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Abstract—In this paper, we propose an improved attributed
scattering model to mathematically unify the scattering models
of several canonical primitives. These primitives include not only
point- and line-segment-scatterers, such as trihedral, cylinder,
dihedral, and rectangular plane, but also arc scatterers, such as
sphere and top-hat. The estimation of the model parameters can
be posed as an ill-posed linear inverse problem. To overcome the
ill-posedness, we employ the incremental sparse Bayesian learn-
ing method to realize the sparsity-driven continuous parameter
estimation. Inverse scattering experiments demonstrate that the
proposed methodology not only provides desirable sparse repre-
sentations of the target scattering response but is also able to
capture richer geometrical information than the existing models.

Index Terms—Attributed scattering model (ASM), improved
attributed scattering model (IASM), incremental sparse Bayesian
learning (ISBL), inverse scattering, sparse Bayesian learning
(SBL).

I. INTRODUCTION

FROM the geometrical theory of diffraction (GTD), the
high-frequency scattering response from a complex object

can be well approximated as a superposition of responses from
a series of individual scatterers [1]. Parametric modeling for
isolated radar scattering responses, developed from this theory,
plays an essential role in scattering mechanism analysis and
feature-based target discrimination and identification.

Many researchers have made great efforts in develop-
ing a parsimonious physics-based parametric model [2]–[5].
Potter et al. [4] proposed an attributed scattering center model
for dominant scattering mechanisms, based on the assumption
that the scattering responses of both localized and distributed
objects originate from a set of discrete scattering centers.
Halman et al. [6] represented the frequency dependence of the
scattering center as a second-order polynomial to enhance the
modeling of the mixed scattering mechanisms. Gerry et al. [5]
disputed the accuracy of modeling the distributed scattering
responses by point-scattering centers and developed a new para-
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metric attributed scattering model (ASM) which characterized
the frequency and aspect angle dependence for both localized
and distributed scattering mechanisms. The parameter set of
this model provides a physically relevant description of the
scatterers, so that it can offer rich information about the ob-
ject geometries. These parametric scattering models have been
successfully applied in synthetic aperture radar (SAR) feature
extraction and automatic target recognition [4], [7]–[13].

Model parameter estimation is an important problem that
accompanies with parametric modeling because it is crucial for
both improving the accuracy of extracted features and detailing
the physical description of targets. To solve the problem of
high-dimensional parameter optimization, several algorithms
have been proposed, such as the approximate maximum like-
lihood algorithm [5], the modified RELAX algorithm [11],
and the improved orthogonal matching pursuit algorithm [14],
[15]. Essentially, the task of estimating the model parameters is
equivalent to solving a linear inverse problem, i.e., employing
the parametric model to linearly approximate the measured
data. Thus, besides the aforementioned methods, some other
sparse approximation methods [16] are also applicable since
they can also overcome the ill-posedness property of inverse
scattering problems and improve the solution quality. Among
them, sparse Bayesian learning (SBL) [17]–[22] has recently
attracted much attention in the research community for its
advantages in parameter selection. In addition, incremental
optimization strategy [23] further facilitates the application of
this method since it can avoid overcomplete dictionary matrices
and directly optimize continuous parameters [24]–[26].

In this paper, we propose an improved ASM (IASM) and ap-
ply the incremental SBL (ISBL) method to model optimization.
There are two major innovative contributions in our work. On
one hand, the developed IASM mathematically coincides with
all of the canonical scattering models [27], [28], making the
model versatile to point- and line-segment-scatters as well as
arc ones. On the other hand, the ISBL method for real-valued
atoms is adapted to complex-valued atoms. Based on this,
continuous optimization with the proposed scattering model
toward sparsity is successfully applied to the involved inverse
scattering problems for the first time.

The rest of this paper is organized as follows. In Section II, we
propose IASM and evaluate the consistency with canonical scat-
tering models. In Section III, we introduce the SBL method and
extend incremental optimization to the case of complex-valued
atoms. In Section IV, we discuss the inverse scattering exper-
iments under different conditions, including different geomet-
rical shapes, polarizations, signal-to-noise ratios (SNRs), and
scattering models. Finally, the conclusion is given in Section V.
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Fig. 1. Geometrical relationship between the radar and the target. The angle
pair (ϕ, θ) describes the location of a radar in azimuth and elevation. The
cylinder PiQi, parallel to the image plane XOY, is a part of the target which
is assumed to be located in the point O. The length and the aspect angle of the
cylinder are Li and ϕi, respectively.

II. PARAMETRIC MODELING OF SCATTERING RESPONSE

From the GTD theory of the far-field pattern, the backscat-
tered field S(κ, ϕ) of a target can be approximated by a sum
of M individual normalized scattering terms {φi(κ, ϕ)} (i =
1, 2, . . . ,M) which are commonly modeled as the functions of
the wavenumber κ and the aspect angle ϕ

S(κ, ϕ) =

M∑
i=1

Aiφi(κ, ϕ) + ε(κ, ϕ) (1)

where Ai is the amplitude of the ith scattering term and ε(κ, ϕ)
represents the residual error. To simplify the analysis and
identify the structural features, an important consideration is to
develop a unified and compact form for φi(κ, ϕ). This unified
model should be able to mathematically approximate various
localized and distributed scattering mechanisms.

