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Introduction

* Probabilistic graphical models
= A general framework for describing and applying statistical models
= Statistical modeling, inference and learning

* Directed graphical models (DGMs)

= aka Bayesian networks (BNs)
= e.g. HMMs, Topic models (LDA)

* Undirected graphical models (UGMs)
= aka Markov random fields (MRFs), random fields (RFs), Markov networks (MNs)
= e.g. CRFs, RBMs, DBNs



UGM Semantics - (G) property

+ A probability distribution p(x,/) is said to obey the global Markov property,
relative to g, if for any triple (A, B, S) of disjoint subsets of V such that S
separates A from B,

X, L Xg | Xg

S separates A from B : if all trails from A to B intersect S



UGM Semantics - Factorization property (F)

=+ A probability distribution p(X,) is said to factorize according to g, if there
exist non-negative functions (called potential functions) @-(Xc) for all
cligues C such that

p(x)=7Td () or p(x) [Tde(x)

ceC ceC

where Z is the normalizing constant (partition function)

z=3 [14(x)

Xy, CeC

= Potential functions @-(Xc) are not uniquely determined.

= Without loss of generality, define potentials over maximum cliques.

Hammersley-Clifford Theorem: If p is strictly positive, (F)<=(G).



UGMs and Energy-based models

= Let every clique potential be associated with a clique energy E (x.)
Ec(xc) = —logpc(xc)

+ The resulting joint is known as the Gibbs (or Boltzmann) distribution

p(xy) < exp [_ Z Ec(xc)]
C

High probability states correspond to low energy configurations.



UGMSs and log-linear models

» Let each clique potential be a log-linear function
logpc(xc) = Hgfc(xc)

where f-(x.) is a feature vector derived from the values of the variables x,

0. is the associated feature weight vector.

+ The resulting joint has the form

1
7(6) exp [z Hgfc(xc)]
C

This is known as a log-linear model or a Maximum Entropy model.

p(xy) =

It can be proved that the maxent distribution is the same as
the maximum likelihood distribution from the closure of the set of log-linear RF distributions.
S. D. Pietra, V. D. Pietra, and J. Lafferty, “Inducing features of random fields”, IEEE PAMI, 1997.



Relationship between UGMs and other models

UGMs / energy-based models

Log-linear
models



Feature-based potential representation in log-linear models

* Consider an edge potential ¢ ((xs, x;) associated with two discrete variables
X and x;, both of which can take K values.

» Define a feature vector of length K? as follows:
fS,t(xSlxt) — ["-,1(365 =jixt — k))”.]Tl ])k — 1)”')K

with the associated weights:
o0 = [+110g (seCis = joxe =), |, je= 100K
* Then the tabular potential ¢ (x4, x¢) can be represented as the log-liner form
b5, (xs, X)) = exp :Hg:tfs,t(xSl xt)]

* Note: the log-linear form is more general because we can choose (or learn) the
features.




UGM Example - Ising model

* Consider a lattice of binary RV’s, x;e{-1,1}
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= [ . how much neighboring variables take identical values is favored.

= Samples of Ising models on a lattice with different £

g=0.10r107



Restricted Boltzmann Machines (RBMs)

* RBM is the main building block of a Deep Belief Network

* RBM is a two-layer MRF
= Binary visible variables v € {0,1}"
= Binary hidden variables h € {0,1}

s 0 = {W, b, a} Fd
RBM: a stochastic version of a NN
p(v) h; 8) — Z(H) exp[_E(V; h; 0)] p(h|v, 9) = | p(h]|v), p(h] = 1|U) =0 (2 Wl-jvl- + a]>
J i
E(w,h;0) = —vIWh—-bTv—a’h
p(wv|h;0) =| |p(wlh), p(v;, =1lh) = U(Z Wijh; + bi)
D F D F ol >
= —ziviwijhj —Zbivi —Zajh] 1
i=1j=1 =1 j=1 Sigmoid function : o(x) = 1+i-x ;

0 T
Ruslan Salakhutdinov. “Learning deep generative models”. PhD thesis, University of Toronto, 2009. 11



Learned features W, ;

Learned receptive fields for unit h;

Observed Data
Subset of 25,000 characters

pih ) = | [pwin),

l
p(vi = llh) =0 ZWUh] + bi
J

h: higher-level encoding of v

W
W

SN

7 X6

)

NV "N

SN AN AN Y
KR

S \\i\\\.;t\\\i\f\\\\

QIR

Learned W: “edges” /“parts”
Subset of 1000 features

vlh"’O-(hl'W*l‘I‘hz'W*2+"°+b) 12



Deep Belief Networks (DBNs)

* DBNs ignite Deep Learning, Science 2006

* DBN is a multilayer mixed directed and undirected model

p(v, ht, h?;0) = p(w|hAL; W )p(ht, h%; W?)
0 ={ww?}

p(v, ht, h?, h3;0) = p(w|hY; W )p(RY|h%, W2 )p(h?, h3; W3)

o ={w',w?w?3} .



