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Abstract: Normally, polarimetric SAR classification is a high-dimensional nonlinear
mapping problem. In the realm of pattern recognition, sparse representation is a very
efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance
and coherency matrices are Hermitian semidefinite and form a Riemannian manifold.
Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence,
normal sparse representation classification cannot be applied to polarimetric SAR directly.
This paper proposes a new land cover classification approach for polarimetric SAR.
There are two principal novelties in this paper. First, a Stein kernel on a Riemannian
manifold instead of Euclidean metrics, combined with sparse representation, is employed
for polarimetric SAR land cover classification. This approach is named Stein-sparse
representation-based classification (SRC). Second, using simultaneous sparse representation
and reasonable assumptions of the correlation of representation among different frequency
bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric
SAR classification. These classifiers are assessed using polarimetric SAR images from
the Airborne Synthetic Aperture Radar (AIRSAR) sensor of the Jet Propulsion Laboratory
(JPL) and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR) sensor of the
Technical University of Denmark (DTU). Experiments on single-band and multi-band data
both show that these approaches acquire more accurate classification results in comparison
to many conventional and advanced classifiers.
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1. Introduction

During recent decades, there have been a number of applications of polarimetric SAR (Synthetic
Aperture Radar) for land cover classification in the field of remote sensing. Traditionally, classification
approaches based on statistical distribution assumptions are used. Kong [1] and Lim [2] proposed a
Bayes classifier based on complex Gaussian distribution for single-look polarimetric SAR, which uses
the fully-polarimetric information first. Lee [3] refined their method and developed an optimal classifier
for multi-look polarimetric SAR data based on the complex Wishart distribution, named the Wishart
classifier. However, only in homogeneous land cover cases does the Wishart distribution assumption
hold; that is, it does not hold well in heterogeneous land cover cases, like high-resolution images [4],
leading to the weak performance of the classification based on this assumption. To solve this problem,
many complicated distribution models for heterogeneous land cover are proposed, such as the work
by Vasile [5] and the KummerU model by Bombrun [6]. These classification approaches based on
distribution assumptions often have common disadvantages of complex parameter estimation and limited
model suitability. As the number of the parameters increases, it is difficult to estimate these parameters
accurately with a small group of training samples. Meanwhile, it is difficult to adjust a distribution
model to all of the complex land covers. The mixed Gaussian model by Gao [7] is a well-designed novel
heterogeneous model, but still faces the problem of complex parameter estimations, especially when
training samples are inadequate.

Other choices are classification approaches based on regions, which exploit spatial correlations
between neighboring pixels [8]. Images are first segmented into small regions containing pixels
with similar properties, and then, the class label to a region is determined jointly as a whole. For
instance, Wu [9] projected such a method, which employs the Markov random field (MRF). Despite
more classification accuracy due to additional information of spatial correlations, it also induces
extra complication in modeling and computation. Therefore, pixel-based classification approaches
attaining comparable accuracy are still preferable, and hence, this paper still discusses pixel-based
classification schemes.

Alternatively, this paper explores another classification approach without complicated distribution
assumptions and neighborhood modeling. Theoretically, covariance matrices and coherency matrices
of polarimetric SAR are Hermitian symmetric positive semi-definite, and experiments show that almost
all of the polarimetric SAR data follow that rule. Hermitian symmetric positive semi-definite matrices
can be regarded as tensors, which form a Riemannian manifold. Hence, some metrics in Riemannian
manifolds can be introduced to measure the similarities and distances between polarimetric SAR data
in feature space, which are expected to induce new classification methods. The new methods do not
rely on certain distribution assumptions and are flexible and suitable for more polarimetric SAR data
in different land cover cases. A few researchers have utilized Riemannian manifolds for polarimetric
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SAR segmentation [10] and classification [11]. A common and effective metric on Riemannian
manifolds is geodesic distance, but it is difficult to calculate [12], which involves lots of matrix
eigenvalue decompositions. To reduce the computing complexity, the log-Euclidean metric [13] and
Stein divergence [14] are employed. The former also involves eigenvalue decomposition, while the
latter only contains the calculation of matrix determinants, which is more desirable.

In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach,
which has been used in diverse application from image denoising to target classification. According to
these methods, a target signal is approximated using a sparse linear combination of elementary signals
called “atoms” from a large candidate set named “dictionary”. For example, Wright proposed SRC
(sparse representation-based classification) [15] for classification and recognition of objects, such as
faces. In the field of polarimetric SAR, Xu [16] introduced sparse representation to filtering and reducing
speckles and achieved good performance. Zhang [17] used sparse methods to represent polarimetric
SAR features, such as entropy, and applied them to land cover classification. However, these features do
not form a Euclidean space and may be not compatible with SRC on a Euclidean space. Harandi [18]
tackles the problem of sparse coding and dictionary learning in the space of a Riemannian manifold.
With the help of the aforementioned Stein divergence [14], Harandi [18] performs sparse coding
by embedding Riemannian manifolds into kernel Hilbert spaces. This engenders an unconstrained
minimization least-squares with a penalty term of the one-norm of the parameter vector. This is a
convex and kernel version of Lasso problem [25], which can be solved using quadratic programming
or more general convex optimization approaches, as well as by specific algorithms, such as the least
angle regression algorithm. The l1-norm regularized formulation is useful, owing to its tendency to
choose solutions with fewer nonzero parameter values. Additionally, for this reason, the Lasso and
its variants are fundamental to the field of compressed sensing. Based on SRC [15] and Stein kernel
sparse representation on Riemannian manifolds [18], this paper propose a polarimetric SAR land cover
classification approach.

