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Abstract- It is observed that the cepstral-based features
used for speech recognition are sensitive to some auxiliary
information (e.g. pitch). Encoding the auxiliary information
in discrete auxiliary variables based on dynamic Bayesian
networks (DBNs) typically results in an increased number of pa-
rameters. There are tradeoffs to be studied between parameter
reduction and dependency modeling. In this paper, we propose
a method using state-specific partial tying with information-
theoretic dependency selection. This method is essentially to
relax the conditional independence assumptions imposed by
the full-tied-mixture model, by adding strong dependencies (i.e.
those with large mutual information computed from training
data). Experiments were carried out on the OGI Numbers
database, considering pitch as the auxiliary information. The
results show that the partial-tied-mixture auxiliary chain mod-
els can efficiently improve recognition performances with an
economical way of increasing parameters.

I. INTRODUCTION
In state-of-the-art automatic speech recognition (ASR)

systems, the cepstral-based features (e.g. MFCCs) are used
as the standard acoustic features to discriminate between
different phonetic states. However, it is observed that these
standard features are sensitive to some auxiliary information
such as pitch, rate-of-speech (ROS), gender and etc. Various
methods have been proposed to incorporate such auxiliary
information to improve ASR robustness. Bayesian networks
[1][2], in particular, dynamic Bayesian networks (DBN) [3],
in which HMMs can be considered as one small instance,
has been used for these studies [4][5][6][7][8].
One method is to encode the auxiliary information in

continuous observed variables. It is shown in [6][9] that
simply appending the auxiliary feature to the standard feature
vector degrades the recognition performance. It is beneficial
to use the auxiliary feature serving as a conditional variable
to model the distribution of the standard acoustic feature.
To have tractable exact inference in using hidden continuous
variables, only the dependencies within a given time frame
is considered [6].
On the other hand, the auxiliary information can also be

incorporated in the form of discrete variables [4][5][7][8],
which can be temporally linked to account for contextual
information. The works in [4] [5] show the advantage to
include a discrete context variable, which forms an auxiliary
chain along time. The context variable is always hidden
during both training and recognition, and therefore it is not
clear what auxiliary information it may represent. In [7],
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pitch information is explicitly related to a discrete variable
by quantization, and it is found that the performances is
degraded when having the auxiliary variable observed during
decoding. In [8], ROS information is used by introducing an
additional discrete mode variable.
An important issue in incorporating discrete auxiliary

variables is that for each value q of the phonetic state variable
Qt, the new conditional probabilistic distribution (CPD) of
the acoustic feature Ot, p(Ot IQt = q,A,), requires a separate
distribution for each value a of the auxiliary variable At.
Each individual distribution p(Ot Qt = q,At = a) is usually
implemented as a Gaussian mixture model (GMM). This
typically results in an increased number of parameters. To
reduce the number of parameters for robust parameter esti-
mation, an approach often used by ASR systems is parameter
tying, where certain parameters are shared among a number
of different models. This idea is used in [5][8] for modeling
with auxiliary information, where for each phonetic state q,
the Gaussian components of the GMMs for different values
of At are tied. Only the mixture weights are different. While
the number of parameters is greatly reduced, such parameter
tying implies an overly constrained modeling of the influence
of the auxiliary variable Al on the acoustic feature 01.

Usually, using a constrained implementation of the CPDs
will lead to a sparse model structure, which represents fewer
dependencies. An ideal parameter reduction scheme should
be able to reduce the number of parameters to a number that
can be robustly estimated, whilst retaining sufficient ability
to model the necessary dependencies in the data. There
are successful attempts, where the model structure (and the
number of parameters) is adjusted by adding dependencies
in an order of ranked mutual information [10] [1 1]. These
procedures can be viewed as structure learning of Bayeisan
networks [12].

In this paper, in order to better balance between parameter
reduction and dependency modeling, we propose to use state-
specific partial tying 1 with information-theoretic dependency
selection. Specifically, we implement a partial-tied-mixture
auxiliary chain model based on DBNs for exploiting pitch
information. The quantized pitch variable A, for each time
frame are temporally linked, forming an auxiliary chain. For
each phonetic state, the Gaussian components of the GMMs
for different values of At are partial-tied.
We start from a full-tied-mixture auxiliary chain model.