A. ASM

For convenience, we rewrite the ith normalized ASM [5] as

φ
(ASM)
i (κ, ϕ;xi, yi, λi, γi, Li, ϕi)=

(
jκ

κc

)λi

exp(−γiκ sinϕ)

× exp {−j2κ(xi cosϕ+ yi sinϕ)} sinc(LiΔi) (2)

where

Δi = κ sin(ϕ− ϕi), κ =
2πf

c
, κc =

2πfc
c

(3)

f is the frequency, fc is the center frequency, c is the propaga-
tion velocity, λi characterizes the associated frequency depen-
dence, and γi has no direct physical interpretation. As shown
in Fig. 1, (xi, yi) stands for the position of the ith scatterer
as projected onto the imaging plane XOY, and Li and ϕi are
the length and the orientation of the ith distributed scatterer,
respectively. Obviously, the model parameters provide phys-
ically relevant descriptions of targets, and these descriptions
objectively reveal the geometrical structures. However, ASM
can efficiently approximate point- and line-segment-scattering
mechanisms rather than arc-scattering mechanisms. Moreover,

Fig. 2. Curve approximations for different steepness parameters.

its damped exponential function which models the amplitude
dependence on aspect angle is not consistent with canonical
scattering models in mathematical forms [27], [28]. As a result,
the dependence factor has no direct physical interpretation [5].
These shortcomings motivate us to propose an improvement
for ASM.

B. IASM

We modify ASM to obtain higher precision and accommo-
date more sophisticated scattering behaviors. The developed
model is named as IASM, written as

φ
(IASM)
i

(
κ, ϕ;xi, yi, ri, λi, γ̃i, Li, ϕi, ϕ

(1)
i , ϕ

(2)
i

)
=

(
jκ

κc

)λi

cosγ̃i(ϕ− ϕi)sinc(LiΔi)

× exp {−j2κ(xi cosϕ+ yi sinϕ−ri)} �
(
ϕ;ϕ

(1)
i , ϕ

(2)
i

)
(4)

where the parameters κ, ϕ, λi, Li, ϕi,Δi have the same phys-
ical meanings as those of ASM. By contrast, the exponential
function exp(−γiκ sinϕ) in (2) is replaced by the cosine func-
tion cosγ̃i(ϕ− ϕi). The exponent γ̃i definitely characterizes
the aspect dependence factor, which describes the amplitude
dependence of the scattering response on aspect angle. In addi-
tion, referring to [28], the parameter ri is defined to determine
the migrating displacement of the scatterer, which describes
the migration phenomenon of the scatterer. The rectangular
window function �(ϕ;ϕ

(1)
i , ϕ

(2)
i ) is defined as

�

(
ϕ;ϕ

(1)
i , ϕ

(2)
i

)
=

{
1 ϕ ∈

[
ϕ
(1)
i , ϕ

(2)
i

]
0 otherwise

(5)

while a derivable approximation of this function can be given
by the difference between two translated logistic functions
−λ(ϕ− ϕ

(1)
i ), −λ(ϕ− ϕ

(2)
i ) [29]

�

(
ϕ;ϕ

(1)
i , ϕ

(2)
i

)
≈ −λ
(
ϕ− ϕ

(1)
i

)
− −λ
(
ϕ− ϕ

(2)
i

)
=
{
1 + exp

[
−K
(
ϕ− ϕ

(1)
i

)]}−1

−
{
1 + exp

[
−K
(
ϕ− ϕ

(2)
i

)]}−1

(6)

where K affects the steepness of the curve (see Fig. 2). There-
fore, it is usually chosen as a sufficiently large positive number,
and in this study, K = 200.
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Stri = Atriφ
(IASM)

(
κ, ϕ;xi, yi, 0, 1, 1, 0, ϕtri +

π

4
, ϕtri −

π

4
, ϕtri

)
+Atriφ

(IASM)
(
κ, ϕ;xi, yi, 0, 1, 1, 0, ϕtri −

π

4
, ϕtri, ϕtri +

π

4

)
(13)

Spla = Aplaφ
(IASM)

(
κ, ϕ;xi, yi,

1

2
Hpla sin θ, 0, 0, Lpla cos θ, ϕi, ϕi −

π

2
, ϕi +

π

2

)

−Aplaφ
(IASM)

(
κ, ϕ;xi, yi,−

1

2
Hpla sin θ, 0, 0, Lpla cos θ, ϕi, ϕi −

π

2
, ϕi +

π

2

)
(14)

C. Relationship Between IASM and Each Canonical
Scattering Model

For the sake of model evaluation, we use the proposed IASM
to represent six canonical shapes: sphere, top-hat, cylinder,
dihedral, trihedral, and rectangular plate. In particular, the phys-
ical correlations between geometrical parameters and model pa-
rameters are explicitly given. According to the 3-D and bistatic
parametric models of these canonical scattering responses [28],
the corresponding 2-D monostatic counterparts can be rewritten
as functions of the wavenumber κ, the aspect angle ϕ, and the
elevation angle θ. Moreover, both the rotation around the z-axis
and the translation in 3-D space are introduced to form the
backscattering models:

