

_ ip (v(t) = kl(t). {rlj(t);j =1,...

where

$i(t k) = pag + AL (L) - (m(t) = py (1)) -
Using the compensated model (10) and (11) for y;(t), the pos-
teriori probabilities P(v(t) = kly(t), {r{(t); j=1,...,M})
are computed as
P (v(t) = Klu(t), {ri ()i =1,.... M})
P(v = k)N (yi(t); py,k (), Xy (2))
P

(v =FK)N (Yi(t); pry (), Xy 1 ()

(13)

M=

k'=1

Il

C. Maximum Likelihood Estimation of the Equalization Filters

The estimation of the equalization filters, {gl] ;] =
1,...,M}, between the residual noise and the reference
noises can be based on the maximum-likelihood criterion.
Since it is difficult to obtain the ML estimate directly, the EM
algorithm is used to iteratively update the parameter values.
The auxiliary function Q(A|)) for the EM algorithm is defined
as follows, for current parameters A={gl;j=1,..,M}
and the parameters A = {g/; j = 1,..., M} to be reestimated

Q\PX) = E [logp(Yy, R, St, VN[V, R, A] (14)

where Y, = w(1),...,u(T) is the noisy feature vector se-
quence of length 7', S; = s;(1),...,s;(7T) is the clean feature
vector sequence, Ry = {r{(t); j = 1,...,M and t =
1,...,T} are the reference noise feature vectors and
V. = o(1),...,u(T) is the hidden sequence of mixture
components. The parameter reestimate ) is obtained through

the following optimization problem with respect to A, i.e.,
A= argm}:jme(MX). (15)

Expanding (14), we have
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C7 and C are constant values that are not relevant to the opti-
mization problem.

To maximize Q(A|)), we let (OQ(A|N)/dg™) = 0, m =
1,..., M and obtain form = 1,..., M
T K M .
YYor (U(t) = klyi(t), {r{(t);j = 1,...,M} j)
t=1 k=1 j=1

x BEL (D AT (05514 (0B (t) (of - 7))

= iip(v(t) = klyi(t), {r{(t);j = 1,...,M} ,X)

t=1 k=1
x By (AT (ODTRAL () (i) — py (1) -

To be more precise, the new estimates of the M equalization

a7)

filters (g,l, ceey g,M) are found by solving the following vector
linear equations:
W.g=z2 (18)
where 1_ -1
w w1M 9 — 91 21
W1 WM M gt —gM ZMm
and

T K )
wnj = > > P(o(t)=klu(), {r{ (#):i=1,...

t k=1
X B, k()AL ()27 L AL (8) Bk (t)
T K
I = ZZP(U(t):kkyl(t), rit)j=1,.. .,M} ,X)
t=1 k=1
X B, k(DAL (ST R AT (8) ((t) = (1) -

The new values of the equalization filters f]lj obtained above
are then used in the next round of EM iteration as the current
estimates gy . _

Before the EM iterations, the initial values of g; can be set
according to the amplitude ratio estimate between the residual
noise and the reference noises. These can be estimated from the
nonspeech frames in the array’s target output, where the voice
activity detector (VAD) marks as not being spoken by the target

speaker. Then we have

=os | (YOP) /S (R0 )] =1z

19)
where b is the filter bank index, and the symbol “( )” represents
averaging over the nonspeech frames.

In conclusion, the multichannel model-based noise compen-

sation proceeds as follows [17], [18].

1) Get initial estimates for g; using (19).

2) Update the compensated model (10), (11) for the noisy
signal ;(¢), using the current estimates of the equalization
filters.

3) Perform a single iteration of the EM algorithm to reesti-
mate the equalization filters.

4) If the likelihood of the noisy signal y;(t) increases rela-
tively above a predefined ratio (e.g., 0.1%), or the current
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Fig. 4. Closely coupled DAS-BM MIMO array processor and multichannel
model-based noise compensation.

number of iterations is below a fixed number (e.g., 10),
return to Step 2.

5) The clean speech is estimated based on the MMSE crite-
rion through (12).