There are several frequency bands for SAR radar, including the P band, L band, C band, and so
on. Land cover exhibits different scattering properties corresponding to different bands. In the field of
polarimetric SAR classification, multi-band information merging can markedly enhance the accuracy
of classification. This is similar to the situations in sensor networks, in which the same physical
information is transmitted through different channels or detected by different sensors. Simultaneous
sparse representation [19,20] is often exploited to describe such phenomena. Enlightened by these
methods, this paper proposes a pixel-level merging approach. Based on the reasonable assumption of
sparse representative correlation among different bands, we merge data from several bands naturally
through simultaneous sparse representation. Therefore, our approach can be generalized successfully to
multi-band polarimetric SAR classification.

Two innovative points are involved in our research. One, SRC based on a Stein kernel on a
Riemannian manifold, is firstly introduced into polarimetric SAR. Wang [10] combines a Riemannian
manifold with mean-shift in segmentation applications, and Song [11] combines a Riemannian manifold
with k-means in classification. Both involve the mean calculation of tensor space, which involves
iterations and is time consuming. Additionally, the former only discusses the geodesic distance and
log-Euclidean distance, which is also complicated. In addition, different from Zhang [17], which
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also employs SRC, our approach classifies polarimetric SAR data directly rather than artificially
extracting several features first, and this circumvents the loss of information. Based on some reasonable
assumptions and necessary transformations, this paper first successfully applies simultaneous SRC to
multi-frequency polarimetric SAR land cover classification.

The remainder of this paper is organized as follows. Some background research is summarized
in Section 2, including basic properties and classifiers of polarimetric SAR data, the introduction
of the Riemannian manifold, the Stein kernel and the SRC approach. In Section 3, the Stein-SRC
approach, a classification scheme based on sparse representation, is presented in detail and generalized
to a multi-band application with simultaneous sparse representation. Experiment results are given in
Section 4 with discussions. Finally, the research is concluded in Section 5.

2. Background Research

2.1. Basic Properties and Wishart Classifier of Polarimetric SAR

Fully-polarimetric SAR data usually contain the amplitude and phase of backscattering signals in four
combinations of the linear receive and transmit polarizations: HH, HV, VH and VV. Each resolution pixel
is described by a 2× 2 complex scattering matrix S, or the Sinclair matrix, as shown in Equation (1).

S =

[
SHH SHV

SV H SV V

]
(1)

In the case of monostatic backscattering in a reciprocal medium, SHV = SV H . The lexicographic
scattering vector ~kl and Pauli scattering vector ~kp are often used to describe the scattering properties of
the land cover as follows.

~kl =
[
SHH

√
2SHV SV V

]T
~kp =

[
SHH + SV V SHH − SV V 2SHV

]T
√

2

(2)

where superscript T denotes the transpose of the vector. Moreover, for the purpose of speckle reduction,
scattering vectors of adjacent resolution units are incoherently spatial averaged or multi-look processed at
the expense of the loss of spatial resolution. Therefore, for a complex target, the scattering characteristics
should be described by statistic covariance matrix C or coherency matrix T, which can be generated from
the outer product of ~kl and ~kp,

C =
1

n

N∑
i=1

~kl~k
H
l

T =
1

n

N∑
i=1

~kp~k
H
p

(3)

where H denotes the conjugate transpose of a matrix and n is defined as the number of looks. From the
equation above, we can confirm that covariance matrix C and coherency matrix T are both Hermitian
positive semidefinite. For ∀x:
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xHCx =
∑L

i=1

(
~kHl x

)H
~kHl x ≥ 0

xHTx =
∑L

i=1

(
~kHp x

)H
~kHp x ≥ 0

(4)

The covariance matrix and coherency matrix contain the same information and can be transformed
by some relative transformations; hence, we will use coherency matrix T as a representative
for convenience.

Many statistical models have been proposed for multi-look polarimetric SAR data, among which the
Wishart model is fundamental. For homogeneous regions, as demonstrated by Goodman [21], if the
scattering vectors ~kp are independent, then T has a complex Wishart distribution, the probability density
function of which is:

p (T|Z) =
nnd|T|n−d exp {−nTr (Z−1T)}

R(n, d)|Z|n
(5)

where Z denotes the centroid of the distribution, Tr denotes the trace of a matrix and R(n, d) can be
calculated as:

R (n, d) = π
d(d−1)

2 Γ (n) · · ·Γ (n− d+ 1) (6)

where Γ (·) represents the gamma function and the parameter d in Equations (5) and (6) is the dimension
of the scattering vector. For a fully-polarimetric SAR under the reciprocity assumption, d = 3. Based on
the Wishart model above, Lee [3] has proposed an optimal Bayes classifier for multi-look polarimetric
SAR data. A distance measure is also derived by Lee [3], representing the distance between a test sample
with coherency matrix T and a classωm, i.e.,

dW (T,ωm) = log |Zm|+ Tr
(
Z−1m T

)
(7)

which is minimized among all classes when performing classification for T. Zm represents the ensemble
mean of coherency matrices corresponding to the m-th class. For multi-frequency SAR, the merging
Wishart classifier assigns the pixel to the class that minimizes the sum of the Wishart distance to the
class center of L, P and C bands data. The Wishart classifier is a milestone for polarimetric SAR land
cover classification for its effectiveness and low computing complexity.