1) Sphere:

Ssph = Asph exp {−j2κ(xi cosϕ+ yi sinϕ− ri)}
Asph =

√
πri

ri = rsph. (7)

2) Top-hat:

Stop = Atop

√
jκ

κc
exp {−j2κ(xi cosϕ+ yi sinϕ−ri)}

Atop =

√
4
√
2κcriHtop

{
sin θ θ ∈

[
0, π

4

]
cos θ θ ∈

[
π
4 ,

π
2

]
ri = rtop cos θ. (8)

3) Cylinder:

Scyl = Acyl

(
jκ

κc

) 1
2

cos
1
2 (ϕ− ϕi)

× exp {−j2κ(xi cosϕ+ yi sinϕ)} sinc(LiΔi)

Acyl = Lcyl
√
κcrcyl

Li = Lcyl cos θ

ϕi = ϕcyl. (9)

4) Dihedral:

Sdih = Adih

(
jκ

κc

)
exp {−j2κ(xi cosϕ+ yi sinϕ)}

× sinc(LiΔi)

Adih =
2LdihHdihκc√

π

{
sin θ θ ∈

[
0, π

4

]
cos θ θ ∈

[
π
4 ,

π
2

]
Li = Ldih cos θ

ϕi = ϕdih. (10)

5) Trihedral:

Stri = Atri

(
jκ

κc

)
cos(ϕ− ϕi)

× exp {−j2κ(xi cosϕ+ yi sinϕ)}

Atri = −2
√
3H2

triκc√
π

{
sin
(
θ + π

4 − θtri
)

θ ∈ [0, θtri]

cos
(
θ + π

4 − θtri
)

θ ∈
[
θtri,

π
2

]
ϕi =

{
ϕtri +

π
4 ϕ− ϕtri ∈

[
−π

4 , 0
]

ϕtri − π
4 ϕ− ϕtri ∈

[
0, π4
]

θtri = tan−1
(
2−

1
2

)
. (11)

6) Rectangular plate:

Spla = Aplasinc(LiΔi)

×
{
exp
[
−j2κ

(
xi cosϕ+ yi sinϕ− r

(1)
i

)]
− exp

[
−j2κ

(
xi cosϕ+ yi sinϕ− r

(2)
i

)]}
Apla =

Lpla

2
√
π sin θ

Li = Lpla cos θ

r
(1)
i = −r

(2)
i =

1

2
Hpla sin θ

ϕi = ϕpla. (12)

Fig. 3 shows the definitions of the parameters rsph, rcyl,
rtop, Lcyl, Ldih, Lpla, Htop, Hdih, Htri, and Hpla. (xi, yi)
are the 2-D coordinates of the point Q under XOY coordina-
tion system. The orientations for cylinder, dihedral, trihedral,
and rectangular plate are all defined as each ray

−→
QU. The

aspect angles of these rays under XOY coordination system are
ϕcyl, ϕdih, ϕtri, ϕpla, respectively.

Obviously, canonical scattering responses can be represented
by IASM. It is worth noting that the scattering responses of both
the trihedral and the rectangular plate are the sum of two IASMs
(refer to (13) and (14), shown at the top of the page).

GTD-inferred values of canonical scattering primitives are
summarized in Table I. The comparisons between the inferred
and measured values will be discussed in Section IV-A.

D. Theoretical Analysis for Imaging Behaviors of IASM

When preforming image reconstruction for the scattering
responses that are generated by IASM, there exist four cases.

1) Li = 0, ri = 0
IASM is degenerated into a point-scattering mechanism,
e.g., trihedral.
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Fig. 3. Canonical scattering primitives and the relevant parameter definitions. (a) Sphere. (b) Top-hat. (c) Cylinder. (d) Dihedral. (e) Trihedral. (f) Rectangular plate.

TABLE I
GTD-INFERRED VALUES OF THE PARAMETERS FOR CANONICAL SCATTERING MECHANISMS

2) Li = 0, ri �= 0
IASM exhibits an arc-scattering mechanism, e.g., sphere
and top-hat.

3) Li �= 0, ri = 0
If the incident wave of the radar sweeps over the normal
direction of the scatterer, IASM stands for a line-segment
scatterer whose endpoints are located at (xi − (Li/2)
sinϕi, yi + (Li/2) cosϕi) and (xi + (Li/2) sinϕi, yi −
(Li/2) cosϕi), respectively. Otherwise, IASM should be
decomposed into two parts [refer to (15), shown at the

bottom of the page]. Thus, IASM corresponds to two
point scatterers which are located at the two endpoints,
respectively.