III. CLOSELY COUPLED OPERATIONS FOR MICROPHONE ARRAY
SPEECH RECOGNITION: ARRAY PROCESSOR MODULE

In Section 1II, it is assumed that we have a MIMO array pro-
cessor module, which has several output channels, including not
only the enhanced target speech y(n), but also some reference
noise outputs, {r!(n),r%(n),...,7M(n)}. In this section, we
detail how to construct MIMO array processors in practice, from
some conventional beamformers like DAS and GSC. Two dif-
ferent schemes are presented.

A. DAS-BM MIMO Array Processor

The DAS-BM MIMO array processor includes a delay-
and-sum (DAS) beamformer and a blocking matrix (BM), as
shown in Fig. 4.

DAS is used to get steered response from the multisensor
array for the target direction. It just applies time shifts to the
array signals, {z(n); i = 1,..., N}, to compensate for the
propagation delays, {7%; i = 1,..., N}, in the arrival of the
target signal at the microphones. The array signals are time-
aligned and summed together to form a single output signal
d(n), ie.,

N
d(n) = % Z z'(n+ 7). (20)
i=1

In our experiments, the steering delays for the target speaker are
estimated using the PHAT method [26].

BM is used to block the desired speech signal and passes the
speech from other competing speakers. So in the BM outputs,
{bi(n); j = 1,2,..., M}, the interfering signals are dominant.
In our experiments, the Griffiths—Jim blocking matrix [3] is used
as the BM. It simply takes the difference between the adjacent
time aligned array signals to get the b’(n), i.e.,

b (n) =2’ (n+77) — 20D (n + T(j+1)) . @D

SNote that since the linear expansion (of the nonlinear environment model)
changes from iteration to iteration with changing estimates of the equalization
filters, the objective function being maximized by the EM algorithm changes

from iteration to iteration. As such, there is no guarantee of likelihood conver-
gence. Thanks for the comment from reviewer 1.
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Fig. 5. Robust generalized sidelobe canceller incorporating adaptive mode
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For the DAS-BM MIMO processor, the closely coupled ap-
proach uses the BM outputs as the reference noise outputs (i.e.,
ri(n) =b(n),j = 1,2,..., M)and does multichannel model-
based noise compensation for the residual noise in the DAS
beamformer output.

B. GSC MIMO Array Processor

Generalized sidelobe canceller (GSC) is a more sophisticated
beamformer. It attempts to suppress the noise by constraining
the array response to unity in the direction of the target speech
and minimizing the energy from all other directions. It includes
a fixed beamformer (FBF), a multi-input adaptive filter (MIAF)
and a blocking matrix (BM). In our experiments, the FBF and
BM are implemented as the DAS beamformer and the Griffiths—
Jim blocking matrix, respectively, as described previously. The
MIAF uses the normalized least mean square (NLMS) algorithm
[27] to adapt the coefficients of a set of transversal FIR filterers to
meet the minimum variance distortionless response (MVDR) cri-
terion. The desired speech output y(n) is obtained by subtracting
the output of MIAF f(n) from the FBF output d(n).

Although the convergence properties of the GSC algorithm
have been shown in [2], [3], the real environments for micro-
phone array applications are more complicated. Factors such as
room reverberation and nonstationary interference will cause
the leakage of target speech signal into the BM outputs, the
target signal cancellation during the subtraction of FBF and
MIAF outputs, and the unstable adaptation of MIAF coefficients
[5]. All these deteriorate the performance for target speech en-
hancement, and so for subsequent speech recognition [13]. In
[5], Hoshuyama discusses several robust adaptive beamforming
techniques, like adaptive mode control (AMC), norm constraint
(NC) of MIAF coefficients, etc. With AMC, the coefficients of
MIAF are allowed to adapt only when the noises are dominant
in the BM outputs, and NC is used to constrain the amplitude
growth of these coefficients to further avoid incorrect and un-
stable adaptation. A robust GSC used in our experiments that
incorporates AMC and NC is shown in Fig. 5.

For the GSC MIMO processor, the closely coupled approach
uses the MIAF output as the reference noise output (i.e., M = 1
and r'(n) = f(n)) and does multichannel model-based noise
compensation for the residual noise in the GSC beamformer
output, as shown in Fig. 6.
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Fig. 7. Meeting room configuration for MONC .

