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Patch Ordering-Based SAR Image Despeckling
Via Transform-Domain Filtering
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Abstract—In this paper, we propose a synthetic aperture radar
(SAR) image despeckling method based on patch ordering and
transform-domain filtering. Logarithmic transformation with bias
correction is applied to the original SAR image to transform the
multiplicative noise model into the additive model. Then, we adopt
a two-stage filtering strategy. The first stage is coarse filtering
which can suppress speckle effectively. In this stage, we extract the
sliding patches from the logarithmic SAR image, and order them
in a smooth way by a simplified patch ordering algorithm specially
for SAR images. The ordered patches are filtered by learned simul-
taneous sparse coding (SSC), a technology recently advanced in
image processing. Then, the coarse filtering result is reconstructed
from the filtered patches via inverse permutation and subimage
averaging. The second stage is refined filtering which can elimi-
nate small artifacts generated by the coarse filtering. In this stage,
the sliding patches are extracted from the coarse filtering result
and ordered in the same way. Then, we apply 2-D wavelet hard-
thresholding to the ordered patches and reconstruct the refined
filtering result. The final result is obtained by taking exponential
transformation to the refined filtering result. An algorithm based
on the proposed strategy is presented in detail and the parameters
are selected for fast and effective realization. Experimental results
with both simulated images and real SAR images demonstrate that
the proposed method achieves state-of-the-art despeckling perfor-
mance in terms of peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) index, equivalent number of looks (ENLs), and
ratio image.

Index Terms—Despeckling, patch ordering, simultaneous
sparse coding (SSC), synthetic aperture radar (SAR).

I. INTRODUCTION

S YNTHETIC aperture radar (SAR) images, being acquired
via coherent imaging, are intrinsically associated with a

noise-like phenomenon called speckle. The presence of speckle
affects the performance in many applications of SAR image
processing. For example, it increases the false alarm rate in
target/edge detection [1] and decreases the correct classification
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rate in terrain classification [2]. Thus, SAR image despeck-
ling is an important preprocessing step and many methods have
been proposed during the past three decades. In general, the
speckle in SAR images is characterized by the multiplicative
noise model [3]. The purpose of despeckling is to recover the
underlying target backscattering coefficient from the observed
intensity image.

To make this problem easier, the multiplicative model can be
transformed into the additive model via homomorphic transfor-
mation [4] by taking the logarithm of the noisy image. Then,
the image denoising methods developed for the additive noise
case can be applied to the logarithmic SAR image, such as
wavelet shrinkage [5], [6], total variation [7], sparse represen-
tation [8], [9], and so on. Another commonly used approach
is to write the multiplicative noise in an additive but signal-
dependent way [14]. Many classical despeckling techniques
adopt this model and perform filtering in the spatial domain
based on the minimum mean square error (MMSE) criterion
[14]–[17] or the maximum a posteriori (MAP) criterion [18],
[19]. Some advanced methods also adopt the additive signal-
dependent model, but operate in the wavelet domain [20]–[23]
or nonsubsampled shearlet transform domain [24].

In addition, the nonlocal means (NLM) algorithm proposed
by Buades et al. [25] provides a breakthrough in image denois-
ing. This approach utilizes the similarity between the patches
surrounding the estimated and the selected pixels to obtain the
weight for pixel averaging in a large region. The NLM algo-
rithm has also been extended to SAR [26]–[28] and polarimetric
SAR [29] image despeckling. In particular, the probabilistic
patch-based (PPB) algorithm [27] replaces the Euclidean dis-
tance in [25] by a statistical similarity criterion based on the
Nakagami–Rayleigh distribution and achieves very good results
in SAR image despeckling. Inspired by the block matching
3-D (BM3D) algorithm [30], Parrilli et al. [23] proposed a
SAR version of BM3D, i.e., SAR-BM3D, using local linear
MMSE criterion and undecimated wavelet. Later, Cozzolino
et al. [31] proposed a fast adaptive nonlocal SAR (FANS)
despeckling method based on SAR-BM3D. On the other hand,
image denoising via sparse representation has also attracted an
increasing amount of attention [34]–[36]. Elad and Aharon [34]
proposed an image denoising method based on sparse represen-
tations over learned dictionaries which can be acquired by the
K-SVD algorithm [37]. Mairal et al. [36] proposed the nonlocal
sparse model for image denoising by combining the nonlocal
method and simultaneous sparse coding (SSC). Most recently,
the sparse model has been successfully applied to SAR image
despeckling and found to be promising for multiplicative noise
removal [8]–[12].
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In this paper, we also propose to address SAR despeckling
in the transformed image domain via sparse representation.
Similarly, we work on the logarithmic SAR images because of
the reported better performance for the log-intensity data [8].
However, our method is different from previous works in the
following two aspects. First, we apply transform-domain filter-
ing to the ordered SAR patches rather than the original image.
In particular, inspired by the work of Ram et al. [32], [33],
we have designed a SAR-oriented patch ordering algorithm by
the similarity measure based on SAR statistics. This procedure
can effectively improve the signal regularity and hence enhance
the performance of sparse representation. Second, we propose a
two-stage strategy to both deal with speckle reduction and arti-
fact elimination. Specifically, in the first stage (coarse filtering),
the main purpose is to effectively remove the noise. Therefore,
we filter the ordered patches with SSC because of their superior
noise reduction ability combined. Then in the second stage, we
apply patch ordering to the coarse filtering result again and pro-
cess the ordered patches by 2-D wavelet for refined filtering.
Finally, the despeckled image is reconstructed from the refined
result by inverse permutation and subimage averaging.