Conditional Random Fields (CRFs)

e A CRF is a conditional distribution defined as a MRF

1
p(y|x) = 7Go) &P Iz Ye(e, x)
C

* Xx is observed sequence, which is always given;
* vy is hidden sequence;
* W (yc,x) : Clique feature function.

J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for segmenting and
labeling sequence data”, ICML 2001. 14



Linear-chain CRFs

for sequence tagging, e.g. POS tagging, shallow parser, Chinese word segmentation, ...

T-1
p(yl:T | X) oC eXp{ZWt (yt’ yt+1’X)+ZWt (yt’ X)
t=1

Log-linear representation of tabular potentials

p(yl:T |X)OC eXp{EZ/L fi (yt’ yt+l’X’t)+iZluj f, (yt’x’t)}

t=1 i t=1 |
Transition/edge features
A5 (Yor Yeus X t) = 4 -1(y, = prep, ¥,., = non)

State/node features

M fj (yt’X’t):/uj '1(yt = Prep, X :On)

pf (Yo xit)=p;-1(y, = adv, x_ endsin ly) .



Why UGMs ?
PO TTP(% ) v P& )= Tk ()

* Advantages over DGMs

= Undirected modeling is more natural for co-occurrence, where fixing the directions
of edges is awkward in a graphical model.

= Avoid local normalization and acyclicity requirements
* Potentially more powerful modeling capacity

* e.g. CRFs overcome the label bias weakness.

* Easily encode a much richer set of patterns/features

* Disadvantages over DGMs
= Parameter learning in UGMs may be more computational expensive.

* The inference problem is (basically) the same in DGMs and UGMs.
= UGMs are computational more efficient by avoiding softmax calculation

16



Case study: CRF-based confidence measure (CM)

* Motivation
= The use of forward-backward posterior probabilities as the confidence scores
» Limitation: its performance for CMs cannot be improved easily.
= Use CRFs to combine various relevant features !

lattice

sausage w1 w4 w7 w10
w3 wb w9 will

(b)
1. Reduce lattice to sausage (a linear sequence of slices) so that (linear-chain) CRFs can be used.



Case study: CRF-based confidence measure (CM)

lattice

(a)
sausage w1 w4 w7 w10
w3 w6 w9 wll

(b)

2. Define the CRF over sausage

Given the sausage y, the reliability of the word candidate w4 is p(g,=w4 |vy).
N N
p(qly) < exp Z Pn(Gn, y) + 2 Yn(dn-1,4qn,¥)
n=1 n=2

Z. Ou, H. Luo. “CRF-based Confidence Measures of Recognized Candidates for Lattice-based Audio Indexing.” ICASSP 2012. 18



Case study

Trans-dimensional Random Field Language Models (TRF LMs) — brand new

e State-of-the-art LMs - review
x N-gram LMs
= Neural network LMs

* Motivation - why

* Model formulation - what

* Model Training - breakthrough
* Experiment results - evaluation

* Summary

19



N-gram LMs

e Language modeling (LM) is to determine the joint probability of a
sentence, i.e. a word sequence.

* Dominant: Conditional approach

All previous words/history

N /
[ [p@uirs i)
=1

l

Previous n — 1 words

J
lp(xilxi—n+1' ""xi—l)

i=1
e Using Markov assumption leads to the N-gram LMs

— One of the state-of-the-art LMs

p(xq,%x2,+, %)

2

20



Neural network LMs

e Another state-of-the-art LMs

history
Xq,**,X;—1 —>| Neural Network ——> dlxq, -, xi_1] 2 P € RN

p(xi|xqy, -, xi-1) = p(x;|Plxg, -+, x;-1])

T
b wi
vV

p(x; = kl|xy, -, x;_1) = where V is lexicon size, w;, € R"

@® Computational very expensive in both training and testing !
e.g.V =10k~100k,h = 250

! Partly alleviated by using un-normalized models, e.g. through noise contrastive estimation training.

