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ABSTRACT

A complete speech model can improve performance for many
speech applications. Probabilistic Acoustic Tube (PAT) is a proba-
bilistic generative model of speech that has been shown potentially
useful in a number of speech processing tasks. A point missing in
previous PAT models is that they overlook AM/FM effect in voiced
speech, which is in fact common and non-negligible. In this paper,
we significantly improve the voiced modeling of PAT with a proba-
bilistic model of AM/FM effect, which is developed from Bayesian
Spectrum Estimation method. Experiments show that the new PAT
is able to fit the voiced speech spectrum with greater accuracy in the
presence of AM/FM effect.

Index Terms— Speech modeling, speech analysis, AM/FM,
generative model

1. INTRODUCTION

Most speech processing tasks benefit from a complete model of
speech that fully takes into account important speech elements in-
stead of partial modeling and feature extraction. For example, in
speech analysis, it is shown in [1] that estimation of pitch and spec-
tral envelope should be performed jointly. In speech synthesis, it is
shown that jointly modeling glottal source and vocal tract improves
the quality of parametric speech synthesis [2]. In source separation,
a complete speech model can more accurately define the sample s-
pace of clean signal and therefore is better able to recover clean
speech [3, 4].

As a result, there have been many efforts on building complete
speech models. The STRAIGHT model [5] jointly models pitch,
glottal source and spectral envelope, which is proven effective in
speech modification and resynthesis. Degottex et. al. [6] proposed
a speech model with mixed excitation and adapted vocal tract esti-
mate, which can be used for speech resynthesis, breathiness modi-
fication and pitch adjustment.

In most studies, although different speech elements are con-
sidered within a signal model, their estimations are still conducted
separately. This may result in inconsistencies between analysis and
synthesis. Also, few of these studies obtained a unified probabilis-
tic model of speech. In contrast, we proposed a complete genera-
tive model of speech in [7, 8], named Probabilistic Acoustic Tube
(PAT) model, which jointly models breathiness, glottal excitation
and vocal tract in a probabilistic modeling framework, and notably
with phase information. Preliminary experiments have demonstrat-
ed good potential of PAT in a number of speech applications.

This project is supported by AHRQ grant R21-HS022948, and NSFC
grant 61473168.

A remarkable point missing in previous PAT models is that
voiced speech is assumed to be perfectly stationary, i.e. it is a strict-
ly periodic signal, while in fact variations within a single voiced
speech frame are common and non-negligible [9]. Two main vari-
ations are pitch jitter and amplitude shimmer, referring to the phe-
nomena that the pitch period may randomly vary and the ampli-
tude of the airflow velocity within a glottal cycle may differ across
successive periods in voiced speech, due, perhaps, to time-varying
characteristics of vocal folds. Jitter and shimmer give voiced speech
its naturalness, but introduce AM/FM effect. AM/FM widens the
harmonic pulses in voiced speech spectrum, and the widening be-
comes more significant as the frequency increases. A failure to ac-
count for this AM/FM effect results in over-estimation of environ-
mental and aspiration noise in previous PAT models, especially in
frequency band above 2kHz.

Therefore, in this paper, we significantly improve voiced mod-
eling of PAT by introducing a probabilistic model on AM/FM effect,
which is an adaptation of traditional Bayesian Spectrum Estimation
(BSE) [10]. Experiments show that the new PAT, called PAT3, is
able to successfully fit those portions of voiced spectrum that are
caused by AM/FM effect and mistakenly ascribed to background or
aspiration noise by previous PAT models.

The rest of the paper is organized as follows. Section 2 gives
a brief on the signal and probabilistic models of PAT3; section 3
derives the AM/FM model for PAT3; section 4 demonstrates PAT3’s
ability in modeling speech with AM/FM effect; section 5 concludes
the paper and points out future directions.

Notations: Lower-cased letters with bracketed t, a[t], denote
discrete time domain signals, and upper-cased letters with paren-
thesized ω, A(ω), denote the corresponding DTFT representations.
Bold lower-cased letters, a, represent column vectors. ∗ represents
linear convolution. real(·) and imag(·) operators extract real and
imaginary parts respectively. DFT(·) is the DFT operator. vec(·)
stacks a discrete time/frequency domain signal into a column vec-
tor. diag(·) returns a diagonal matrix whose diagonal elements are
the discrete time/frequency domain signal inside the bracket. Su-
perscript T denotes matrix transpose, and superscript H denotes
conjugate transpose. {·}t with subscript t denotes a collection of
variables indexed by t.