For each phonetic state, the mutual information between Ot

INote that the tied-mixture model discussed in our paper occurs only
within each state, and is different from the tied-mixture/semi-continuous
HMM [13] [14] which employs parameter tying across the phonetic states.
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Fig. 1. Basic auxiliary chain model. Round nodes represent continuous
variables, while square nodes represent discrete variables.

and At conditional upon each individual mixture component
is computed using training data. Accordingly, a portion of
mixture components is selected to be un-tied and becomes
uniquely associated with each value of At. This procedure
is essentially to relax the conditional independence assump-
tions imposed by the full-tied-mixture model, by adding
strong dependencies (i.e. those with large mutual information
computed from training data). Experiments were carried out
on the OGI Numbers database [15], which is an English
telephone speech corpus consisting of continuously spoken
numbers. The results show that the partial-tied-mixture aux-
iliary chain models can efficiently improve recognition per-
formances with an economical way of increasing parameters.

The paper is organized as follows. In section II, we begin
by describing the basic auxiliary chain model, in which
no parameters are tied. Then after discussing the full-tied-
mixture auxiliary chain model, the partial-tied-mixture aux-
iliary chain model is introduced, including the information-
theoretic dependency selection procedure to achieve state-
specific partial tying. Section III presents experimental re-
sults, followed by conclusions in the last section.

II. AUXILIARY CHAIN MODEL FORMULATION
BASED ON DBNs

Dynamic Bayesian networks (DBNs) are a flexible frame-
work for modeling sequential data, equipped with a graphical
way of model representation, and a set of general algorithms
for inference and leaming. An advantage of using DBNs is
that they can model complex probabilistic dependencies and
allow novel models to be easily developed.

A. Basic Auxiliary Chain Model
Fig. 1 shows the DBN representation of the basic auxiliary

chain model as in [4][5][7]. The discrete variables are used to
encode auxiliary information (e.g. pitch, ROS, or conceptual
context). Qt, Ot, At are respectively the discrete phonetic
state variable, the continuous standard feature variable and
the discrete auxiliary variable at time t. Their joint probabil-
ity distribution over time is

T
P(Q1:T, 01:T,~AI1:T) = [| p(Ql Qt_ p(OtQt,At)p(A1 |At- 1)

t=1

Fig. 2. Full-tied-mixture auxiliary chain model.

where p(OtlQt,At) is often implemented as a set of GMMs
(i.e. one GMM for each possible combination of the values
of the variables Qt and At):

p(Ot |Qt = q,At -a)
M

= Ep(Mt mmQt= q,A1 a)p(01 Qt q,A1 a,M1 m)
ml

(2)

Here Mt denotes the hidden mixture component variable,
which is explicitly shown in Fig. 1. In the general case,
incorporating the auxiliary variable At will increase the
number of Gaussian components by a factor of the cardinality
of At. To reduce the number of parameters, the full-tied-
mixture model is used in [5][8].

B. Full-tied-mixture Autxiliary Chain Model

The full-tied-mixture auxiliary chain model is shown in
Fig. 2. This corresponds to deleting the directed edge from
At to Ot in Fig. 1, and (2) is simplified to:

p(Ot Qt = q,A, = a)
M I

m=l

For each phonetic state q, there is a pool of Gaus-
sians {p(Ot Qt = q, Mt = m) m ,..., M}. The GMMs for
different values of Al share this pool, and differ only in
their mixture weights. This implies an overly constrained
modeling of the influence of the auxiliary variable At on
the acoustic feature Ot. The underlying conditional indepen-
dence assumptions are:

t-LAtlQt = q,Mt = m,Vq,m (4)

which means that for all possible combinations of the values
of Qt and Mt, the acoustic feature Ot is conditional indepen-
dent of the auxiliary variable At. In the following, we propose
to relax these assumptions to use state-specific partial tying,
by adding strong dependencies discovered from training data.