4) Li �= 0, ri �= 0
Likewise, if the incident wave of the radar sweeps over
the normal direction, IASM still exhibits a line-segment-
scattering mechanism. The only difference is that the
parameter ri makes the line-segment-scatterer be trans-
lated along the directionϕi. Then, the coordinates become
(xi − ri cos ϕi − (Li/2) sin ϕi, yi − ri sin ϕi + (Li/2)

φ(IASM)
(
κ, ϕ;xi, yi, 0, λi, γi, Li, ϕi, ϕ

(1)
i , ϕ

(2)
i

)

=
κc

2
L−1
i sin−1(ϕ− ϕi)

{
φ(IASM)

(
κ, ϕ;xi +

Li

2
sinϕi, yi −

Li

2
cosϕi, 0, λi − 1, γi, 0, ϕi, ϕ

(1)
i , ϕ

(2)
i

)

−φ(IASM)

(
κ, ϕ;xi −

Li

2
sinϕi, yi +

Li

2
cosϕi, 0, λi − 1, γi, 0, ϕi, ϕ

(1)
i , ϕ

(2)
i

)}
(15)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: IASM OPTIMIZED BY INCREMENTAL SPARSE BAYESIAN LEARNING 5

φ(IASM)
(
κ, ϕ;xi, yi, 0, λi, γi, Li, ϕi, ϕ

(1)
i , ϕ

(2)
i

)

=
κc

2
L−1
i sin−1(ϕ− ϕi)

{
φ(IASM)

(
κ, ϕ;xi +

Li

2
sinϕi, yi −

Li

2
cosϕi, ri, λi − 1, γi, 0, ϕi, ϕ

(1)
i , ϕ

(2)
i

)

−φ(IASM)

(
κ, ϕ;xi −

Li

2
sinϕi, yi +

Li

2
cosϕi, ri, λi − 1, γi, 0, ϕi, ϕ

(1)
i , ϕ

(2)
i

)}
(16)

cosϕi) and (xi−ri cosϕi+(Li/2) sinϕi, yi−ri sinϕi−
(Li/2) cosϕi), respectively. Otherwise, two circular arc
scatterers are obtained by (16), shown at the top of the
page, where their associated circular centers are located
at the two endpoints.

III. PARAMETER OPTIMIZATION WITH ISBL

A. Problem Description

Suppose that S(κn, ϕn)(n = 1, 2, . . . , N) stands for the col-
lected scattering responses, where each pair (κn, ϕn) corre-
sponds to a single observation. For convenience, the following
column vectors are defined for S(κn, ϕn), the noise term
ε(κn, ϕn) and the ith scattering term φi(κn, ϕn) as

t = [. . . , S(κn, ϕn), . . .]
T ∈ C

N

ε = [. . . , ε(κn, ϕn), . . .]
T ∈ C

N (17)

φi = φ(x;ϑi) = [. . . , φi(κn, ϕn), . . .]
T ∈ C

N (18)

where the superscript “T” stands for the transpose

x = [κ,ϕ] ∈ R
N×2

ϑi =

⎧⎨
⎩
[xi, yi, λi, γi, Li, ϕi]

T for ASM[
xi, yi, λi, γ̃i, Li, ϕi, ϕ

(1)
i , ϕ

(2)
i

]T
for IASM

(19)

κ = [. . . , κn, . . .]
T ∈ C

N

ϕ = [. . . , ϕn, . . .]
T ∈ C

N . (20)

Then, the observation model in (1) can be rewritten as

t = Φw+ ε (21)

where ε is the noise vector; w = [A1, A2, . . . , AM ]T ∈ CM is
the coefficient vector; the matrixΦ is composed ofφi, i.e.,Φ =
[. . . ,φi, . . .] (i = 1, 2, . . . ,M); each vector φi is generated by
a basis function φ(x;ϑ) with a specific parameter set ϑi; and
the set is associated with a specific scattering component.

Referring to (21), the task of modeling the target response
with a scattering model is a linear inverse problem, so we must
introduce proper prior knowledge and sophistical optimization
algorithms to cope with its ill-posedness. Generally, the number
of the scattering components is considered to be far smaller than
the number of the measured samples. Thus, it is reasonable to
introduce sparsity constraints to regularize the inverse problem.
The commonly used sparse representation methods rely on

overcomplete dictionary matrices, resulting in inevitable grid
errors and intensive computations introduced by the multiplica-
tion and inversion operations of the matrices. More important,
in most cases, such computation is unacceptable. In this paper,
we employ the ISBL method to overcome these difficulties.
Hereinafter, we concisely deduce the complex-valued ISBL
from its real-valued version [23] for the inverse problem.