It is worth mentioning that our motivation to propose
the aforementioned two-stage algorithm in fact stems from
the well-known observation that any single-stage transform-
domain is susceptible to produce artifacts. This phenomenon
is especially significant when the signal-to-noise ratio (SNR)
becomes worse as that in SAR imagery. The solution proposed
here is then to exploit different transformation bases, which is
based on the intuitive idea that independent transform-domain
filtering methods will often produce complementary artifacts.
For example, it is very likely that the learned dictionary by
K-SVD and the wavelet basis, one being image dependent and
one generic, are responsible for spurious artifacts at different
places. Since most of these artifacts appear like high-frequency
noisy components, applying the second stage of filtering will
effectively remove those artifacts associated with the first stage.
Importantly, although the second stage of filtering may still
produce new artifacts (ringing effects if using wavelets), it is
important to notice that the sole purpose at the second stage is
to remove a small number of isolated artifacts rather than the
ubiquitous noise (task already accomplished by the first stage).
Thus, we are actually allowed to use a rather conservative value
for thresholding wavelet coefficients, which can efficiently sup-
press the artifacts from the first stage and at the same time
avoid secondary ones that might ensue. This will be verified
both visually and numerically in Section V.

The rest of the paper is organized as follows. Section II
presents the logarithmic SAR image statistics and patch order-
ing. Section III describes the proposed algorithm in detail.
Section IV gives the efficient realization of the proposed
method. Section V reports the experimental results. Finally,
Section VI concludes this paper.

II. LOGARITHMIC SAR IMAGE STATISTICS AND PATCH

ORDERING

In this section, we introduce two important preprocessing
steps that will be used throughout this paper. Since we perform

filtering on the log-intensity data, we first review the logarith-
mic SAR statistics from which we can obtain the mean and
variance of the log-transformed speckle. This information will
be fed to our algorithm for bias removal and setting of filtering
parameters. Second, we describe the image filtering framework
of patch ordering that precedes each step of transform-domain
filtering. Particularly, we propose a new patch ordering algo-
rithm that adapts to the nature of SAR data and furthermore take
two simplifying measures in order to reduce the computation
complexity.

A. Logarithmic SAR Image Statistics

In SAR images, the speckle is characterized by the multi-
plicative noise model [3]

I = xv (1)

where I is the observed intensity (noisy image); x is the
underlying target backscattering coefficient (noise-free image);
and v is the speckle (multiplicative noise). It is well estab-
lished that fully developed speckle follows the Gamma
distribution [3]

pv(v) =
LLvL−1

Γ(L)
exp(−vL), v ≥ 0 (2)

where L is the equivalent number of looks (ENLs) and Γ()
is the Gamma function. The ENL can be effectively obtained
by supervised [3] or unsupervised estimation [38], [39]. For a
homogeneous region, the ENL can be calculated by

L =
(mean)

2

var
. (3)

Thus, the ENL is treated as a known parameter in this paper.
By logarithmic transformation of (1), the multiplicative noise

becomes additive, i.e.,

ln(I) = ln(x) + ln(v). (4)

The mean and variance of ln(v) are related to the ENL [13] by

E[ln(v)] = ψ(0)(L)− ln(L) (5)

var[ln(v)] = ψ(1)(L) (6)

where ψ(m)(L) is the polygamma function of order m.
Then the log-intensity SAR image with bias correction is

I(ln) = ln(I)− ψ(0)(L) + ln(L). (7)

The following filtering process will work on the bias-corrected
log-intensity data, I(ln).

B. Image Filtering Framework of Patch Ordering

The original image filtering framework of patch ordering
is shown in Fig. 1 [32], [33]. In general, the sliding patches
extracted from the input image are first ordered and per-
muted. Then, these ordered patches are filtered (in the work
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Fig. 1. Image filtering framework of patch ordering.