IV. EXPERIMENTAL RESULTS

In Sections II and III, we introduce the recognizer module
and the array processor module, respectively, for the pro-
posed closely coupled approach to microphone array speech
recognition. In order to evaluate the proposed approach, we
employed a publicly available database, the Multichannel
Overlapping Numbers Corpus (MONC). The MONC is based
on the Numbers Corpus (telephone quality, continuous sentence
with 30-word vocabulary) prepared by the Center for Spoken
Language Understanding at the Oregon Graduate Institute . The
meeting room configuration for the MONC data acquisition is
shown in Fig. 7. The loudspeakers simulate the presence of the
desired speaker (S1) and the two competing speakers (S2 and
S3) in a realistic meeting scenario. A circular microphone array
comprising eight equally spaced microphones is placed in the
middle of a round table (N = 8). An additional microphone is
placed at the center of the table. A lapel microphone is attached
to each loudspeaker. The same type omnidirectional micro-
phones are used in all locations. The circular table is located
at one end of a moderately reverberant, 8.2 x 3.6 x 2.4 m,
rectangular room. The dominant nonspeech noise is produced
by a PC located at the opposite end of the room. There are three
possible competing speaker scenarios.

* Scenario-S1: Only the desired speaker S1 is active, no

overlapping speech.
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e Scenario-S1S2: The desired speaker S1 with one com-
peting speaker S2 active (resulting in approximately O dB
SNR at the center table-top microphone location).

¢ Scenario-S152S3: The desired speaker S1 with two com-
peting speakers S2 and S3 active (resulting in approxi-
mately —3 dB SNR at the center location).

The speech recognition system is based on continuous-den-
sity hidden Markov models (HMM) with 363 states. Each word
is modeled by a left-to-right 12-state HMM. The silence is mod-
eled as a three-state HMM. The observation probability dis-
tribution for each state is a six-Gaussians mixture. The 45-di-
mensional feature vector is formed by 14 MFCCs, the energy
plus their first and second-order differentials. A 20-ms window
length and a 10-ms frame shift are used. Cepstral mean normal-
ization (CMN) is performed in both training and test.

The clean corpus is comprised of a 6049-sentence training
set, a 2026-sentence cross-validation set, and a 2061-sentence
test set. Different “scenario” versions of the cross-validation
and test sets were collected by outputting utterances from the
clean corpus on one or more loudspeakers and recording the re-
sulting sound field with the microphones . The baseline recogni-
tion system was trained on the clean training set, and achieved a
word error rate (WER) of 6.19% on the clean test set. There are
eight different “channels”—Iapel, center, loosely coupled DAS
and baseline recognizer, loosely coupled DAS and VTS, closely
coupled DAS-BM and VTS, and another three similar ones for
robust GSC. In the following recognition experiments, MAP
adaptation was performed on the clean speech model using the
cross-validation set for each channel-scenario pair, and then the
adapted models were used to recognize the corresponding test
set.

In our loosely and closely coupled model-based noise com-
pensation experiments, a set of K = 128 diagonal gaussians
was trained on the clean training set as the clean speech model
in the log-FBE domain. For the loosely coupled model-based
noise compensation, the VTS model-based compensation tech-
nique in [18] and [19] was used. It is similar to the compensation
procedure described in Section II. The distinction is that there
is no time-varying reference noises and no equalization filters,
and instead the noise model is estimated using 20 frames from
the nonspeech segment (ten frames at the utterance beginning,
ten frames at the utterance end). In order to get the optimal com-
pensation effect in the ML sense, the EM algorithm is taken to
reestimate the noise model before doing compensation.

In the following, we first give the experimental results for the
baseline recognizer using mono-microphone in Section IV-A.
Then, the recognition results for various loosely/closely cou-
pled schemes using array processors are discussed for DAS/
DAS-BM and GSC, respectively, in Sections IV-B and IV-C.
Finally, some discussions are presented in Section IV-D.

A. Experiments With Mono-Microphone

The first set of experiments was performed using mono-mi-
crophone (Lapel or Center) under different scenarios. The WER
results are listed in Table I.