B. SBL

SBL assigns hierarchical priors to both the coefficient vector
w and the noise vector ε, wherein each element follows a
conditional Gaussian distribution, i.e.,

p(w|α) =
M∏
i=1

CN
(
wi|0, α−1

i

)
= CN (0,Γ−1) (22)

p(ε|β) = CN (0, β−1I) (23)

where CN denotes that the vector is both circularly symmetric
and complex [30], α = [α1, α2, . . . , αM ]T ∈ RM is a hyper-
parameter vector, αi denotes the precision of the weight wi,
Γ = diag(α) denotes a diagonal matrix whose diagonal entries
are the elements of the vector α, and the hyperparameterβ ∈ R

denotes the precision of the observation noise.
Referring to [23], we assume an uninformative prior for β

p(β) = const (24)

and a sparsity prior for α

p(α|β) ∝ exp (−ρ trace(F)) (25)

respectively, where F = βΦCwΦ
H is the smoothing matrix,

the superscript “H” is the conjugate transpose, the sparsity pa-
rameter ρ controls the amount of desired sparsity, and trace( )
is the trace of a matrix. In this paper, the parameter ρ is set to
be log(N)/2, which corresponds to the Bayesian information
criterion [23].

By inference from these prior assumptions, the maximum a
posteriori estimate of w turns out to be

ŵ = βCwΦ
Ht (26)

where

Cw = (βΦHΦ+ Γ). (27)

Benefiting from the hierarchical prior, the necessary parame-
ters can be automatically learned during the model optimization
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α̂i =

{√
1

4
[w̄2

i − (ρ− 1)[Cw]ii]
2
+ ρ[Cw]2ii +

1

2

(
w̄2

i − (ρ− 1)[Cw]ii
)}−1

β̂ = 2N

{√[
‖t−Φw̄‖22 + trace(CwΦ

HΦ)
]2

+ 4Nρ trace(CwΦHΦ) + ‖t−Φw̄‖22 + trace (CwΦHΦ)

}−1

(33)

by maximizing the following logarithm of the marginal
likelihood:

(α̂, β̂) = arg max
(α,β)

log p(t,α|β) (28)

Λs(β,α) = log p(t,α|β)
= log CN (0,C)− ρ trace(F)

= −N log(π)− log |C| − tHC−1t

− ρ

(
M −

M∑
i=1

αi[Cw]ii

)
(29)

where [23]

C = (β−1I+ΦΓ−1ΦH) (30)

and [ ]ii denotes the ith diagonal element of a matrix.
Then, the partial derivatives of Λs(β,α) with respect to

logαi and log β [23] are

∂Λs(β,α)

∂ logαi
=
(
1− αi[Cw]ii − αiw̄

2
i

)
+ ρ (1− αi[Cw]ii)αi[Cw]ii (31)

∂Λs(β,α)

∂ log β
=

[
N

β
− ‖t−Φw̄‖22 − trace(CwΦ

HΦ)

]
− βρ trace(CwΦHΦ) (32)

respectively, and by setting them to zeros, we can obtain the
update formula as (33), shown at the top of the page, where
‖ ‖2 denotes the �2-norm of a vector.

C. ISBL

The implementation of SBL demands an overcomplete dic-
tionary matrix, and each atom is generated by executing a
basis function with respect to the preset discrete values of
the continuous parameters. This optimization is therefore per-
formed on a discrete subset of the feasible region. In addition,
the choice of the quantized interval of each parameter has to
balance the grid error and computational complexity introduced
by the operations of the matrix. In particular, optimizing mul-
tidimensional parameters must bear such computational burden
to better the estimation precision. Incremental optimization
method for the SBL [23], [31], namely ISBL, can overcome
these shortcomings.

Its basic idea is to learn individual atom parameters in an
incremental manner before the global optimization. To isolate
the dependence of the objective function on a single atom, we
decompose the matrix C in (30) as [31]

C = C−i + α−1
i φiφ

H
i (34)

where C−i contains the contribution of all of the atoms except
the ith atom. To simplify derivations, define the sparsity factor
si, the quality factor qi, and its absolute square pi as

si = φH
i C

−1
−iφi, qi = φH

i C
−1
−i t, pi = |qi|2. (35)

Then, referring to [23], we obtain the dependence of the objec-
tive function Λs(β,α) on a single hyperparameter αi as

�s(αi) = Λs(β,α)−Λs(β,α−i)

= log
αi

αi + si
+

pi − ρsi
αi + si

(36)

where the vector α−i is α with αi omitted. It has been proved
in [23] that �s(αi) has a unique maximum at

αi =

{
s2i

pi−(ρ+1)si
if pi > (ρ+ 1)si

∞ otherwise.
(37)

Obviously, only the atoms that meet pi > (ρ+ 1)si should
be introduced into the model. For the atoms with continuous
parameters, the optimal parameter value can be obtained by
maximizing

�s
(

s2i
pi−(ρ+1)si

)
=

[(
pi
si
−ρ

)
−log

(
pi
si
−ρ

)
+1

]
(38)

with respect to the parameter vector ϑi. Suppose that

ui =
pi
si

=
φH

i C
−1
−i tt

HC−1
−iφi

φH
i C

−1
−iφi

. (39)

Then the derivative of �s on ui can be given by

d�s

dui
=

(
1− 1

ui − ρ

)
> 0 for ui > ρ+ 1. (40)

�s is a strictly monotonically increasing function about ui, and
the optimization can be therefore simplified as

argmax
ϑi

�s = argmax
ϑi

ui. (41)

At each iteration, only the atom that increases the marginal like-
lihood the most is added to the model. After that, the objective
function Λs is globally optimized with respect to the whole
parameter set in the model. The continuous maximization of �s

and Λs is performed by the quasi-Newton BFGS method [23].
The required derivatives are given in Appendix A.