Fig. 2. Image filtering framework used in this study.

of Ram et al. [32], [33], spatial filtering is applied). The final
result can be reconstructed from the filtered patches via inverse
permutation and subimage averaging.

Specifically for filtering SAR images, the patch ordering
framework needs to be adapted as shown in Fig. 2. Because
we are working on the log-intensity data, the patches are
extracted from the logarithmically transformed SAR image.
Nevertheless, ordering and permutation of these patches will
still be implemented based on their similarity from the origi-
nal (amplitude) SAR image as will be proposed in Section II-C.
Details of the filtering methods for the ordered patches will be
described in Section III.

Algorithm 1. Simplified patch ordering algorithm for SAR
images

Input: The image patches yi(i = 1, . . . , N (p)).
Parameter: The search range C × C.

Choose the first patch as the initial patch, i.e. Ω(1) = 1.
for i = 1 to N (p)−1 do

Let yΩ(i) andQi be the current patch and the set of indices
of the search range around yΩ(i), respectively.
if |Qi\Ω| ≥ 11, then

Calculate the BSM of yl and yΩ(i) by (9), where l ∈
Qi\Ω. Choose the patch yl̂ corresponding to the smallest
BSM .

else
Choose the spatially nearest patch yl̂ to yl, where l̂ /∈ Ω.

end if
Ω(i+ 1) = l̂

end for
Output: The set Ω which holds the ordering.

C. Patch Ordering for SAR Images

Suppose that the size of I is N1 ×N2. We extract the sliding
patches of size

√
n×√

n from I . If the sliding step is SL(p),
then the number of patches is

N (p) =

(⌈
N1 −

√
n

SL(p)

⌉
+ 1

)(⌈
N2 −

√
n

SL(p)

⌉
+ 1

)
(8)

where �·� is the ceil function.
Let yi(i = 1, . . . , N (p)) be the column stacked version of

these patches. The purpose of patch ordering is to reorder these
patches in a smooth way. The original patch ordering algorithm
[32] utilizes the Euclidean distance as the similarity measure-
ment. In addition, it has randomness in order to facilitate the
cycle-spinning method [40]. However, the Euclidean distance
is not an appropriate choice for SAR images. Here we employ
the block similarity measure (BSM ) [23], [27] as the similarity
measurement. The BSM of yi and yl is

BSMi,l =
∑
j

ln

[√
yi(j)√
yl(j)

+

√
yl(j)√
yi(j)

]
. (9)

We further take the following two measures to reduce the
computation complexity of patch ordering. First, we drop the
cycle-spinning method due to its high computational cost in
exchange of only small performance improvement. Second, as
suggested in [32], we also restrict the search range to a C × C
neighborhood surrounding the current patch. The detail of the
simplified patch ordering algorithm for SAR images is shown
in Algorithm 1.

Suppose that Y and Z are the patches before and after patch
ordering, respectively,

Y = [y1 · · ·yN(p) ] (10)

Z = [z1 · · · zN(p) ]. (11)

1Here, |·| is the number of elements within a set and “\” is the set difference.
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Then we have

Z = YPΩ (12)

where PΩ is the N (p) ×N (p) permutation matrix correspond-
ing to the set Ω which holds the ordering.

III. ALGORITHM

In this paper, we propose a new SAR image despeckling
algorithm based on the image filtering framework shown in
Fig. 2. Instead of applying spatial filtering [32], [33] to the
ordered patches, we propose to use transform domain methods,
i.e., sparse representation [34] and wavelet [30], [45] to fulfill
this purpose. Moreover, the proposed algorithm consists of two
stages. In the first stage, the log-intensity SAR image is filtered
by patch ordering and SSC. Although denoising via SSC can
suppress speckle effectively, it produces small artifacts (see the
results in Section V) which are caused by the learned dictio-
nary [43]. Thus the first stage is a coarse filtering stage. The
artifacts generated by sparse representation can be alleviated
by other transform domain methods. To handle this, we adopt
a refined filtering stage in which the coarse filtering result is
filtered by patch ordering and 2-D wavelet hard-thresholding.
The complete procedure is hierarchically illustrated in Fig. 3
and summarized in Algorithm 2.

A. Step 1: Coarse Filtering Via SSC

When the ENL is small, the SNR of a logarithmic SAR image
is relatively low. In order to improve the accuracy of patch
ordering, a 3× 3 Boxcar filter is first applied to I and the sub-
sequent patch ordering works on the Boxcar filtering result IB .
Let Y1 and YB be the patches extracted from I(ln) and IB ,
respectively. We can get set Ω1 from YB by Algorithm 1. Then
the ordered patches Z1 can be obtained by

Z1 = Y1PΩ1
. (13)

In the coarse filtering stage, the ordered patches are filtered by
simultaneous sparse representation. The core idea of sparse rep-
resentation [34] is that the clean signal can be represented by a
linear combination of few atoms in a redundant dictionary. Then
denoising a patch zi ∈ R

n aims to solve

min
αi

‖αi‖0 s.t. ‖zi −Dαi‖22 ≤ ε (14)

where D ∈ R
n×k(k > n) is an overcomplete dictionary; αi ∈

R
k is the sparse representation of zi; and ε is related to the

noise variance. It should be noted that the �2-norm used in (14)
is not the optimal choice for the logarithmic speckle. However,
as shown in Fig. 4, the noise in logarithmic SAR images tends
to become Gaussian with the increase in the ENL [23]. Thus, it
is reasonable to adopt the �2-norm in (14).