2.2. Introduction of the Riemannian Manifold and Stein Kernel

The elements in Hermitian positive semidefinite matrices, like C and T in Equations (3) and (4),
cannot be endowed any arbitrary values. There exists some intrinsic association between these elements.
Mathematically, these matrices form a Riemannian manifold. On a Riemannian manifold, data points
are connected by geodesics along the curvature of the manifold. Consequently, conventional lp norms on
Euclidean space are no longer efficacious. Geodesic distance is frequently employed to measure distance
between points as an alternative. The geodesic distance between matrix X and matrix Y on the manifold
above are defined as follows.

dg =
√
||logX(Y)||2X = Tr

{
log2

(
X−1/2YX−1/2

)}
(8)

In the Equation (8), the logarithm of a Hermitian positive semidefinite matrix W, which can be
diagonalized as W = UDUH , is defined as:

log(W) = U (DIAG (log (di)))U
H (9)
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where U is a unitary matrix and DIAG (log (di)) forms a diagonal matrix whose diagonal elements
are the logarithm of the diagonal elements of the diagonal matrix D. From the equation above, we can
find that the calculation of the matrix logarithm necessitates eigenvalue decomposition first, which leads
to high computational complexity. To reduce the computational complexity, Sra [14] introduce Stein
divergence as Equation (10), which is based on symmetric Bregman divergence, to approximate the
geodesic distance.

Stein(X,Y) = log

∣∣∣∣X + Y

2

∣∣∣∣− log |XY|
2

(10)

It is noteworthy that Stein divergence is also named Jensen–Bregman logdet divergence in [22]
and introduced by Song [11] to polarimetric SAR classification. In addition, it has the same
mathematical form as Bartlett distance, and it is consistent with the logarithm of likelihood-ratio
test statistic Q proposed by Conradsen [23], which is defined to measure the similarity between two
regions in polarimetric SAR image. Compared with Equations (8) and (10), which only require a
matrix determinant operation instead of an eigenvalue decomposition operation, which means low
computational complexity, it has been widely accepted as a similarity measure of polarimetric SAR data.

Because Euclidean distance is not suitable for a Riemannian manifold, many pattern recognition
approaches based on Euclidean metrics cannot be directly used. A solution to this dilemma is the kernel
method. The Riemannian manifold can be embedded into a high-dimensional Hilbert space, and for
example, matrix X can be mapped to φ(X). It is not necessary to define the exact form of φ(), and the
only matter we are concerned with is the inner product between every two points in the high-dimensional
space. Then, we can use the kernel function on the Riemannian manifold to represent the inner product
on a high-dimensional Hilbert space, as follows,

k (X,Y) = 〈φ(X), φ(Y)〉 (11)

where 〈〉 denotes the inner product.
Based on Equation (10), Sra [14] introduce the Stein kernel measure to represent the inner product

between matrix X and Y on the Riemannian manifold.

k (X,Y) = 2dσ

√
|X|σ|Y|σ

|X + Y|σ
(12)

In the equation above, d denotes dimension, while in the field of polarimetric SAR, normally, d = 3.
Moreover, Sra [14] demonstrated that under certain selection of σ as Equation (13), the Stein kernel is
positive definite.

σ ∈
{

1

2
,
2

2
, · · · , d− 1

2

}
∪
{
τ ∈ R : τ >

d− 1

2

}
(13)

2.3. Introduction of Sparse Representation and SRC

Sparse representation was employed by Wright [15] for face recognition, which was termed the SRC
approach. The approach first assumes that the training samples from a single class do lie on a subspace.
Additionally, any new (test) sample from the same class will approximately lie in the sparse linear
combination of training samples. That is equivalent to solving the following optimization problem,

_
v = argmin‖v‖0 subject to ‖Dv − x‖2 ≤ ε (14)
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where the method tries to represent test sample x by the sparsest entries of v with bounded error. ‖·‖0
denotes the zero-norm, which equals the number of non-zero entries in the vector. Similarly, ‖·‖1 denotes
the one-norm while ‖·‖2 and ‖·‖ denotes the two-norm from here on.

However, the problem of finding the sparsest solution of this zero-norm problem is NP-hard.
Frequently, it can be slackened to a one-norm problem as follows, which is convex and can be solved by
second order cone programming [24].

_
v = argmin‖v‖1 subject to ‖Dv − x‖2 ≤ ε (15)

This optimization problem can be transformed to another form, which can be solved by the Lasso
algorithm [25].

_
v = argmin ‖Dv − x‖2 + λ‖v‖1 (16)

For v, γi(v) is a new vector whose nonzero entries equal the entries in v that are corresponding to
class i, and other entries are assigned to zero. Using only the coefficients associated with the i-th class,
one can approximate the given test sample x as xi = Dγi(v). Then, x is classified based on these
approximations by assigning it to the object class that minimizes the residual between x and xi:

min
i

ri(x) = ‖x−Dγi(v)‖2 =
∥∥∥x−∑N

j=1
Djvjδ (l(j)− i)

∥∥∥
2

(17)

in which l(j) means the class to which the j-th atom belongs and δ is the Dirac function.