21



TRF LMs — Motivation (1)

p(xl; X2, xl) =7

Dominant:

Conditional approach / Directed _)@
Alternative:

Random field approach / Undirected 4@

@ Difficulty in model training
© A rule in language cognition: employ context for reading and writing

The cat is on the table.
- =

The catis in the house.
- @

22



TRF LMs — Motivation (2)

Drawback of N-gram LMs

= N-gram is only one type of linguistic feature/property/constraint |
= meeting on Monday
P(w; = Monday|w;_, = meeing,w;_; = on) -

= What if the training data only contain ‘meeting on Monday’ ?
= New feature ‘meeting on DAY-OF-WEEK’, using class

1) "“ ‘ |
= New feature ‘party on *** birthday’, using skip W
= New features .... 5 % u+s

F. Jelinek, 1932 - 2010

1985: Every time | fire a linguist, the performance of the speech recognizer
goes up.

e 1995: put language back into language modeling.

23



TRF LMs — Formulation

* Intuitive idea
» Features (f;,i = 1,2, ..., F) can be defined flexibly, beyond the n-gram features.
= Each feature brings a contribution to the sentence probability p(x)

 Formulation
p() = exp 2 fi@) | x 2 G20

£i(x) = 1, ‘meeting on DAY-OF-WEEK’ appears in x = A; is activated
L2, Otherwise = ]; is removed

© More flexible features, beyond the n-gram features, can be well supported in RFLMs.

© Computational very efficient in computing sentence probability.
24



TRF LMs — Breakthrough in training (1)

* Propose Joint Stochastic Approximation (SA) Training Algorithm
= Simultaneously updates the model parameters and normalization constants

Algorithm 1 Joint stochastic approximation
Input: training set
. set initial values A2 = (0,....0)T and
¢ = 8 — g ()
ot = 1. 2. .. ;b 00
set BY) = ()
set (L(t.O)‘ ‘\'(t.O)) - (L(t—l,f\'). A\'(t—l.f\'))
Step I: MCMC sampling
> fork=1— K do

—

g 99 NI

6: sampling (See Algorithm 3)

(LR X168y — SAMPEE(L®*1, X t:k—1))
T sat B = BR (B9 XM
8: end for |

Step II: SA updating

9: Compute \'*) based on (13)
10: Compute ¢*) based on (14) and (15)
[1: end for

25



TRF LMs — Breakthrough in training (2)

* Propose Trans-dimensional mixture sampling

= Sampling from p(l, xt: A (), a mixture of RFs on subspaces of different dimensions.

. I: function SAMPLING((L'"~", X *=1))
= Formally like RI-MCMC (Green, 1995). | 22 setk =Lt
3: set L' =k
4: set X(8) = X (¢-1)
Stage I: Local jump
5: generate j ~ I'(k, )
6: if j = k+ 1 then
f i
8: generate Y ~ gr+1(y|X“™) (equ.24)
0: set LY = jand X*) = {X(*~1) Y} with
probability equ.22
10: end if
11: if 7 = k — 1 then
12: et L® = jand X® = X{*"!) with prob-
ability equ.23
13: end if
Stage II: Markov move
14: fori=1— L"* do
15:
16:

. t -(t) -(t) -
17: a ~ p(L' ).{4\,:,-_1.-.‘\1,4(]:14'”}.A.g)
18: X a
19: end for |
20: return (L', XV)

21: end function




Experiment results

 Benchmarking experiments
= Speech recognition on PTB-WSJ dataset
= Speech recognition on ChiME-4 dataset
= Mandarin speech recognition on Toshiba dataset

* TRF LMs significantly outperform KN n-gram LMs (10%+ WER relative reduction),
and perform better than RNN LMs and close to LSTM LMs but with much faster
speed in computing sentence probabilities (0.16 sec. CPU vs 40 sec. GPU).

* Interpolated TRF and LSTM is better than Interpolated KN5 and LSTM.

Bin Wang, Zhijian Ou, Zhigiang Tan, “Trans-dimensional Random Fields for Language Modeling”, ACL 2015.
Bin Wang, Zhijian Ou, Yong He, and Akinori Kawamura, "Model Interpolation with Trans-dimensional Random
Field Language Models for Speech Recognition", arXiv 2016.

Hongyu Xiang, Bin Wang and Zhijian Ou. “The THU-SPMI CHIME-4 system : Lightweight design with advanced

multi-channel processing, feature enhancement, and language modeling”. CHIME Workshop, 2016,9.
27



Once said in : J. Goodman, “A bit of progress in language modeling”, Computer Speech & Language, 2001.

11.2 All hope abandon. ye who enter here

In this section,'” we argue that meaningful, practical reductions in word error

rate are hopeless. We point out that trigrams remain the de facto standard not
because we don’t know how to beat them, but because no improvements justify
the cost. We claim with little evidence that entropy is a more meaningful mea-
sure of progress than perplexity, and that entropy improvements are small. We
conclude that most language modeling research, including ours, by comparing
to a straw man baseline and ignoring the cost of implementations, presents the

s f ress without the substance. We go on to describe what, if any,

language modeling research_is worth the effort.