As a result, the inclusion of continuous optimization effec-
tively eliminates the grid error caused by discrete optimiza-
tion, and the omission of large dictionary matrices greatly
decreases the computational complexity caused by large matrix
operations. Meanwhile, this incremental optimization manner
also facilitates the hybrid atom optimization that examines
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many types of basis functions simultaneously during each local
optimization.

D. Algorithm

Inverse scattering with ISBL consists of alternating iterations
among four steps: candidate atom parameter set generation,
inactive candidate atom optimization and selection, active atom
optimization, and unnecessary active atom removal.

1) Candidate Atom Parameter Set Generation: If the candi-
date atom parameter set Θ(iact) is empty at the ith iteration, the
image Ii of the residual response (t−Φŵ) is reconstructed by
the convolution backprojection (CBP) method [32]

Ii = CBP(t−Φŵ). (42)

Afterward, we detect all possible scatterers from Ii, and the
implementation details will be discussed in Section III-E. Fi-
nally, the initial values of the geometrical parameters, including
xi,l, yi,l, ri,l, Li,l, ϕi,l, ϕ

(1)
i,l , and ϕ

(2)
i,l , (l = 1, 2, . . . , P ), are

roughly estimated from the detected scatterers. The dependence
parameters are selected from their individual preset sets, such as

λi,l ∈ {−1,−0.5, 0, 0.5, 1}� Ψλ (43)

and for ASM

γi,l ∈
{
−κ−1

c ,−(2κc)
−1, 0, (2κc)

−1, κ−1
c

}
� Ψγ (44)

for IASM

γ̃i,l ∈ {0, 0.5, 1} � Ψγ̃ . (45)

All possible dependence parameter values are separately com-
bined with geometrical parameter values to form the initial set
Θ(iact), which contains Q vectors and

Q =

{
P × 5× 5 = 25P for ASM

P × 5× 3 = 15P for IASM.
(46)

2) Inactive Atom Optimization and Selection: Separately
maximize the objective function ui using the quasi-Newton
BFGS method with each initial parameter vector in Θ(iact). De-
note the maximum value and the associated optimum parameter
vector as u

(max)
i,l and ϑ

(max)
i,l (l = 1, 2, . . . , Q), respectively. If

the optimum parameter vector ϑ(max)
i , which increases ui the

most, meets u(max)
i > (ρ+ 1), it can be selected into the active

parameter set Θ.
3) Active Atom Optimization: Globally maximize Λs using

the quasi-Newton BFGS method with the currently active pa-
rameter set Θ, while the required derivatives can be efficiently
computed by (A2) and (A3).

4) Unnecessary Active Atom Removal: For each parameter
vector in Θ, recompute ul(l = 1, 2, . . . , i), and exclude all of
the parameter vectors that meet ul < (ρ+ 1).

5) Stop Criterion: We assume that the algorithm has con-
verged when step 1) cannot give any meaningful atom param-
eter vectors. That is, the newly generated atom parameter set
satisfies u(max)

i ≤ (ρ+ 1).
The complete procedure of this algorithm is summarized in

Algorithm 1.

Algorithm 1 The ISBL Algorithm for Inverse Scattering
Problems.

1: Inputs: t ∈ CN×1, x = [κ,ϕ] ∈ CN×2.
2: Parameters: Set ρ = logN/2.
3: Initialization: Set Θ ← ∅, Θiact ← ∅, i ← 0, Φ ← [],

Γ ← [], Cw ← [], ŵ ← [].
4: while 1 do
5: Detect scatterers and roughly estimate xi,l, yi,l, ri,l,

Li,l, ϕi,l, ϕ
(1)
i,l , ϕ

(2)
i,l (l=1, 2, . . . , P ) from Ii (see (42)).

6: for l = 1, 2, . . . , Pi do
7: for λi,l ∈ Ψλ and γi,l ∈ Ψγ (for ASM) or Ψγ̃ (for

IASM) do

8: ϑ
(0)
i,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[xi,l, yi,l, λi,l, γi,l, Li,l, ϕi,l]
T

for ASM

[xi,l, yi,l, ri,l, λi,l, γ̃i,l, Li,l, ϕi,l, ϕ
(1)
i,l , ϕ

(2)
i,l ]

T

for IASM.

9: Θ(iact) ← Θ(iact) ∪ {ϑ(0)
i,l }.

10: end for
11: end for
12: Compute Q by (46) and set R ← 0.
13: while Q �= 0 do
14: Set i ← i+ 1.
15: if R = 0 then
16: for l = 1, 2, . . . , Q do
17: Maximize ui using the BFGS method with

ϑ
(0)
i,l ∈ Θ(iact).

18: Setu(max)
i,l ←max

ϑi,l

ui andϑ(max)
i,l ←argmax

ϑi,l

ui.