3. Proposed Methods

3.1. Polarimetric SAR Classification Based on Stein-SRC on Riemannian Manifolds

SRC in Section 2.3 is based on Euclidean space and cannot be directly applied to the covariance or
coherency matrices in polarimetric SAR, which form Riemannian manifolds. However, in Section 2.2,
the Riemannian manifold space has been embedded into a high-dimensional Hilbert space in which the
Euclidean measure is efficacious. In the equations below, X is the test point. Dj is the j-th atom from
the training data. That is, for each class, the 9 × 1 real vector from the covariance matrix for each
training point is an original atom. Usually, multi-look average preprocess on these original atoms are
needed to form the representative atoms for the class, which cannot only reduce the speckle, but also
decrease the number of atoms to enhance the efficiency of the algorithms below. All of these atoms from
different classes form a matrix named the dictionary, in which each column is a representative atom and a
group of neighboring atoms represent a class. φ() is the mapping function from a Riemannian manifold
to a high-dimensional Hilbert space, as shown in Section 2.2. Therefore, we can establish a sparse
representation in the Hilbert space, representing φ(X) with linear combination

∑N
j=1 vjφ(Dj). We want

to achieve two goals, minimizing the representative error and meanwhile making the representation the
sparsest. According to [18], that is to minimize the optimization function as follows,

min
v∈RN

(∥∥∥φ(X)−
∑N

j=1
vjφ(Dj)

∥∥∥2
2

+ λ‖v‖1
)

(18)

where Dj , which is the j-th column of D, denotes the j-th atom. Each atom comes from a training point,
and all these atoms form a dictionary D.
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Equation (18) can be transformed into Equation (19):

min
v∈RN

(
〈φ (X) , φ (X)〉 − 2

∑N

j=1
vj 〈φ (X) , φ (Dj)〉+

∑N

i=1

∑N

j=1
vivj 〈φ (Di) , φ (Dj)〉+ λ‖v‖1

)
(19)

where 〈〉 denotes the inner product. In addition, with the aid of the Stein kernel, Equations (11) and (12)
are put into Equation (19). Then, the optimization function becomes,

min
v∈RN

(
k (X,X)− 2

∑N

j=1
vjk (X,Dj) +

∑N

i=1

∑N

j=1
vivjk (Di,Dj) + λ‖v‖1

)
= min

v∈RN

(
1− 2vTκ+ vTKv + λ‖v‖1

) (20)

where K is a matrix recording the Stein kernels among training atoms, which is a positive definite matrix,

Kij = k (Di,Dj) = 2dσ

√
|Di|σ|Dj |σ

|Di+Dj |σ . κ is a vector, which records the Stein kernels between the test pixel

and all the training atoms, in which κj = 2dσ

√
|X|σ|Dj |σ

|X+Dj |σ . Then, we can solve Equation (20) with the
Lasso algorithm [25].

Then, after the optimized solution v is obtained, similar to Equation (17), one can approximate
the given test sample only with the coefficients of v associated with a certain class and calculate the
representative residual of each class. The residual square corresponding to class m can be computed by
Equation (21).

εm(X) =
∥∥∥φ(X)−

∑N
j=1 vjφ(Dj)δ (l(j)−m)

∥∥∥2
2

= 1− 2vT
mκm + vT

mKmvm

(21)

In the equation above, vm are the representative entries only associated with class m, κm and Km

only corresponds to class m, as well. l(j) means the class to which the j-th atom belongs, and δ is the
Dirac function. Then, one can assign this test sample to the class associated with the minimum of the
residuals.

For illustration, typical sparse representative coefficients of a testing sample are shown in Figure 1a.
Each class has 10 neighboring atoms as its representative in the dictionary. Four atoms out of 100 atoms
are selected to represent the given sample. From Figure 1a, we can find that the largest coefficients
belong to the 6th class, so the representative residual of the 6th will be smallest, and the testing sample
will be assigned to the 6th class.
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Figure 1. (a) Typical sparse representative coefficients for Stein-sparse representation-based
classification (SRC); (b) typical sparse representative coefficients for simultaneous
Stein-SRC.
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The approach above, named Stein-SRC, is able to give accurate classification. However, Lasso is
employed for every pixel, and this will raise the computational complexity. Simplified Stein-SRC is
proposed as a simplified version of the Stein-SRC above. It is a compromise scheme, in which only one
atom is used instead of a group of atoms. Simplified Stein-SRC searches a training sample maximizing
the Stein kernel product with the testing sample. It markedly reduces the computational complexity at
the expense of a little loss of accuracy, which is appreciated in some real-time applications.

3.2. Multi-Band Merged Polarimetric SAR Classification Based on Simultaneous Sparse Representation

There are two significant directions for SAR remote sensing. One is multi-polarization; the other is
multi-frequency band merging. Multi-band polarimetric SAR combines these two important directions
and contains abundant information of the target. Information from different bands complements each
other. The wavelength of the P, L and C bands is about 68 cm, 24 cm and 5.7 cm, respectively. Because
the scattering property depends on the wavelength of the electromagnetic wave, the classification results
of these three bands have significant differences. If we merge the information gathered by SAR with
these three bands appropriately, it is quite probable to achieve good performance.