C. Partial-tied-mixture Auxiliary Chain Model

Consider the dependency between 01 and Al given specific
phonetic state q and mixture component m. Its strength can
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Fig. 3. Partial-tied-mixture auxiliary chain model.

be naturally measured by the (conditional) mutual informa-
tion I(0t,At Q, = q, Mt = m). An equivalent condition to the
conditional independence assumption (4) is

I(Ot,At lQt = q,M,- m) 0O (5)

Intuitively, the conditional independence assumption
should be relaxed (i.e. adding the dependency), if the mutual
information I(0, At Qt = q, Mt = m) is large enough (above
a threshold). The set of strong dependencies that are to be
added can therefore be defined for each state q by selecting
the mixture components:

Dq {mIm(Ot,AtjQ, = q,Mt = m) > 0}

I(O,;A, IQ, = q, Ml = m)

=H(OtlQt = q,M, = m) -H(O, Q, =q,Mt =m,A,)
-H(Ot IQ, = q, M, = m)

-Ep(A, =alQt =q,Mt =m)H(O,QtQ q,M, =m,A, =a)
a

(8)
As described in the above formulation of the partial-tied-

mixture auxiliary model, we start from a full-tied-mixture
model, and additional dependencies are added in the order
of decreasing strength until below a threshold. Therefore, we
first train a full-tied-mixture model, containing relatively few
but reliably estimated parameters.

Using this model, the data associated with specific Qt
q and Mt = m are obtained via hard alignment. Then,
for each state q and mixture component m, P(OI QI =
q,MtM m) is estimated from the aligned data as a K-
dimensional diagonal Gaussian density with the variances

CT1, (q.m) ' U22 (q.m) I *.**,6K,(qm)) as follows:

j.(q.m)

(6)
After adding these strong dependencies, (3) becomes:

p(OJtQt = q,A, = a)
, p(Mt mlQt q,At a)p(OtlQt = q,Mt m)

mVDq
+ , p(Mt = miQt = q,At = a)p(OtJQ, = q,At = a,Mt = m)
mcDq

(7)
where the set {m C Dq} represents un-tied mixture compo-
nents, and the set {m V Dq} contains the mixture components
that remain tied for different values of A,. The resulting
partial-tied-mixture model essentially become a Bayesian
multinet [16], where the variable At is switched on and off
to be the parent of 0t, according to different instantiations
of the other parents of 0t (i.e. Qt and Mt). The DBN
representation of the partial-tied-mixture model is shown in
Fig. 3, where the dashed edge from At to 0, represents such
context-sensitive independence [117].
The basic auxiliary chain model corresponds to the case of

Dq { 1,., M}, where there is a large number of parameters
with the problem for reliable parameter estimation. The full-
tied-mixture auxiliary chain model corresponds to the case
of Dq = 0, where, as discussed above, the modeling power
is limited. By selectively adding strong dependencies, the
resulting partial-tied-mixture model can potentially lead to a
better balance between parameter reduction and dependency
modeling.

D. Information-theoretic Dependency Selection
What remains is to obtain the conditional mutual infor-

mation I(01 ,Al IQt = q, Mt m), which can be computed as
follows:

L (°j.t j.(q-m))'
lG{tIQ,=q.Mt=m}

te{tl Q=q.M, =m}
(9)

tCtQt.M m}
Pj,(q.m) =1

tC{jtQ=q.M,=m}

(10)

where 0j1t is the jth element of the observed vector 0,.
The aligned data can be further divided into several

groups according to different values of At. For each A, = a,
p(0,tQt = q,M, = m,At = a) is also estimated as a K-
dimensional diagonal Gaussian density with the variances

(C (qma) a2 .a..I ) as follows:

J26;,(q.m.a)
{ Q (M°jAt

te I t Qt -=q .M, =m,Al=a }

2
lj.(q.m,a))