11.2.1 Practical word error rate reductions are hopeless

Most language modeling improvements require significantly more space than
the trigram baseline compared to, and also typically require significantly more

Begin long
rambling
cynical
diatribe — no
results or
particularly
novel 1deas.
Grad students
thinking about
research in
language
modeling
should read

this section

Now we can beat n-gram significantly by RNN (Mikolov, 2010) and TRF (2015) ...

28
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Training of UGMs in general

p(x;0) = exp[Q(x; 0)]

Z(0)
Normalization constant:

2(0) = ) explQ(x; 0)]

X

 Maximum likelihood (ML) training
The scaled log-likelihood of observed {x;,i = 1, -+, N}

N
1
N; Q(x;; 9)} — logZ(0)

al(o) 0Q(x; 0) 0Q(x; 0) |
T E50x) [ PY: — Ep(x:0) PY: =0 Maximum Entropy
[T—

N
1
10) £ =) logp(xi; 0) =
i=1

empirical distribution p(x) = %Z’i\’:l 1(x = x;) model distribution p(x; )




Training of UGMs - overview

* Roughly speaking, two types of approximate methods

e Gradient methods
= Make explicit use of the gradient: Gradient descent, conjugate gradient, L-BFGS.
= Stochastic approximation (SA)
= Stochastic maximum likelihood (SML)
= Persistent contrastive divergence (PCD)

* Lower bound methods
= Generalized iterative scaling (GIS)
= Improved iterative scaling (11S)

= Mostly studied in the context of maximum entropy (maxent) parameter estimation of log-
linear models.

* |[n practice the gradient methods are shown to be much faster than the lower
bound methods

31



Comparison on learning CRFs

Div: the relative entropy between the fitted
model and the training data

Iter: Iteration number

Evals: the number of calculating log-

likelihood and gradient
Time: the total time.

T. Tieleman, “Training restricted
boltzmann machines using
approximations to the likelihood

gradient”, ICML 2008.

R. Malouf, “A comparison of algorithms
for maximum entropy parameter
estimation”, in Proc. Conference on
Natural Language Learning (CoNLL),

2002.

Dataset Method Div.  Iter Evals Time (secs)
rules gis 5.19x1072 1201 1202 23.04
118 5.14x1072 923 924 42.48
steepest ascent 5.13x107%2 212 331 6.16
conjugate gradient (1) 5.07x1072 74 196 3.74
conjugate gradient (prp) 5.08x1072 63 154 2.87
limited memory variable metric  5.07x102 70 76 1.44
lex gis 1.61x1073 370 371 36.29
118 1.52x1073 241 242 102.18
steepest ascent 3.47x1073 1041 1641 139.10
conjugate gradient (1) 1.39x107% 166 453 39.03
conjugate gradient (prp) 1.62x107% 150 382 32.46
limited memory variable metric  1.49x107> 136 143 17.25
summary — gis 1.83x107% 1446 1447 125.46
118 1.07x1073 626 627 208.22
steepest ascent 2.64x107° 1163 3503 227.30
conjugate gradient (fr) 1.01x107% 175 948 60.91
conjugate gradient (prp) 7.30x107% 93 428 27.81
limited memory variable metric  3.98 107> 81 89 10.38
shallow  gis 3.57x107%2 3428 3429 27103.62
118 3.50x107% 3216 3217 71053.24
steepest ascent | — — — —
conjugate gradient (f1) 291x107% 1094 6056 46958.87
conjugate gradient (prp) 413x107% 421 2170 16477.84
limited memory variable metric  3.26x 1072 429 444 3408.30



Training of log-linear models

1
p(x; 3) = exp z Hgfc (x) where C indexes the cliques.
Z(0) -

ol(6)

00 = Eﬁ(x) [fc(x)] — Ep(x;e)[fc(x)] =0 Statistics matching
C

M~

Empirical statistics of features Expected statistics of features

* [(0)is convexin 8, so it has a unique global maximum which we can find using
gradient-based optimizers. ©

 The exact calculation of the gradient is intractable in general, involving high-

dimensional integration. ®
33



Training of log-linear models - example

p( Yy | X) ocexp{ZZ f (Yo Yors X, +i2ujf,-(yt,x,t)}

t=1 i t=1 |

* Maximum conditional likelihood (MCL)

dp(y1.r|x; 6)

. :
= ij(yt, X,t) — Epiylx0) ij(%:x» t) Statistics matching
t=1 =

T T
N 2 fiex,t) = Z Ep(yefxio) [f;0er %, 0]
t=1 t=1

= The above gradient involves only one training instance y;.r|x.