On the basis of Section 3.1, polarimetric SAR classification based on SRC can be generalized to a
multi-band scenario. We assume that the representative atoms of a chosen test sample on different bands
are inclined to come from the same pixel position, or the same land cover, if the polarimetric SAR image
on different bands has been perfectly preprocessed by registration. If, on an L-band image, a test sample
chooses the training sample at the j-th position as its atom, this means that this test sample and the j-th
position training sample are quite alike. Then, on a P band image, the test sample from the same position
is likely to be like the training sample from the j-th position, and it tends to choose that corresponding
training sample as its atom. This is illustrated in Figure 2.

Figure 2. Schematic plot showing the multi-band simultaneous representation assumption.

Therefore, the representative coefficients vL on the L band, vP on the P band, vC on the C band
tend to share the same position of non-zero entries. As mentioned by Lee [3], polarimetric SAR images
of different bands can be considered as statistically independent if the radar frequencies are sufficiently
separated. Our objective is to minimize the following optimization function Equation (22).

arg min
vL,vP ,vC

∥∥∥∥∥∥∥φ

 XL

XP

XC


− φ


 DL 0 0

0 DP 0

0 0 DC


 vL

vP

vC



∥∥∥∥∥∥∥
2

2

+ λ
∥∥∥[ vL vP vC

]∥∥∥
0−row

(22)
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In the equation above, XL, XP , XC stands for L, P and C bands SAR data of the test sample,
respectively. DL, DP, DC represent the dictionaries from the training samples of the L, P and C bands,
respectively. The pseudo 0-norm ‖·‖0−row records the number of the non-zero rows of the matrix, which
can be relaxed as follows according to [19]:

Jp,q(C) =
∑
i

‖Ci,−‖pq with ‖Ci,−‖q =

(∑
j

|Ci,j|q
)1/q

(23)

Normally, p = 1, q = 2. Let vi represent the i-th row of the matrix, meaning that
vi=

[
vLi vPi vCi

]
. Then, Equation (22) can be relaxed to a new form as follows.

arg min
vL,vP ,vC

∥∥∥∥∥∥∥φ

 XL

XP

XC


− φ


 DL 0 0

0 DP 0

0 0 DC


 vL

vP

vC



∥∥∥∥∥∥∥
2

2

+ λ
∑
i

‖vi‖2 (24)

This equation is equivalent to,

arg min
vL,vP ,vC

3− 2

 vL

vP

vc


T  κLκP

κC

+

 vL

vP

vc


T  KL 0 0

0 KP 0

0 0 KC


 vL

vP

vc

+ λ
∑
i

‖vi‖2 (25)

where κL, κP , κC are the kernels between the given test sample and all of the training sample atoms
on the L band, P band and C bands, respectively, and KL, KP , KC are the kernels among the training
sample atoms on the L band, P band and C bands, respectively. Some rows and columns are then
permuted in transformation as Equations (26) and (27), in which ⊗ denotes the Kronecker product.

Letting vG =
[
v1 v2 · · · vm

]T
, in which m denotes the number of atom groups, Equation (25)

turns out to be a standard simultaneous sparse representation problem Equation (28), which can be solved
by the group-lasso algorithm [19,20].

KG = KL ⊗

 1 0 0

0 0 0

0 0 0

+ KP ⊗

 0 0 0

0 1 0

0 0 0

+ KL ⊗

 0 0 0

0 0 0

0 0 1

 (26)

κG = κL ⊗

 1

0

0

+ κP ⊗

 0

1

0

+ κC ⊗

 0

0

1

 (27)

arg min
vG

3− 2vT
GκG + vT

GKGvG + λ
∑
i

‖vi‖2 (28)

A typical representative coefficient of a testing sample using the above simultaneous Stein-SRC
approach is shown in Figure 1b. The indexes of atoms corresponding to the L, P and C bands data
of a training sample are neighboring, so 3 consecutive atoms form a simultaneous group. In addition,
10 consecutive groups belong to a certain class. The representative coefficient groups minimizing
Equation (25) are selected. In Figure 1b, most of the largest coefficients belong to the 2nd class, which
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means that the representative residual of the 2nd class is the smallest, and the testing sample is assigned
to the 2nd class.

In addition, in view of the computing burden of group lasso on every pixel in simultaneous Stein-SRC,
a simplified version of simultaneous Stein-SRC is devised analogous to the simplified Stein-SRC, which
pursues algorithm efficiency at the expense of some accuracy. In simplified simultaneous Stein-SRC,
only one group of atoms is involved to represent the testing sample, and the group corresponding to the
smallest residual is selected. The test sample will be assigned to the class to which the representative
atoms belong.

4. Results and Discussion

4.1. Classification of Polarimetric SAR

First, the San Francisco data from JPL AIRSAR have been employed for supervised classification.
These data are from JPL AIRSAR, and they are in Stokes Multilook Complex (STK-MLC) format. The
peuodo-color image, ground truth, and geographic information are shown in Figure 3. The ground truth
is observed from the Google Earth map. One can also find the data and ground truth mentioned in a series
of articles, such as [26]. There are mainly four types of land cover: sea, urban areas, forests and bare
ground. From each type, 1000 pixels are randomly selected as training samples, leaving the remaining
data as testing samples. Results of three methods are compared here as illustrated in Figure 4: the
traditional Wishart classifier, Stein-SRC and the simplified Stein-SRC approach as proposed in Section 3.
From the visualized classification results, we can find that the Wishart classifier does not perform well
and confuses the top-right sea area with urban area and forest. That is probably because the Wishart
classifier mainly relies on span-related information, and the span of the top-right sea area is closer to that
of the urban or forest area than to bottom-left sea area; as is shown in Figure 3a, the top-right sea area
is quite brighter than the bottom-left sea area. In contrast, Stein-SRC manages to solve this problem and
give more accurate results. The Kappa coefficient is employed to assess the results quantitatively, which
confirms the better performance of the Stein-SRC approaches. The Stein-SRC approach obtains the
best performance, which is not only indicated by the Kappa coefficient, but also can be seen manually.
The top-left forest areas have a wide range of scattering intensity because of the difference of incident
angles due to mountainous terrain, some of which is so dark, that they are classified as sea or bare
ground by Wishart. On the contrary, Stein-SRC copes with the top-left pixels very well and achieves
better performance. In addition, simplified Stein-SRC, which efficiently reduces the computing burden,
performs better than the Wishart classifier, as well. The concrete classification result is shown in Table 1,
from which we can get the same conclusion.