Algorithm 2. The proposed algorithm for SAR image
despeckling

Input: The input SAR image I , the ENL L.
Step 1: Coarse filtering.

Boxcar filtering. Apply a 3× 3 Boxcar filter to I , and obtain
the filtering result IB .
Logarithmic transformation with bias correction. Calcu-
late the log-intensity image I(ln) by taking the logarithmic
transformation with bias correction to I .
Patch extracting. Extract the sliding patches YB and Y1 of
size

√
n1 ×

√
n1 from IB and I(ln), respectively.

Patch ordering. Order the patches YB by Algorithm 1, and
obtain the set Ω1. Then calculate the ordered patches Z1 by
Z1 = Y1PΩ1

.
Denoising via SSC. Denoise Z1 by Algorithm 3, and obtain
the filtering result Ẑ1. Then perform inverse permutation on
Ẑ1, i.e. Ŷ1 = Ẑ1P

−1
Ω1

.

Subimage averaging. Reconstruct the filtering result Î(ln)1

from Ŷ1 by subimage averaging [32].
Exponential transformation. Calculate the coarse fil-
tering result x̂1 by applying exponential transformation
to Î(ln)1 .

Step 2: Refined filtering.
Patch extracting. Extract the sliding patches Y(C) and Y2

of size
√
n2 ×

√
n2 from x̂1 and Î(ln)1 , respectively.

Patch ordering. Order the patches Y(C), and obtain the set
Ω2. Then calculate the ordered patches Z2 by Z2 = Y2PΩ2

.
Denoising via 2-D wavelet hard-thresholding. Denoise Z2

by 2-D wavelet hard-thresholding, and obtain the filtering
result Ẑ2. Then perform inverse permutation on Ẑ2, i.e.
Ŷ2 = Ẑ2P

−1
Ω2

.

Subimage averaging. Reconstruct the filtering result Î(ln)2

from Ŷ2 by subimage averaging.
Exponential transformation. Calculate the final filter-
ing result x̂2 by applying exponential transformation to
Î
(ln)
2 .

Output: The final filtering result x̂2.

Algorithm 3. Denoising Via SSC

Input: The ordered patches Z, the ENL L.
Parameter: The number of patches within a group N (S), the

number of groups for dictionary training N (t), the number
of training iterations N (i), the size of dictionary n× k.

Dictionary learning stage: Randomly choose N (t) groups for
dictionary learning. Use the KSVD algorithm to train the
dictionary by replacing the sparse coding stage in [37] with
the SSC problem (17).

SSC stage: Perform the denoising on each group via SSC.
Compute the final result Ẑ(SSC) by weighted averaging the
filtering results of all groups.

Output: The filtering result Ẑ(SSC).
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Fig. 3. Flowchart of the proposed algorithm.

Fig. 4. PDF of the logarithmic speckle where L = 1, 4, 16, and 64.

TABLE I
PARAMETERS USED IN THE PROPOSED ALGORITHM

According to (6), for log-intensity SAR images

ε = nψ(1) (L) . (15)

The dictionary D can be trained by the K-SVD algorithm.
With the learned dictionary, the sparse decomposition prob-
lem (14) can be solved by the OMP algorithm [41]. Then the
filtering result of zi is

ẑi = Dαi. (16)

Unlike sparse representation, the core idea of SSC [42] is
that several similar signals can be represented by different linear

Fig. 5. Test speckle free images. (a) Peppers. (b) Cameraman.

Fig. 6. Test SAR images. The pixels in the white box are used for ENL esti-
mation. (a) Dalian (600× 600), L = 1.00. The pixels in the red box are used
to analyze the ratio image. (b) Flevoland (500× 600), L = 2.99. The whole
image is used to analyze the ratio image.

combinations of the same atoms. Then denoising several similar
patches zi(i ∈ S) amounts to solving

min
Λ

‖Λ‖0,∞ s.t.
∑
i∈S

‖zi −Dαi‖22 ≤ ε′ (17)
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TABLE II
PSNR (DB) RESULTS FOR PEPPERS AND CAMERAMAN

Best results are emphasized in boldface.