(11)
t {III Q, =q.Mt =m.A =a}

£ °j.t
t{ijQ,=q,Mt=m.A,=a}

Ij,(q.m,a) £

tC{IQt=q.Mt=m.A,-a}

Then (8) can be written as

I(Ot;AtIQt =q,Mt, m)
K a

Ep(At alQt q,Mt =m) E ln J`(qm)
j= 1 .(q.m.a)

(12)

(13)

where p(At = alQt = q,Mt = m) is estimated via

Y. I

p(At aIQt = q,M, im) = {,'Q, q.Mt m.A, (14)
a te{tjQ=q.M, mA,=a}

For each state q and mixture component m, the conditional
mutual information I(O,,AtlQt = q,Mt im) is computed
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from training data as above. The set of strong dependencies
Dq is then selected as in (6) and added, which sets up the
partial-tied-mixture structure.

III. EXPERIMENTS

A. Experimental Setup

Experiments were carried out on the OGI Numbers
database [15], which is an English telephone speech cor-
pus consisting of naturally spoken numbers with 30-word
vocabulary. We used 6049 utterances from the corpus for
training and 2061 utterances for testing, as configured by
MONC [18]. All utterances were framed with 25ms length
and 1Oms shift. From each frame, 12 mel-frequency cepstral
coefficients (MFCCs) plus normalized log-energy were ex-
tracted along with their first and second derivatives, giving
a feature vector of 39 dimension. Cepstral mean subtraction
was then applied to the feature vector. The Graphical Model
Toolkit (GMTK) [19] was utilized for DBN implementation.
There were 26 monophone models, a silence model, and a
short-pause model. The silence and all monophones were
modeled with three emitting states each, and the short-pause
had only one state which was tied to the middle state of the
silence model.

B. Auxiliary Information

For current work, we mainly consider pitch (the fun-
damental frequency fo) as the auxiliary information. The
Entropic Signal Processing System (ESPS) [20] tool get fo
was used in the experiments to estimate the pitch. get fo
is a program to perform fundamental frequency estimation
using the normalized cross correlation function and dynamic
programming [21].
Two kinds of quantization were used here to obtain the

discrete auxiliary information. One (referred to as pitch2c)
is to quantize the estimated fo to binary to reflect high-low
pitch (low: below 140Hz including unvoiced frames). The
other (referred to as pitchd3c) is to quantize the first-order
derivative of the estimated pitch to trinary, which reflected
steadiness, rising and falling of pitch.

During the training, the auxiliary variables were always
observed to explicitly represent the auxiliary information.

C. Baseline HMM

A baseline DBN was built to emulate the standard HMM.
There is an upper layer including position, transition vari-
ables as introduced in [4]. The various DBNs replace the
lower layer with the different new structures from Fig. 1,2,3.
Gaussian mixtures were trained for each phonetic state using
GMTK, which employs a splitting process that doubles the
number of Gaussian components after each split [19].
As shown in Table I, the word error rate (WER) of the

baseline HMM with 16 Gaussian components per state is
9.80%. For comparison, we examined the effect of appending
the estimated pitch (without quantization) to the standard
feature vector, and forming a 40-dimension feature vector.
The performance was degraded (from 9.80% to 11.74%), as
found in [6][9].

TABLE I
WORD ERROR RATES FOR DIFFERENT MODELS

Model Type Param. WER(%)
HMM 101k 9.80

HMM(+pitch) 102k 11.74
_ H

Full-tied-mix. Aux. Chain (pitch-2c) 102k 9.34 9.34
Full-tied-mix. Aux. Chain (pitch-d3c) 103k 9.35 9.26

117k 9.21 9.18

Partial-tied-mix. Aux. Chain (pitch.2c) 123k 9.16 9.35
141k 9.06 9.16
177k 9.31 9.20

Partial-tied-mix. Aux. Chain (pitch.c,random) 123k 9.57 9.57

114k 9.18 9.13

Partial-tied-mix. Aux. Chain (pitch.d-3c) 131k 9.10 9.09
158k 8.86 8.95
227k 9.03 8.95

Partial-tied-mix. Aux. Chain (pitch-dL3c,random) 141k 9.21 9.16

Basic Aux. Chain (pitch-2c) 202k |10.14 [ 9.63
Basic Aux. Chain (pitch-dd3c) 303k 9.62 9.26

D. Partial-tied-mixture Auxiliary Chain Models

First, the full-tied-mixture auxiliary chain model was
trained. The initialization procedure is as follows:

1) Using the baseline HMM, the state-level viterbi path
was obtained. Then each frame was hard aligned to the
most probable mixture component.