Table 1. Comparison of classifiers for the San Francisco image. OA, overall accuracy.

Classifier
Classification Rate (%)

OA (%)
Ocean Urban Forest Soil

Wishart 94.5 76.0 85.9 95.7 87.0
Simplified Stein SRC 99.6 77.5 87.1 97.4 90.0
Stein SRC 99.7 82.1 95.1 96.8 93.3
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(a) (b) (c)

Figure 3. (a) Pauli picture for AIRSARSan Francisco; (b) ground truth;
(c) geographic information.

(a) Kappa 0.8053 (b) Kappa 0.8458 (c) Kappa 0.8954

Figure 4. (a) Results of the Wishart classifier; (b) results of simplified Stein-SRC; (c) results
of Stein-SRC.

4.2. Classification of Multi-Frequency Polarimetric SAR

Classification experiments are run on a set of multi-look, multi-frequency polarimetric SAR images
in STK-MLC format acquired by the AIRSAR sensor with the P, L and C bands over a cultivated
area of Flevoland in the Netherlands in June, 1991. According to the ground-truth data provided by
Hoekman [27] and Gao [7], there are mainly 14 types of crops in the scene: potato, beet, maize, wheat,
grass, fruit, barley, beans, lucerne, flax, oats, onions, peas and rapeseed. The ground-truth data used in
this experiment is visualized in Figure 5. From most types of crops, 1000 pixels are randomly selected
as training samples, with the remaining data as testing samples. Because of comparatively less points
available in the ground truth, for beet and beans, 500 pixels are randomly chosen; for oats and onions, 200
and 100 pixels are randomly selected, respectively. The Wishart classifier is employed for comparison
using various combinations of the P, L and C bands images.

At first, single-band data are used to assess the performance of Stein-SRC and the Wishart classifier.
Classification results of the L, P, and C bands data are illustrated in Figure 6. Each experiment exhibits
that Stein-SRC possesses an overwhelming advantage over the Wishart classifier. On the P band, overall
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accurate rates are markedly raised for almost every type of crops, especially for potato, grass, barley
and lucerne. On the L band, overall accurate rates are also enhanced for almost every class of crops,
particularly for wheat and beans. On the C band, classification performance is improved, as well,
especially for potato, wheat, grass and fruit.

(a) GroundTruth (b) Types of Crops

miles

0 1 2 3
Center Latitude:      52˚22'00" N

Center Longitude:   5˚23'16" E

N

(c) Map on Google Earth

Figure 5. (a) Ground-truth data of Flevoland; (b) legend ; (c) geographic information.

(a) Kappa: 0.7512 (b) Kappa: 0.6274 (c) Kappa: 0.6396

(d) Kappa: 0.8036 (e) Kappa: 0.7790 (f) Kappa: 0.7091

Figure 6. (a–c) Wishart classification results on the L, P and C bands, respectively;
(d–f) Stein-SRC results on the L, P and C bands, respectively.

Then, the L, P and C bands data are combined in simultaneous Stein-SRC. The Wishart classifier is
employed as a comparison. The classification results are shown in Figure 7.
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(a) Kappa: 0.9734 (b) Kappa: 0.9879

Figure 7. (a) Wishart classification results combining the L, P and C bands; (b) simultaneous
Stein-SRC results combining the L, P and C bands.

Quantitative analysis of these approaches is given below. For most types of crops, 1000 pixels are
randomly selected as training samples, and another 1000 pixels are randomly selected as testing samples.
For beet, beans, oats and onions, the training and testing number of pixels is adjusted to 500, 500, 200
and 100, respectively. An average of 100 realizations is shown in Table 2. For each combination of
frequency bands, the overall accurate rate and Kappa coefficients of two methods are recorded. From
top to bottom are the results of the Wishart classifier and Stein-SRC. It is explicitly shown that Stein-SRC
performs better than the Wishart classifier under all configurations. For the P, L and C bands, compared
to the Wishart classifier, Stein-SRC improves the overall accuracy rate by 11.3%, 6.3% and 5.6%.

Table 2. Classification results for the Flevoland image; an average of 100 realizations. BD,
band; OA, overall accuracy; Kappa coefficient.