TABLE III
SSIM RESULTS FOR PEPPERS AND CAMERAMAN

Best results are emphasized in boldface.

Fig. 7. Filtered images for Peppers contaminated by 4-look speckle. (a) Noisy image. (b) PPB. (c) MIDAL. (d) SAR-BM3D. (e) H-PO. (f) Coarse filtering.
(g) Refined filtering.
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Fig. 8. Learned dictionaries in the proposed method for Peppers. (a) L = 1.
(b) L = 4.

where S is the set of similar patches, and Λ is

Λ = (· · ·αi · · · )i∈S . (18)

where ‖Λ‖0,∞ is a pseudo norm [42] which stands for the
number of nonzero rows of Λ. For log-intensity SAR images,
ε′ can be obtained by

ε′ = nN (S)ψ(1)(L) (19)

where N (S) is the number of elements in set S. In general, the
similarity of neighboring patches in Z1 is relatively high. Thus,
we use N (S) neighboring patches to form a group, and then
perform SSC on each group.

The K-SVD algorithm can also be adopted to train the dic-
tionary D by replacing the sparse coding stage in [37] with the
SSC problem (17). Then, (17) can be solved by the S-OMP
algorithm [42] and Dαi is the estimate of zi. The denoising
method via SSC is summarized in Algorithm 3.

Let Ẑ1 be the filtered patches obtained by Algorithm 3. Then,
the coarse filtering result x̂1 can be reconstructed from Ẑ1

via inverse permutation, subimage averaging, and exponential
transformation.

B. Step 2: Refined Filtering Via 2-D Wavelet Hard-
Thresholding

The aim of the refined filtering stage is to reduce the artifacts
generated in the coarse filtering stage. Different transform-
domain filtering methods will produce different kinds of arti-
facts. The artifacts generated by sparse representation can be
alleviated by other transform-domain filtering methods. Here
we choose wavelets to accomplish such task.

We apply patch ordering to x̂1 and obtain the set Ω2. Let Y2

be the patches extracted from the logarithm of x̂1. Then, the
ordered patches Z2 can be obtained by

Z2 = Y2PΩ2
. (20)

Denoising the ordered patches Z2 via 2-D wavelet hard-
thresholding can be easily accomplished by

Ẑ2 = T −1(Υ(T (Z2))) (21)

where T is the 2-D wavelet transform; T −1 is the correspond-
ing inverse transform; Υ is the hard-thresholding operator with
threshold λ. It should be noted that wavelet hard-thresholding
will introduce new artifacts in the refined filtering stage.
However, with suitable threshold, it can alleviate the artifacts
in x̂1 effectively and only generate few artifacts.

The final filtering result x̂2 can be reconstructed from Ẑ2 in
the same way as described in the coarse filtering stage.

IV. EFFICIENT REALIZATION

In this section, we first discuss the selection of transform-
domain filtering methods. Then we present the parameter
selection. The parameters suggested to be used in the pro-
posed algorithm are listed in Table I. These parameters have
been tested and found effective over a variety of simulated/real
SAR images and will be fixed for performance evaluation in
Section V.

A. Selection of Transform-Domain Filtering Methods

Considering our primary goal (i.e., despeckling), the first
stage of coarse filtering should be able to remove the noise
effectively. To the best of our knowledge, simultaneous sparse
representation is one of the best image filtering methods and
has very strong noise reduction ability. Moreover, neighboring
patches in Z1 have relatively high similarity and are very suit-
able for simultaneous sparse representation. Thus, simultaneous
sparse representation is adopted in the first stage.

Nevertheless, x̂1 may still suffer from the common prob-
lem of artifact generation due to the intrinsic problem of any
transform-domain methods, even if we are using a redundant
learned dictionary. The second stage of refined filtering aims to
remove them. It should be noted that we can also use sparse
representation with a different kind of dictionary to remove the
artifacts. However, the time consumption of sparse represen-
tation is very high and we need a more efficient technique to
handle such task. With this respect, wavelet transform works
effectively on each row of Z2 which is a smooth sequence after
patch ordering. We also apply it to each column of Z2 to make
the coefficients in the transform domain more sparse [44]. Thus,
2-D wavelet hard-thresholding is used in this stage. It should be
noted that although the column is a lexicographic version of
the patches which may not be smooth, with a suitable (gener-
ally low) threshold it will effectively work on the artifacts but
rarely alter the original signal. Moreover, it runs much faster
than sparse representation.