19: end for
20: else
21: Set ϑ(max)

i,l ←ϑ
(0)
i,l for ϑ(0)

i,l ∈Θ(iact) and compute

u
(max)
i,l by (39).

22: end if
23: Set l(max) ← argmax

l
u
(max)
i,l , u

(max)
i ← u

(max)

i,l(max)

and ϑ
(max)
i ← ϑ

(max)

i,l(max) .

24: if R = 0 and u
(max)
i ≤ (ρ+ 1) then go to 37

25: else if u(max)
i ≤(ρ+1) then set i← i−1 and go to 5

26: else
27: Set R ← 1.
28: end if
29: Set Θ←Θ∪{ϑ(max)

i(max)}, Θ(iact)←Θ(iact)/{ϑ(max)

i(max)}
and Q ← Q− 1.

30: Compute si, qi, pi, αi by (35) and (37), and updateΦ,
Γ and Cw.

31: Maximize Λs using the BFGS method with Θ.
32: Compute αl(l = 1, 2, . . . , i) and β by (33), and

recompute all ul by (39).
33: Remove ϑi,l satisfying ul < ρ+ 1 from Θ(iact).
34: Subtract the number of the removed vectors from i,

and update Φ, Γ, Cw and ŵ.
35: end while
36: end while
37: Outputs: Θ, Φ, β and ŵ.
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The most complicated computation for each ISBL iteration
occurs in the global active atom optimization with the quasi-
Newton BFGS method. We therefore mainly examine the com-
putational cost of this step. For convenience, we assume that
no atom is removed from the active atom set during the whole
iteration, and then, the active atom set contains i atoms or
ni = 9i parameters at ith ISBL iteration. Let C(Λs) be the
cost of one function evaluation of the objective function Λs.
Its matrix inversion and determinant both take O(i3) flops,
while its matrix multiplication takes O(Ni2) flops [33]. Since
N  i, C(Λs) = O(Ni2). Let ni,k be the function evaluation
times at the kth BFGS iteration. The computational cost per
BFGS iteration is O(n2

i ) +O(ni,kC(Λs)) [34]. Provided that
Ni BFGS iterations are performed for ith ISBL iteration, it has

a complexity of O(Nin
2
i ) +O(Ni2

∑Ni

k=1 ni,k).

E. Scatterer Detection and Parameter Selection

First of all, we compute a threshold (denoted as Tres) for the
image Ii. For high-SNR images, we use Otsu’s method [35] to
accomplish the task, while for low-SNR images (SNR < 0 dB),
we utilize the constant false alarm rate detector to directly com-
pute the threshold at a specific false alarm rate Pfa. Since the
background noise of the amplitude image follows the Rayleigh
distribution, the maximum likelihood estimate of the Rayleigh
parameter b can be represented as [36]

b̂ =

√
1

2Ni

∑
ni

[Ii]
2
ni

(47)

where [Ii]ni
denotes the nith element of the vectorized ma-

trix. It implies that, for convenience, we use the noisy image
as the background noise, which will certainly cause a little
impact on ISBL optimization, but it is not serious. In partic-
ular, when the SNR further reduces, the impact may become
negligible. We empirically set Pfa = 0.01 in this paper and
deduce the threshold from the inverse cumulative distribution
function [36]

Tres =

√
−2b̂2logPfa. (48)

Then, all possible point scatterers are detected by searching
for local extreme points with intensities larger than Tres. By
thresholding with Tres, we convert the image Ii to a binary
image. Then, we perform a morphological operation [37] on the
binary image to produce the skeleton image, with which both
candidate line-segment- and circular arc scatterers are extracted
by Hough-transform-based methods [38], [39].

In principle, we select the necessary parameters so conserva-
tively as to proper improve the detection rate, which inevitably
introduces a number of false alarms. Nonetheless, these false
scatterers will be subsequently filtered by the local optimization
of ISBL. This filtering leads to a bit extra computation that is
well worth committing.

IV. NUMERICAL EXPERIMENTS

Three data sets are selected for numerical experiments. First,
individually simulated electromagnetic scattering data for six
canonical primitives are used to testify the inferred values in
Table I. Second, the simulated electromagnetic scattering data
for a scene of six canonical primitives are applied to evaluate
the modeling performance. The scattering responses in the for-
mer two groups of experiments are predicted by the electromag-
netic simulation software “CST Microwave Studio 2014” [40].
Third, the publicly released “Backhoe Data Dome, Version 1.0”
by the Air Force Research Laboratory are selected to demon-
strate the effectiveness when applying the propose model to
realistic complicated targets.