In this table, the “Lapel” row gives the WER results for the
recordings from the desired speaker S1’s lapel microphone (a
close-talking setting), and the “Center” row gives the results
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TABLE 1
WER RESULTS WITH MONO-MICROPHONE (%)

Scenario S1 S1S2 S1S2S3
Lapel 8.15 33.43 34.19
Center 10.43 66.18 83.51

TABLE II
WER RESULTS WITH DAS/DAS-BM ARRAY PROCESSOR (%)

Scenario S1 S182 S18283
Loosely coufézggl?liAzzrand baseline 8.03 27.16 30.23
Loosely ccc())lrlli):;(rilslzé?osnand VTS 827 2061 35.06
Closely coupled DAS-BM and VTS 963 18.05 20.96

compensation

for the recordings from the center table-top microphone (a dis-
tant-talking setting). Comparing these two rows of different mi-
crophone settings, we can see that as the distance from the target
speaker increases, the center microphone is more susceptible
to environmental interference such as the ambient noise and
overlapping speech. For the three different scenarios, it is clear
that the speech recognition performance becomes seriously de-
graded when there are several concurrent competing speakers.
Even when the lapel microphone is placed very near the desired
speaker, the problem still exists. So, these overlapping speech
scenarios present great challenges to the baseline system with
mono-microphone.

B. Experiments With DAS/DAS-BM Array Processor

In the second set of experiments, the DAS/DAS-BM array
processor was used for spatial filtering. Speech recognition
performances were compared for various loosely coupled
and closed coupled schemes. The WER results are shown in
Table II.

In spite of the simplicity of the DAS beamformer, the com-
parison of the “Loosely coupled DAS and baseline recognizer”
row in Table II with the results in Table I shows its effective-
ness for speech enhancement. For Scenario-S1, it can be seen
that the table-top microphone array with DAS beamforming
achieves comparable speech recognition performance with the
close-talking lapel microphone. For the overlapping speech sce-
narios like S1S2 and S1S2S3, the competing speakers’ speech
is suppressed after DAS beamforming, and the recognition per-
formances are improved over those using lapel microphone.

The “Loosely coupled DAS and VTS compensation” row
corresponds to the experiments performed to investigate the
combination of DAS array processing with model-based ro-
bust speech recognition in a loosely coupled approach. That
is, the DAS beamformer operates in a MISO mode and its
single enhanced speech output is fed directly into the speech
recognizer with the VTS model-based noise compensation.
Comparing with the above row, we can see that although the
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TABLE III
WER RESULTS WITH ROBUST GSC ARRAY PROCESSOR (%)

Scenario S1 S1S2 S1S283
Loosely :sztllﬂ:‘:efé’:;ﬁzgsc and g0 1771 2259
Closely coupled robust GSC and 328 15.17 18.39

VTS compensation

speech recognizer is augmented with the VTS model-based
noise compensation, this loosely coupled approach is not ef-
fective for improving the recognition performance. Note that
the environmental interference is mainly nonstationary here,
such as reverberation and overlapping speech from competing
speakers. In this case, the time-invariant environment model
cannot effectively represent this kind of nonstationary statistics,
and thus the VTS model-based noise compensation fail to
produce effective performance improvements.

The “Closely coupled DAS-BM and VTS compensation”
row in Table II gives the recognition performances for close
coupling DAS-BM and model-based noise compensation as
shown in Fig. 4. In the experiments, the number of the BM
outputs fed into the multichannel model-based compensation
was set to 2, i.e., M = 2. For the overlapping speech sce-
narios like S1S2 and S1S2S3, this closely coupled scheme
performs much better than the loosely coupled schemes (the
“Loosely coupled DAS and baseline recognizer” row and the
worse “Loosely coupled DAS and VTS compensation” row).
These results are comparable with those reported in [10]. By
exploiting the information provided by the reference noise
outputs, the nonstationary residual noise is modeled more pre-
cisely, which in turn leads to more effective model-based noise
compensation. For Scenario-S1, comparing with the “Loosely
coupled DAS and baseline recognizer” row which uses the
DAS beamformer output directly, we can see that after this
multichannel model-based compensation, there is some per-
formance degradation. In this scenario, there is no overlapping
speech from competing speakers, and the target speech leaked
through the BM becomes dominant in the reference channels.
This violates the assumption made by (3) that the speech s;
and the reference noises, {r/; j = 1,..., M}, are mutually
independent, and induces incorrect adaptation of the model
parameters.