2) For each state, the Gaussian components for different
values of At were duplicated from the baseline HMM.
The mixture weights were initialized from the aligned
data {toAl,Qt = q,Mt = m}.

3) The state transition matrix was copied from the base-
line HMM, and the transition distribution for the auxil-
iary variable was initialized with uniform distributions.

The initialized model was then trained using several EM
iterations with no splitting or vanishing [19] until the relative
difference in the global log-likelihood is less than 0.1%.
By changing 0 in (6) to generate different sizes of Dq,

various partial-tied-mixture models with varying numbers of
parameters were created and initialized from the previously
trained full-tied-mixture auxiliary chain model. As a special
case, the basic auxiliary chain model was initialized by
setting Dq { 1, .. ., M}. In addition, we also experimented
with adding a random set of dependencies, instead of those
strong dependencies determined by (6). All the initialized
models were then trained using several EM iterations with
no splitting or vanishing until the relative difference in the
log-likelihood is less than 0.1%.

E. Results

First, all types of DBN chain models were tested under the
condition where the auxiliary variables were observed (0).
The results are shown in the 'O' column of Table I and also
plotted in Fig. 4. It can be seen that there are no efficient
performance improvements with the basic auxiliary chain
models. Using pitch-d-3c achieved 1.8% WER reduction
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Fig. 4. Performance of different types of DBN chain models, tested under
the condition where the auxiliary variable was observed (0). Blue indicates
using high-low quantized pitch as the auxiliary information. Red indicates
using trinary quantized first-order derivative of pitch.

from the baseline HMM, while increasing the number of
parameters by a factor of 3. Using pitch-2c even degraded
the performance. These results show that we need to reduce
the number of parameters for reliable parameter estimation.

Small WER reductions (4.7% at best) from the baseline
HMM were obtained using the full-tied-mixture models,
with comparable numbers of parameters. Due to the overly
constrained modeling of the influence of the auxiliary infor-
mation on the acoustic features, the full-tied-mixture models
cannot achieve further improvements.

The results show that the partial-tied-mixture auxiliary
chain models are able to achieve a better balance between
parameter reduction and dependency modeling. Without a
large parameter increase, the WER was reduced from the
baseline HMM by 9.6% when using pitch-dL3c. Increasing
parameters by adding strong dependencies proves to be
useful for building compact yet powerful statistical models.
This is further confirmed by the worse results of randomly
adding dependencies.

In addition, the models were also tested under the con-
dition where the auxiliary variables were left hidden (H).
The results are given in the 'H' column of Table I. In
[7], it is found that during recognition, the chain models
perform significantly better when using hidden pitch vari-
ables than when using observed pitch variables, presumably
due to that the pitch estimates were noisy. However, the
results in Table I show that for the tied-mixture models,
using observed pitch variables during recognition achieved
comparable performance with using hidden pitch variables.
This is encouraging, since inference using hidden auxiliary
variables typically requires much greater complexities (in
both computation and memory) than using hidden ones.

IV. CONCLUSIONS
In this paper, in order to better balance between param-

eter reduction and dependency modeling for incorporating
auxiliary information into state-of-the-art ASR systems, we
propose to use state-specific partial tying with information-
theoretic dependency selection. Various chain models based
on DBNs were evaluated on the OGI Numbers database,
considering pitch as the auxiliary information. The results
show that the proposed partial-tied-mixture auxiliary chain
models can efficiently improve recognition performances
with an economical way of increasing parameters. In future,
we plan to apply the proposed method to exploit more
auxiliary information (e.g. ROS, the state of articulators,
noise condition, etc).
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