B. Parameter Selection

In the coarse filtering stage, 8× 8 patches can ensure the
accuracy of patch ordering. Thus, n1 = 64. We set SL(p)

1 = 2
because it reduces the computation cost of SSC at only small
cost of filtering performance. In Algorithm 1, we set C = 17.
Note that this is much smaller than that in [32], where C = 61
and C = 361 are, respectively, used. However, such choices
lead to unfavorable time complexity, making patch ordering
unpractical to use for filtering large SAR images. In fact,
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Fig. 9. Filtered images for Dalian. (a) Original image. (b) PPB. (c) MIDAL. (d) SAR-BM3D. (e) H-PO. (f) Coarse filtering. (g) Refined filtering.

Fig. 10. Filtered images for Flevoland. (a) Original image. (b) PPB. (c) MIDAL. (d) SAR-BM3D. (e) H-PO. (f) Coarse filtering. (g) Refined filtering.

ordering of patches well finds its analogy to nonlocal filter-
ing for search of similar patches [23], [25], [30]. Our choice
of the searching window is in line with existing literature.
The ordered patches Z1 is filtered by Algorithm 3, with the
parameters N (S) = 8, N (t) = 2000, N (i) = 5, and k = 512.
Other parameters used for dictionary training are the same
as in [37].

In the refined filtering stage, the ENL of x̂1 is much higher
than IB . Thus, x̂1 can be used for patch ordering again with a
smaller patch size than that in the first stage. Here, n2 is set to be
36. Since the time complexity of 2-D wavelet hard-thresholding
is much smaller than SSC, SL(p)

2 = 1 is an appropriate choice.

TABLE IV
ENL OF FILTERED IMAGES

Best results are emphasized in boldface.
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Fig. 11. Ratio image r for Dalian. (a) PPB. (b) MIDAL. (c) SAR-BM3D. (d) H-PO. (e) Coarse filtering. (f) Refined filtering.

Fig. 12. Ratio image r for Flevoland. (a) PPB. (b) MIDAL. (c) SAR-BM3D. (d) H-PO. (e) Coarse filtering. (f) Refined filtering.

In this study, 2-D Haar wavelet transform with a four-level

decomposition is adopted and λ is set to be 0.95
√
ψ(1)(L).

The influences of some parameters will be discussed in
Section V with experimental results.

V. EXPERIMENTAL RESULTS

In this section, we use both simulated images and real
SAR images to test the filtering performance of the proposed
method. Simulated images are generated in the same way
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as suggested in [23]. Two widely used 256× 256 images,
Peppers and Cameraman (see Fig. 5) are tested. For each optical
image, we have simulated five images with L = 1, 2, 4, 8, and
16. In addition, two real SAR images (see Fig. 6) acquired
from different SAR systems are used to further validate the
effectiveness of the proposed method. They are, respectively,
a 1-look TerraSAR-X image taken over Dalian in China, and a
4-look AIRSAR image taken over Flevoland in Netherlands.

The proposed method is compared with three state-of-the-art
despeckling methods, PPB [27], MIDAL [7], and SAR-BM3D
[23]. Moreover, we compare the proposed method with the
homomorphic version of the original patch ordering method
(H-PO) [32]. The coarse filtering results are also presented to
verify the effectiveness of the refined filtering stage. The free
parameters used in the proposed method are listed in Table I.
The implementation code of the proposed method is available
at [49]. For other methods, the free parameters are the same as
in the reference papers. In Fig. 6, the pixels in the white box
are used for ENL estimation which is realized by (3). The ENL
estimation results for the test SAR images are 1.00 and 2.99,
respectively. The estimated ENL is used as an input param-
eter in PPB, MIDAL, SAR-BM3D, H-PO, and the proposed
method.

A. Results With Simulated Images

In this section, the filtering performance is evaluated by
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index [46]. The PSNR and SSIM results for Peppers
and Cameraman are shown in Tables II and III, respectively.
The best results are emphasized in boldface. As suggested in
[23], the results in Tables II and III are also obtained by averag-
ing ten independent realizations of the noise process. One can
see that the proposed method performs similar to SAR-BM3D
and much better than the other methods.

With the increase in L, the filtering performance of the pro-
posed method becomes better. The main reason of this behavior
is that the learned dictionary which plays an important role in
the proposed method becomes more and more suitable for SSC
in Step 1 as L increases. Fig. 7(a) and (b) shows the learned dic-
tionaries for Peppers withL = 1 andL = 4, respectively. When
L = 1, the learned dictionary has a lot of meaningless patches
which 7 are not helpful for sparse representation. When L = 4,
the learned dictionary is much more suitable for SSC.

Filtered images for Peppers contaminated by 4-look speckle
are shown in Fig. 8. It is found that PPB generates artifacts
around the edges of the peppers and MIDAL introduces point-
wise artifacts. On the other hand, SAR-BM3D, H-PO, and the
proposed method have good speckle reduction ability and detail
preserving ability, and produce fewer artifacts.