C. Experiments With Robust GSC Array Processor

The third set of experiments was performed to investigate the
use of robust GSC as the front-end array processor. The WER
results are summarized in Table III.

From the “Loosely coupled robust GSC and baseline recog-
nizer” row in Table III, we can see that the overlapping speech
from competing speakers is suppressed more effectively by ro-
bust GSC beamforming than by the simple DAS beamforming,
and the recognition performances are further improved.
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As shown in the “Loosely coupled robust GSC and VTS”
row in Table III, loose coupling robust GSC array processing
and VTS model-based noise compensation performs worse than
directly feeding the GSC output to the baseline recognizer. This
is similar to the above experimental results with DAS.

The “Closely coupled robust GSC and VTS compensation”
row corresponds to the scheme shown in Fig. 6. For the over-
lapping speech scenarios like S1S2 and S1S2S3, the closely
coupled scheme again achieves much better performance than
the loosely coupled schemes. In addition, through the usage of
MIAF processing (in combination with other robust adaptive
beamforming techniques like AMC and NC), the target speech
leakage is suppressed, and the performance for Scenario-S1 is
guaranteed in this scheme. This result further shows the im-
portance of appropriate combination of array signal processing
techniques and multichannel model-based compensation tech-
niques for improving recognition performance under various
conditions.

D. Discussion

In the following, we give some examinations of the proposed
closely coupled approach for better understanding of its behav-
iors. First, for our current use of the microphone array as a
MIMO processor, we do not assume that one reference noise
output corresponds to the estimate of one noise source in the
sound field. We can block the desired speaker’s speech using the
simple Griffiths—Jim blocking matrix to generate the reference
noise outputs, which then contain useful information about the
environmental noise. Significant recognition performance im-
provements were obtained under the overlapping speech sce-
narios in the experiments. From this aspect, the closely cou-
pled microphone array speech recognition system could per-
form without much concern about the precise one-to-one noise
estimates.

Second, note that for the closely coupled approach, the
leakage of the desired speech signal into the reference noise
channels could mislead the subsequent model-based noise com-
pensation. This problem is most serious under Scenario-S1.6
In this case, it is less reasonable to assume that the speech and
the reference noises are independent. However, when there are
other competing speakers (e.g., S1S2 and S1S2S3 scenarios),
the noise signals are dominant in the reference channels. In
these cases, it is beneficial to exploit the reference noise outputs
for model-based compensation, as shown by the performance
improvements in the experiments. In addition, by use of robust
GSC array processor, this problem can be alleviated to some
extent. The recognition performance is guaranteed under Sce-
nario-S1, through proper techniques (MIAF, AMC, and NC) to
suppress target speech leakage.” To use more advanced MIMO
algorithms for noise source segregation and estimation is worth
further research.

6The target speech leakage in the BM outputs was measured to be —7 dB
under Scenario-S1, averaging across the entire test utterances. For each utter-
ance, the leakage value was calculated as the ratio in decibels between the av-
erage power of the BM outputs and that of the original microphone inputs.

TThe target speech leakage in the MIAF output was measured to be —11 dB
under Scenario-S1, averaging across the entire test utterances. For each utter-
ance, the leakage value was calculated as the ratio in decibels between the av-
erage power of the MIAF output and that of the original microphone inputs.



1122

Finally, note that the equalization filters used in the proposed
closely coupled approach is a set of “short-time” linear filters,
which is estimated frame by frame. Thus, the issue of compen-
sating for long-term reverberation is not addressed in this paper.

V. CONCLUSION

In this paper, a new approach to microphone array speech
recognition is proposed, in which the operations of the array pro-
cessor and the speech recognizer are closely coupled. The array
processor, as a MIMO module, generates not only the enhanced
target speech signal but also some additional outputs that are in-
formative about the background noises in the working environ-
ment. A multichannel environment model and a model-based
noise compensation algorithm using VTS are proposed to make
use of this multichannel information provided by the MIMO
array processor. With the clean speech model and the environ-
mental statistics, the compensation parameters are automati-
cally estimated in the ML sense. Experimental results show that
the proposed closely coupled approach can achieve environ-
ment modeling and acoustic model-based compensation more
effectively than the conventional loosely coupled approach, es-
pecially to cope with the nonstationary interference under the
overlapping speech situations.
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