BD
Classification Rate (%) OA Kappa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 (%) (%)

P
63.8 96.5 89.6 67.0 54.9 98.6 36.3 62.3 33.8 95.4 83.8 90.8 99.3 98.4 76.5 74.7
86.8 96.4 88.4 79.8 82.0 96.7 68.0 63.5 90.7 96.2 87.8 95.8 99.3 99.0 87.8 86.8

L
94.9 99.7 85.8 36.1 79.7 88.7 83.7 64.5 91.2 99.9 97.9 100 100 92.4 86.7 85.7
96.6 99.3 92.1 68.9 94.9 91.5 85.1 76.7 98.9 99.9 98.0 100 100 98.9 92.9 92.4

C
77.0 90.7 84.7 43.7 57.4 45.1 63.6 92.6 87.1 77.5 83.9 100 98.5 99.9 78.7 77.0
89.2 84.6 83.5 62.2 68.6 67.6 74.7 95.3 98.7 75.2 84.1 100 97.0 100 84.3 83.1

PL
96.1 96.7 97.1 45.6 94.4 98.4 82.1 72.5 88.1 99.9 94.9 98.4 100 99.7 90.3 89.5
97.7 97.3 96.0 91.5 97.1 98.6 91.0 86.2 99.8 100 99.8 100 100 100 96.8 96.5

PC
94.7 96.7 98.5 81.0 89.1 98.8 71.2 95.3 77.2 99.1 86.8 97.1 99.8 100 91.8 91.2
96.8 97.2 99.5 97.0 89.3 99.8 88.4 98.9 97.1 100 90.2 99.8 100 100 96.7 96.3

LC
98.6 99.9 94.8 42.8 82.9 91.2 95.8 92.7 95.8 100 97.8 100 100 100 92.3 91.7
99.0 99.7 98.1 92.2 95.8 94.2 94.4 94.7 99.0 100 98.3 100 100 100 97.5 97.3

PLC
99.0 97.5 99.4 86.8 94.9 98.6 93.9 89.3 94.7 100 94.6 99.7 100 99.9 96.3 96.1
98.5 98.8 98.6 99.4 98.7 99.8 99.3 94.0 99.5 100 98.8 100 100 100 99.0 98.9

For most types of crops, classification on L band data is superior to that on other bands, owing to
the property of electromagnetic waves. P band waves have good penetration into vegetation, but their



Remote Sens. 2015, 7 8483

wavelengths are too long to discriminate between similar crops. Experiments show that P band data are
only more suitable to identify maize, wheat, and fruit. C band waves have too short wavelengths, which
means limited penetrating ability, so the volume scattering is not fully detected. C band data achieve the
best performance only for beans and rapeseed. L band waves are a good compromise, with a blend of
abilities of penetration and discrimination. Different frequency bands are suitable for different types of
crops. It is obvious that merging multiple bands for classification enhances the overall accuracy, since the
information provided by different bands is complementary. With merging the Wishart classifier treated
as a comparison reference, simultaneous Stein-SRC enhances the Kappa coefficient by 2.7%. The overall
accurate rate for Stein-SRC is 99.0%, which is a quite excellent result. When only information of two
bands is merged, the performances of all of these approaches fall in between those involving the three
bands and the ones involving only a single band. Under any configuration of these combinations, one
can find that Stein-SRC out competes the Wishart classifier.

In order to further assess the performance of the proposed approaches above, the nearest neighbor
version of the Wishart classifier is employed as a reference. The Wishart distance between the testing
pixel and every training pixel is calculated instead of the Wishart distance between the testing pixel
and the class center. The testing pixel is assigned to the same class with the closest neighbor in
the training sample set. Simplified revised Stein-SRC, which reduces the computational burden of
revised Stein-SRC, is also tested as a reference. An experiment of the same configuration with the
aforementioned one is undertaken, and the results are recorded in Table 3. All of these approaches
combine the data from the P, L and C bands. The experiment results further confirm the effectiveness of
Stein-SRC approaches.

Table 3. Classification results for the Flevoland image; an average of 100 realizations.
Approaches: Wishart; nearest neighbor (NN) Wishart; simplified Stein-SRC; Stein-SRC;
OA, overall accuracy; Kappa coefficient.

Approach
Classification Rate (%) OA Kappa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 (%) (%)

Wishart 99.0 97.5 99.4 86.8 94.9 98.6 93.9 89.3 94.7 100 94.6 99.7 100 99.9 96.3 96.1
NN Wishart 99.1 98.4 99.2 94.8 95.1 98.9 98.7 93.4 97.4 100 95.7 99.9 100 100 97.9 97.8
Simplified
Stein-SRC

98.1 97.8 99.1 95.5 98.1 97.8 97.4 93.5 100 99.1 99.0 100 98.8 100 98.2 98.1

Stein-SRC 98.5 98.8 98.6 99.4 98.7 99.8 99.3 94.0 99.5 100 98.8 100 100 100 99.0 98.9

The computing time of these approaches was recorded, as well. The MATLAB codes were
all executed on a platform of Intel i7-3537U 2.00 GHz. The running time for traditional Wishart
classification was 141.66 s, which was the shortest due to its simplicity. The NN Wishart method
consumed 1131.64 s, while the simplified version of Stein-SRC took only 526.26 s. Not only did the
latter achieve better performance, but also simplified Stein-SRC expended less time, probably because
it computed the matrix determinant instead of the matrix inversion in Wishart distance. Stein-SRC took
the longest, 3187.28 s, because of the complex and time-consuming execution of the Lasso algorithm for
each pixel. Despite the cost of efficiency, Stein-SRC achieved the best performance.
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4.3. Comparisons to More Advanced Classifiers

To fully assess the performance of Stein-SRC, comparisons to more recently proposed advanced
classifiers are employed in the following experiment. These classifiers include the K-Wishart model
derived from the scale mixture of Gaussian (SMoG) distribution of scattering vectors [28,29], the
Wishart–Kotz model from the Kotz-type distribution of scattering vectors [30] and the mixed Gaussian
model by Gao [7]. Stein divergence combined with KNN k-Nearest Neighbors) instead of SRC is also
included, in this experiment,K = 6. Quite similar to Stein SRC, SRC combined with kernels of geodesic
distance is employed, as well.