= The gradient of scaled conditional likelihood is sum of gradients for all training instances.



Training of partially observed UGMs

p(x, h;0) =

Z(@) eXp[Q (x, h; 8)]

Normalization constant:

20) = ) explQ(x, h; 0)]

x,h

 Maximum likelihood (ML) training
Scaled log-likelihood of observed {x;,i = 1,:--, N}

N N
1 1
1(6) = NZ logp(xi; 6) = NZ log Z explQxy, b en] - L0gZ(6)

al(6) 0Q(x, h; 6) 0Q(x, h; 6)
00 = Eﬁ(x)p(hlx) 00 - Ep(x,h;g) 00 =0
[T— N\
Expectation under Expectation under

empirical distribution p(x)p(h|x) model distribution p(x, h; 6)
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Training of UGMs in general

gradient = empirical expectation — model expectation

1. Approximate the model expectations using Monte Carlo sampling.

= We can use MCMC to generate the samples, but running MCMC to
convergence at each step of the inner loop would be extremely slow.

= Fortunately, it was shown by Younes (1989) that we can start the MCMC chain
at its previous value, and just take a few steps.

2. We can combine this with stochastic gradient descent (SGD), which
takes samples from the empirical distribution.

Both two ideas/tricks essentially follows in the framework of Stochastic
Approximation (SA).

* Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat.
* L. Younes, “Parametric inference for imperfectly observed gibbsian fields,” Probability Theory and Related Fields, 1989. 3



Stochastic Approximation (SA)

Problem: The objective is to find a solution 8 to Ey._f¢c..g)[H(Y;0)] = «,

where 8 € R%, noisy observation H(Y:; 8) € R¢
Method:

(1) Sampling: Generate Y, ~K(Y;_1,; 8+_1), a Markov transition kernel
that admits f(-; 8;_1) as the invariant distribution.
(2) Updating: Set 6, = 0,_; + y{H(Y;; 0:_1) — a}
1 A EY~f(-' 0) [H(Y, 9)]

e.g. Vi = ’
to"‘t _____CZ___J/(____
>0

Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat.
 Chen (2002), Stochastic Approximation and Its Applications, Kluwer Academic Publishers.

38



Training of partially observed UGMs — SA algorithm

Training data : Observed {x;,i = 1,:--, N}

al(o) 0Q(v,z; 0) dQ(x, h; 6)
20~ Epwae) | T 5 | T Ereme) |Tgg | T 0

v 1 N
V={% ]GO =pwz0pteh0)  pwD=5)  1w=x)-p@w)
h o

(1) Initialize 8, randomly;
(2) Foriterationt=1,---,do

* Draw a empirical minibatch of size B {(v(i),z(i)),i =1,-, B} accordingto p(v, z; 6_41);
Draw a Monte Carlo minibatch {(x(i), h(i)), i=1,--, B} by continuously taking B steps using a

Markov transition kernel that admits p(x, h; 8;,_,) as the invariant distribution.

* Updating:

( )
B

o g 1 zaQ(va),Z(i);g) ) iaq(xa),hu);e) |
t=Ye-1 T Ve 30 , 30

-

=1
\ 0=0¢-1 0=0¢_1 )




Connection of SA with other gradient methods

* Robbins and Monro 1951.
 aka Stochastic Maximum Likelihood (SML), (Younes 1989).

* This was independently discovered by Tieleman in 2008, who called it
persistent contrastive divergence (PCD).

* In regular contrastive divergence (CD), proposed by Hinton 2002, we
restart the Markov chain at the training data rather than at the
previous state. This will not converge to the MLE.

e “Clearly, the widely used practice of CD1 learning is a rather poor
“substitute” for maximum likelihood learning. “ (Salakhutdinov phd
thesis 2009).

40



GIS and IIS for learning log-linear models

(F )

1
p(x; 1) = Eexp< Z A f; (x)

(=1 )
F
ALl = ) ORI =0 fi() = ) fi(x)
x i=1

~"

* Generalized iterative scaling (GIS)
= Introduce an extra feature fr.1(x) =S — Yi_, f; (%)

= Then we have fx(x) = i+ fi(x) = Sis a constant.
1 plfi .
Al; ==1lo i=1 .. F,F+1
SRCREFITA

* Improved iterative scaling (11S)

M
Z z p()fi(x)B" =plfi] B, = ebhi

m=1{{x|f3)=m}

Use Newton Method to solve the polynomial
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