2. THE SOURCE-FILTER MODEL FOR PAT

2.1. The Signal Model

The signal model of PAT3 is similar to PAT2 [8]. It is based on
the classical source-filter model, where the source is a mixture of
glottal vibration and breathy noise, and the filter is the vocal tract
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response. Formally, suppose each voiced speech frame, s[t], is per-
fectly stationary. Modeling quasi-stationarity will be discussed in
the next section. Then, s[t] can be represented as

s[t] = (aev[t] + beu[t]) ∗ h[t] (1)

where ev[t] and eu[t] are voiced and unvoiced excitation respective-
ly. h[t] is the impulse response of the vocal tract transfer function.

The unvoiced excitation is assume to be white Gaussian noise
with unit variance.

{eu[t]}t
iid∼ N (0, 1) (2)

The voiced excitation is a periodic signal, with each harmon-
ic component modulated by G(ω), the transfer function of glottal
source:

ev[t] =
∑
d

real
[
G(dω0)e

jdω0(t−τ)
]

(3)

where ω0 is the fundamental frequency, also known as pitch fre-
quency, and τ is the group delay.

We adopt the well-known three-pole model [11] for G(ω):

G(ω) =
[(

1− 2g1 cosβe
−jω + g21e

−2jω
)(

1− g2e−jω
)]−1

(4)
where g1, β and g2 are the magnitude and phase of a maximum-
phase pole pair, and the magnitude of a minimum-phase real pole.

The vocal tract system H(ω)
4
= DTFT[h[t]] is modeled as a

causal system [12], which can be well modeled by a few complex
cepstral coefficients truncated at positive low quefrency [13]

H(ω) = exp
(

DTFT[ĥ[t̂]]
)

(5)

where ĥ(t̂) is the truncated complex cepstrum.

2.2. The Probabilistic Model

PAT builds a probabilistic generative model based on the signal
model described in eqs. (1) to (5). Formally, rewrite (1) as

s[t] = v[t] + u[t] (6)

where
v[t] = aev[t] ∗ h[t], u[t] = beu[t] ∗ h[t] (7)

are voiced and unvoiced portion of speech respectively. Define

v = vec[DFT[v[t]]], u = vec[DFT[u[t]]] (8)

and hidden variables

Z1
4
=
{
a, b, ω0, τ, g1, g2, β2, {ĥ(t̂)}t̂

}
(9)

Then the probabilistic model essentially involves specifying the
probability distribution of v and u conditional on Z1.

For u, it can be derived from eqs. (2), (7) and (8) that real[u]
are imag[u] are mutually independent and identically distributed as

N (0, b2diag
[
|DFT[h[t]]|2

]
) (10)

except for the first and last (if DFT length is even) elements of
imag[u], which are strictly 0.

For v, the randomness is mainly from AM-FM effect. Its con-
ditional distribution will be derived in the next section.

3. THE AM-FM MODEL FOR VOICED SPEECH

3.1. Adapted Baysian Spectral Estimation Model

If the voiced speech were stationary, the spectrum of voiced energy
v[t] is simply a weighted sum of sinusoids at multiples of pitch
frequency. However, with AM/FM effect, the voiced speech can be
instead represented as

v[t] =
∑
d

real [αdηd[t] exp (jdω0t+ jdφ[t])] (11)

where
αd = aH(dω0)G(dω0) exp(−jdω0τ) (12)

is the complex transfer function at d-th harmonic. ηd[t] denotes the
real multiplicative variation (i.e. AM) of the transfer function at
d-th harmonic. φ[t] denotes the random phase variation (i.e. FM)
induced by pitch variation. We assume the phase variation at d-
th harmonic is d times that at pitch frequency, thus giving dφ[t] in
(11). Expanding (11), we get

v[t] =
∑
d

xd[t]
T ξd[t] (13)

where

xd[t] =

[
|αd| cos(dω0t+ ∠αd)
|αd| sin(dω0t+ ∠αd)

]
(14)

which is essentially the vector of strictly periodic signal, and

ξd[t] =

[
ηd[t] cos(dφ[t])
ηd[t] sin(dφ[t])

]
(15)

which is essentially the vector of AM-FM random variations. |·| and
∠ denote magnitude and angle of a complex number, respectively,

In Bayesian Spectral Estimation (BSE) [10], if dφ[t] is uni-
formly distributed, ξd[t] can be modeled as a multivariate Gaussian
with zero mean and identity covariance matrix. However, uniform
distribution of dφ[t] is not a reasonable assumption. Nevertheless,
ξd[t] can still be reasonably approximated by a joint Gaussian with
matched first and second moments, as will be shown in the next
subsections.