Classification is performed on a polarimetric SAR image in 3×3 complex covariance format acquired
by the EMISAR sensor over the Foulum area in Denmark, which mainly contains seven types of
land covers. The pseudo-color image and ground-truth data [7,31] are portrayed in Figures 8 and 9,
respectively. A 3 × 3 boxcar filtering is undertaken as preprocessing. Classification results are listed
in Table 4 for each classifier, with underlined figures indicating the best classification rates and overall
accuracy. The Wishart classifier can be regarded as the baseline classifier.

(a)

miles

0 1 2 3
Center Latitude:      56˚30'35" N

Center Longitude:   9˚36'58" E

N

(b)

Figure 8. (a) Pseudocolor image of Foulum (red = |Shh − Svv|, green = |Shv|, blue = |Shh +

Svv|); (b) geographic information.

(a)

1. Wheat 2. Rape 3. Conifer

4. Oat 5. Rye 6. Pea

7. Urban

(b)

Figure 9. (a) Ground-truth data of Foulum; (b) legend.
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Table 4. Comparison of classifiers for the Foulum image; an average of 100 realizations.
OA, overall accuracy.

Classifier
Classification Rate (%)

OA (%)
1 2 3 4 5 6 7

Wishart 98.1 99.9 94.3 99.7 93.2 95.0 79.4 94.2
K-Wishart 98.0 99.9 93.9 89.4 93.7 95.7 89.6 94.3
Wishart–Kotz 98.5 99.9 92.2 98.7 92.8 96.5 90.6 95.6
Wishart Mixture 99.1 100.0 94.5 99.6 94.7 97.0 82.8 95.4
Stein-KNN 98.9 100.0 95.7 100.0 95.5 96.1 82.1 95.5
geodesic-SRC 99.4 100.0 92.6 100 94.4 96.8 89.3 96.1
Stein-SRC 99.4 100.0 92.8 100.0 94.2 96.8 89.2 96.1

We can find that Stein-SRC attains the best performance on most types of land cover. It is noteworthy
that the Wishart classifier does not perform well, especially on Class 7, urban areas, because it is modeled
for homogeneous regions. Wishart–Kotz and K-Wishart are able to classify the urban areas very well,
because they are modeled to describe heterogeneous regions, but they do not fit the crop area very well.
Stein-SRC is flexible and achieve the highest overall accuracy, because it does not depend on much of
a distribution assumption. Moreover, ENL (equivalent number of looks) must be estimated exactly as
the parameter of the models to maintain the performance of Wishart–Kotz and K-Wishart. Once ENL
estimation is not correct, the performance deteriorates obviously. In contrast, Stein-SRC does not need
ENL as a parameter and does not have this problem. Finally, the more complicated the distribution
model is, the more parameters are needed to be estimated. If the training samples are insufficient, the
estimation of these parameters is inaccurate, and hence, the performance turns worse significantly. For
example, the Wishart mixture model does not work if the training sample is inadequate. On the other
hand, the performance of Stein-SRC does not decline much even though the number of training samples
decreases. The Stein-KNN method attains the best performance on many types of land cover. However,
it fails to classify urban areas well. The performance of geodesic-SRC is almost as good as that of
Stein-SRC, because Stein divergence is approximate to geodesic distance. Nevertheless, it takes more
time to compute geodesic distance than Stein divergence. In our experiment, 35.2 s was spent for every
one million times of computing geodesic distance, while only 16.4 s was spent for the same amount of
times of computing Stein divergence.

The influence of kernel parameter σ was also discussed. The overall accuracy when σ equals 0.5, 1,
2 and 5 is 96.09%, 96.09%, 96.23% and 96.06%, respectively. Therefore, the choice of σ does not affect
the performance much. In the experiments above, normally σ = 1.

5. Conclusions

In this paper, Stein-SRC approach has been proposed to classify polarimetric SAR data. This
approach was based on SRC in sparse representation and Stein divergence on the Riemannian manifold
of a Hermitian semidefinite matrix, such as a covariance and a coherency matrix. In addition, it
was generalized to simultaneous Stein-SRC for multi-frequency merging applications, on the basis
of the assumption that different frequency data are independent and tend to have similar forms of
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sparse representation. Experiments on single-band AIRSAR data of San Francisco confirmed the
effectiveness of the Stein-SRC approach, which gave much better classification results compared to
the Wishart classifier, especially for the class spanning a wide range of scattering intensity. Experiments
on multi-band AIRSAR data of Flevoland showed that not only Stein-SRC performed better by using
L, P and C band data separately, but also simultaneous Stein-SRC worked better by using arbitrary
combinations of these multi-frequency data. Further comparison to more advanced models was
undertaken on the EMISAR sensor over the Foulum area in Denmark. Qualitative and quantitative
analysis both confirmed the better effectiveness of Stein-SRC and simultaneous Stein-SRC.
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