In Tables II and III, we find that the refined filtering stage
achieves a PSNR gain of 0.5–1.5 dB, and a SSIM gain of 0.01–
0.11. In Fig. 8, we can also find that the refined filtering stage
removes most of the artifacts in the coarse filtering result. Thus
the refined filtering stage is very effective.

In general, the proposed method achieves state-of-the-art
despeckling performance for simulated images. The simulated

TABLE V
MEAN VALUE AND ENL OF RATIO IMAGES. MEASURED ENL RESULTS

ON ORIGINAL IMAGES ARE 1.00 FOR DALIAN AND 2.99 FOR

FLEVOLAND, RESPECTIVELY

Best results are emphasized in boldface.

speckle is white, whereas the speckle in real SAR images is
correlated. Thus, we will focus on real SAR image despeckling
in Section V-B.

B. Results With Real SAR Images

Filtered images for Dalian and Flevoland are shown in Figs. 9
and 10, respectively. We can find that MIDAL still introduces
a number of pointwise artifacts in both flat regions and urban
regions. PPB, SAR-BM3D, H-PO, and the proposed method
have strong detail preserving ability in urban areas. However,
the speckle reduction abilities of SAR-BM3D and H-PO are
much more conservative than that in the simulated case. This
is because the speckle in real SAR images are usually corre-
lated, whereas SAR-BM3D and H-PO are developed under the
hypothesis of uncorrelated speckle. Thus, for real SAR images,
the proposed method and PPB achieve very good results.

Additionally, we use the ENL [4], [47] to evaluate the fil-
tering results with real SAR images. The ENL indicates the
speckle reduction ability in homogeneous regions and larger
ENL corresponds to stronger speckle reduction ability. Table IV
reports the ENL of filtered images using different despeck-
ling methods. The best results are shown in boldface. For each
image, we select two homogeneous regions (see Fig. 6) to cal-
culate the ENL. From the ENL results, we can find that the
proposed method and PPB have much stronger speckle reduc-
tion ability in homogeneous areas than MIDAL, SAR-BM3D,
and H-PO.

Another commonly used indicator for SAR image despeck-
ling is the ratio image [3], [4], [48] which represents the noise
removed by SAR image despeckling. The ratio image is defined
as the pointwise ratio between the original image I and filtered
image x̂

r =
I

x̂
. (22)

The best result corresponds to the ratio image r which is the
closest to the actual speckle v. From the view of visual effect,
the ratio image acquired by a good filter should be a pure ran-
dom noise process. On the contrary, the ratio image obtained
by an inferior filter contains structural information, especially
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Fig. 13. PDF of r and the pdf of the actual speckle is used as a reference. “♦”: the actual speckle; “�”: PPB; “◦”: MIDAL; “•”: SAR-BM3D; “+”: H-PO;
“×”: Coarse filtering; “�”: Refined filtering. (a) Dalian. (b) Flevoland.

at urban areas and edges. The ratio images for Dalian and
Flevoland are given in Figs. 11 and 12, respectively. In Fig. 11,
the SAR-BM3D ratio image has no obvious structural infor-
mation, the ratio images acquired by the proposed method and
H-PO have few edges, the MIDAL ratio image has much more
edges and the PPB ratio also contains obvious structural infor-
mation of both urban areas and edges. Similar phenomenon
can also be observed in Fig. 12. From this point of view,
SAR-BM3D, H-PO, and the proposed method perform much
better than the other methods.

Moreover, we also analyze the ratio image with the follow-
ing quantitative indicators: the mean of r, the ENL of r, and the
probability density function (pdf) of r. The mean and ENL of
r are often used to indicate the bias and speckle power sup-
pression [4], [22], respectively. The pdf of r can be used to
evaluate the similarity of r and v. Here we use the regions where
the speckle is fully developed to calculate these indicators. In
general, the speckle in flat areas such as road, grass and short
vegetation is well developed. Thus in Fig. 6(a), the pixels in
the red box are selected to analyze the ratio image. Fig. 6(b)
is acquired over the farmlands in Flevoland. Thus, the whole
image can be used to calculate the mean, ENL, and pdf of r.
In Table V, we report the mean value and ENL of ratio images.
From the results of E[r], it can be observed that MIDAL has
the smallest bias and the proposed method is the second best.
From the results of ENLr, we can conclude that the speckle
power suppression of the proposed method is the best since the
ENL of the ratio image acquired by the proposed method is the
closest to the ENL estimated on the original image. In Fig. 13,
we present the pdf of r for Dalian and Flevoland with logarith-
mic scale for the y-axis. The pdf of v is used as a reference.
Particularly, the pdf of v for Dalian is exponential distribu-
tion (single-look speckle). Thus, it appears as a straight line in
Fig. 13(a). For Flevoland, v follows the Gamma distribution, so
the tailing part of the pdf seems like a straight line in Fig. 13(b).
One can easily see that the pdf of r obtained by the proposed
method is the closest to the pdf of v.