3.2. The Autoregressive Model of ξd[t]

Similar to BSE, the slowly time varying ξd[t]’s are modeled as a
first-order autoregressive process:

ξd[t] = λdξd[t− 1] + εd[t] (16)

With some assumptions1, it can be shown that εd[t] can be rea-
sonably assumed to satisfy independent Gaussian distribution:

εd[t] ∼ N
(

0, σ2
ε

[
1 0
0 ρ2d

])
(17)

where ρd is the ratio of standard deviations.
For the reason that would be clear below from (22), we assume

that φ[t] satisfies independent increment process with Cauchy dis-
tributed increments. Then, it can be shown with some assumptions
that λd decreases exponentially with d, i.e.

λd = exp(−dδ) (18)

1(i) The distribution of ηd[t] is symmetric and centered at 0; (ii) φ[t]
is small with respect to π, and has symmetric and unimodal distribution
centered at 0.
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(a) Frame 32, without AM/FM modeling
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(b) Frame 32, with AM/FM modeling
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(c) Frame 60, without AM/FM modeling
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(d) Frame 60, with AM/FM modeling

Figure 1: The magnitude spectrum of the reconstructed voiced speech (black line) against the original magnitude spectrum (green line). PAT3
(right panels) is able to reclaim much of the voiced energy overlooked by PAT2 (left panels), especially in frequency band above 2kHz.

where δ is the parameter of the Cauchy-distributed increment of
φ[t]. Eq (18) is intuitively reasonable - as d goes up, the AM/FM
variables ξd[t] become more random, and subsequently λd becomes
closer to 0.

3.3. The Stationary Distribution of ξd[t]

By quasi-stationarity of speech, it is reasonable to assume that the
autoregressive process in (16) is close to stationary distribution, and
it can be shown that the stationary distributions of ξd[t] is

ξd[t] ∼ N
(

0, σ2
ξ,d

[
1 0
0 ρ2d

])
(19)

with σξ,d determined by

σξ,d =
σε√
1− λ2

d

, (20)

Next, we derive an explicit relation of ρd depending on d. From
(15), we have

pv[dφ[t]] = arctan

(
ξ
(2)
d [t]

ξ
(1)
d [t]

)
(21)

where pv[dφ[t]] is the principal value of dφ[t]. Thus, we can know
the distribution of the warped phase pv[dφ[t]] from the distribution
of arctan [ξ

(2)
d [t]/ξ

(1)
d [t]]. From this constraint, it can be further

shown that a compatible distribution for the unwarped phase dφ[t]
is a Cauchy distribution as follows

pdφ[t](ϕ) =
1

πγd
· γ2

d

ϕ2 + γ2
d

(22)

where the parameter γd satisfies

γd =
1

2
log

(√
1 + ρd
1− ρd

)
(23)

By the scaling property of Cauchy distribution2, we have

γd = dγ1 (24)

Finally, combining (23) and (24) we obtain

ρd = tanh(2dγ1) (25)

which is intuitively reasonable - if d is small, dφ[t] is close to 0,
then from (15), the variance of the second element of ξd is close to
0, and subsequently ρd is close to 0. On the other hand, if d is large,
pv[dφ[t]] will approach uniform distribution, and subsequently ρd
will approach 1 (The model becomes standard BSE).

3.4. Model Summary

To sum up, the model of v is given by eqs. (13) to (18) and (25).
The joint distribution of v is rather involved, but essentially it is a

2If φ[t] ∼ Cauchy(γ1), then dφ[t] ∼ Cauchy(dγ1).
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Figure 2: Modeled standard deviation of each frequency bin of the
magnitude spectrum (black line) against original magnitude spec-
trum,

√
diag(Σ) (green line). AM/FM model admits widening of

pitch pulse by adding variance around each pulse.

complex Gaussian with mean zero,

v ∼ CN (0,Σ,C) (26)

where Σ = E(vvH) and C = E(vvT ) are determined by speech
signal {xd[t]} modulated by the stochastic behavior of AM-FM
variation {ξd[t]}. Signal modeling with the covariance matrix of
the (noisy) observation instead of modeling with the mean is a use-
ful approach in source separation [14].

The hidden variables consist of two sets, the setZ1 that governs
the signal {xd[t]} as given by (9), and the set Z2 that governs the
AM-FM variation {ξd[t]}, given by

Z2 = {γ1, δ} (27)

Notice that σε is not distinguishable with a and therefore merged
into a.

4. EXPERIMENTS

4.1. Configuration

Experiments are conducted to demonstrate the capability of the new
AM/FM model in reconstructing speech with heavy AM/FM effect.
The sampling rate is 10kHz. Speech is segmented into 30ms frames
with 10ms frame shift. All the figures demonstrated are from speak-
er 1, utterance 1 in the Edinburgh speech corpus [15]. For compari-
son, both PAT3 with AM/FM modeling and the PAT2 model without
AM/FM modeling are applied to infer the hidden variables for each

voiced frame and reconstruct voiced spectrum based on the inferred
values. [8] provides more details on the reconstruction approach.
Due to limited space, the inference method is not elaborated, but
basically it is a MAP optimization algorithm with loose priors by
applying Monte Carlo sampling and quasi-Newton search. The di-
mension of ĥ(t̂) is set to 26.

4.2. Reconstruction of Voiced Speech with Heavy AM/FM Ef-
fect

Voiced speech frames with significant AM/FM effect are studied.
Figure 1 display the reconstructed magnitude spectrum of some
voiced speech frames. The left panel is reconstructed by PAT2, the
right by PAT3. The black line is reconstructed magnitude spec-
trum, green line the original magnitude spectrum, and red line the
estimated spectral envelope, obtained by multiplying the inferred
glottal source transfer function G(ω) and H(ω). An important ob-
servation is that in the original magnitude spectrum, the bandwidths
of the harmonic pulses are small in low frequencies, and increase as
frequency goes up. This widening of harmonic pulses is the major
effect of AM/FM, and becomes more significant in frequency band
above 2kHz, which agrees with (25) and (18).

As for the reconstruction accuracy, PAT2 significantly under-
estimates voiced energy in frequency band above 2kHz. This is
because PAT2 does not account for the widening of the harmonic
pulses, and ascribes this variation to unvoiced energy. On the other
hand, PAT3 is able to more accurately estimate the spectral enve-
lope.

4.3. Standard Deviation of v

As mentioned in section 3.4, the new PAT models the speech sig-
nal as a zero mean Gaussian. Information of the modeled signal
is incorporated in the covariance matrix. To give a better idea of
how it models AM/FM effect, fig. 2 shows the squared root of the
diagonal the covariance matrix ,

√
diag(Σ), of the magnitude spec-

trum (black line) as in (26), against the original magnitude spectrum
(green line). As can be seen, PAT3 allows some variations around
each harmonic pulse, and the variation are larger and of greater
range as frequency goes up. This represents the essential mecha-
nism of incorporating AM/FM effect, or say the widening of pitch
pulses. According to (16), λd governs the range of variation. Since
λd is determined by the hidden variable δ, which is inferred for each
speech frame, the range of variation generally matches the width of
pulse.

5. CONCLUSION AND FUTURE DIRECTION

This paper represents our ongoing progress to develop a complete
probabilistic generative model of speech - PAT. In particular, we
significantly improve voiced modeling of PAT by modeling AM/FM
variations through adapting Bayesian Spectrum Estimation method.
Preliminary studies have shown that it can infer hidden variables
for voiced speech affected by AM/FM variations. One challenge of
PAT, which impedes us from conducting large scale experiments,
is the high computational complexity of inference. Currently the
inference is conducted separately for each frame. Introducing s-
moothing transitions across consecutive frames to consider speech
dynamics may reduce the search space to speed up, but with the
demand for a high-performance sequential inference algorithm. We
will work on this issue as one future direction.
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