Combining the results of the mean, ENL, PDF, and visual
effect of r, we can conclude that the ratio image achieved by

TABLE VI
COMPUTING TIME OF EACH STEP FOR DALIAN

TABLE VII
PSNR (DB) AND SSIM RESULTS FOR PEPPERS WITH

DIFFERENT SLIDING STEPS. L = 4

the proposed method is the closest to the actual speckle. On the
whole, the proposed method achieves the best results with real
SAR images.

In Tables IV and V, and Fig. 13, we can easily find that the
refined filtering stage improves the filtering performance effec-
tively since the refined filtering results are much better than the
coarse filtering results. In Figs. 9 and 10, it is obvious that the
refined filtering stage removes most of the artifacts in the coarse
filtering result. Thus, we can conclude that the refined filtering
stage is very important in the proposed method.

C. Time Consumption

The computation complexity of the proposed method is
acceptable with a rational selection of parameters. Written in
C source MEX-file and run by MATLAB, the proposed method
is much faster than PPB and SAR-BM3D. Processing a 600×
600 SAR image with the proposed method typically takes
around 25 s, using a common PC of Intel Core i5 processor
with 2.80-GHz main frequency and 8.00-GB main memory.
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Fig. 14. PSNR (dB) and SSIM results for Peppers with different wavelet thresholds. L = 4. (a) PSNR. (b) SSIM.

Table VI gives the computing time of each step for Dalian
(600× 600). We can find that the simplified patch ordering
algorithm for SAR images works very fast since the comput-
ing time of patch ordering only takes 12% of the total time.
Denoising via SSC is a time-consuming process. If SL(p)

1 = 1,
it takes around 50 s to filter the ordered patches of Dalian
using SSC. Thus, it can greatly reduce the computation cost
of SSC when SL

(p)
1 = 2. In Section V-D, we will show that

the cost of filtering performance is very small when we set
SL

(p)
1 = 2. Compared with SSC, the computing time of wavelet

hard-thresholding is acceptable since it only takes around 8 s
when SL(p)

2 = 1.

D. Discussion on Several Parameters

In this section, we mainly discuss the influences of three
parameters, SL(p)

1 , SL(p)
2 , and λ. Table VII and Fig. 14 report

the PSNR and SSIM results for Peppers contaminated by 4-
look speckle with different sliding steps and wavelet thresholds,
respectively. Other free parameters are the same as in Table I.

In Section V-C, we have showed that the rational selection
of SL(p)

1 can greatly reduce the computing time of SSC. In
Table VII, we can see that the loss of PSNR is only 0.02 dB
when SL(p)

1 = 2. On the contrary, the SSIM result becomes bet-

ter when SL(p)
1 = 2. Thus, it is reasonable to set SL(p)

1 to be 2.

If SL(p)
2 = 2, the losses of PSNR and SSIM are very serious.

Thus, SL(p)
2 is set to be 1 in this study.

Let m = λ/
√
ψ(1)(L). In Fig. 14, we find that the rational

selection of m can significantly improve the filtering perfor-
mance. The PSNR and SSIM results are relatively good when
m ∈ [0.85, 1.15]. Here, we set m = 0.95.

VI. CONCLUSION

In this paper, a novel SAR image despeckling method has
been proposed. The homomorphic transformation was first
applied and speckle filtering was implemented in the logarith-
mic domain. Specifically, the patch ordering method originally
developed for additive white Gaussian noise was adapted to
SAR images. Then, a two-stage filtering strategy was proposed.
In the coarse filtering stage, the ordered patches of the logarith-
mic SAR image were filtered by learned SSC. In the refined

filtering stage, the ordered patches of the coarse filtering result
were further filtered by 2-D wavelet hard-thresholding. The
final result was reconstructed from the refined filtering result
by inverse permutation, subimage averaging, and exponential
transformation.

We have used both simulated and real SAR images for vali-
dation of the proposed method. The results show, for simulated
images, that the proposed method compares similarly to SAR-
BM3D and achieves state-of-the-art performance in terms of
PSNR and SSIM. For real SAR images, we used the ENL and
ratio image to evaluate the filtering performance. The proposed
method has very strong speckle reduction ability and the cor-
responding ratio image is the closest to the actual speckle. In
addition, the computational time of the proposed method is
also found acceptable for practical applications of SAR image
processing.

Future work will focus on the following three aspects. First,
the proposed method can be improved especially in 1-look case
by improving the efficiency of dictionary learning which is also
a challenging problem in sparse representation. Second, fast
algorithm of the proposed method should be developed. Third,
the proposed method will be extended to polarimetric SAR
despeckling which is also a hot topic in SAR image processing.
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