A. Inverse Scattering for Individual Canonical Scatterers

Numerical inverse scattering experiments are carried out sep-
arately for six canonical scattering objects based on IASM and
ISBL. The used electromagnetic scattering data are generated by
CST with the method-of-moments (MoM) or the shooting and
bouncing ray (SBR) methods. Radar parameters are as follows:
the frequency ranges from 6 to 12 GHz, the elevation angle is
fixed to 15◦, and the azimuth angle goes from −40◦ to 40◦ for
the trihedral and from −85◦ to 85◦ for the other objects. To
avoid loss of generality, three experiments with different param-
eters are specified for each shape. All parameters and estimates
are summarized in Table II. The columns of λi, γ̃i, ri, Li, ϕi

contain the GTD-inferred values, while the columns of λ̂(HH)
i ,

ˆ̃γ
(HH)
i , r̂

(HH)
i , L̂

(HH)
i , ϕ̂

(HH)
i and λ̂

(VV)
i , ˆ̃γ

(VV)
i , r̂i

(VV), L̂
(VV)
i ,

ϕ̂
(VV)
i contain their estimates from HH and VV polarized

responses, respectively.
By contrast, all estimates, except the results in boldface,

conform closely to the corresponding GTD-inferred values.
Those discrepancies can be divided into four categories. First, it
is considered that the scattering response of a trihedral theoret-
ically originates from two IASM atoms, while the experiment
shows that this response can be well approximated by only one
IASM atom. In that case, ϕi represents the azimuth angle of
the trihedral, and its true value is 0, which well agrees with
the estimates. Therefore, the estimates of ϕi agree with the
true values. Second, after repeated comparisons between the
objective function of the GTD-inferred value and the estimate
for cylinders with different sizes, we can confirm that the
optimum solution of γ̃i is 0. That is to say, the inferred value
of γ̃i should be indeed 0 but 0.5. Third, although the physical
sizes are not always much greater than one wavelength that the
high-frequency approximation is inapplicable, most estimates
(see Table II) still agree with the inferred values, except that
the γ̃i estimates for dihedrals, trihedrals, and rectangular plates
have relatively large values and/or variances. Thus, when dis-
criminating among these objects, other parameters, such as λi

and Li, may be more reliable.
From GTD theory, only dominant scattering components are

considered into the theoretical models, whereas the realistic
scattering responses contain several other components. It is an
important error source for the theoretical models. As shown
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TABLE II
GTD-INFERRED AND MEASURED VALUES OF THE PARAMETERS

Fig. 4. Backscattering response and residual responses after inverse scattering
for a sphere, and their CBP images. (a) Backscattering response. (b) Residual
response after one component extracted. (c) Residual response after two com-
ponents extracted. (d)–(f) CBP images of (a)–(c), respectively.

in Figs. 4(e), 5(e), 6(d), 7(e), 8(d), and 9(e), after the extrac-
tion of the dominant energy, physical scattering components
obviously remain. For sphere, the residual scattering compo-
nent originates from a diffracted arc scatterer (see Fig. 4).

Fig. 5. Backscattering response and residual responses after inverse scattering
for a top-hat, and their CBP images. (a) Backscattering response. (b) Residual
response after one component extracted. (c) Residual response after three
components extracted. (d)–(f) CBP images of (a)–(c), respectively.

For top-hat, the residual scattering components consist of two
arc scattering responses, and one of them can be assured from
the edge of the bottom plate (see Fig. 5). For cylinder, the edges
and the surface of the cylinder create the residual scattering
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Fig. 6. Backscattering response and residual response after inverse scattering
for a cylinder, and their CBP images. (a) Backscattering response. (b) Residual
response after one dominant component extracted. (c) and (d) CBP images of
(a) and (b), respectively.

Fig. 7. Backscattering response and residual responses after inverse scattering
for a dihedral, and their CBP images. (a) Backscattering response. (b) Residual
response after one component extracted. (c) Residual response after three
components extracted. (d)–(f) CBP images of (a)–(c), respectively.

Fig. 8. Backscattering response and residual response after inverse scattering
for a trihedral, and their CBP images. (a) Backscattering response. (b) Residual
response after one dominant component extracted. (c) and (d) CBP images of
(a) and (b), respectively.

Fig. 9. Backscattering response and residual responses after inverse scattering
for a rectangular plate, and their CBP images. (a) Backscattering response.
(b) Residual response after two dominant components extracted. (c) Residual
response after two dominant components and four weak components extracted.
(d)–(f) CBP images of (a)–(c), respectively.
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Fig. 10. The noisy frequency-aspect magnitude responses with (a) SNR =
20 dB and (b) SNR = −5 dB, and their associated CBP images with
(c) SNR = 20 dB and (d) SNR = −5 dB.

components, which cannot be accurately and compactly de-
scribed by IASM (see Fig. 6). For dihedral, the residual energy
is generated by the sides of the plates (see Fig. 7). For trihedral,
the residual energy is insignificant as comparing with the dom-
inant energy, and it comes from two dihedrals, each of which
consists of a vertical plate and the bottom plate (see Fig. 8).
For rectangular plate, the residual components are four arc scat-
tering responses, which verifies the imaging behavior of (16)
(see Fig. 9). The efficient extraction for the residual scattering
energy further demonstrates the effectiveness of IASM.

B. Inverse Scattering for a Simple Scene of
Canonical Scatterers

Referring to the numerical experiments in [9], we create
simple scenes of canonical scatterers to analyze the perfor-
mance of the proposed model. The backscattering predictions
are produced using CST software with the SBR technique. The
radar frequency ranges from 6 to 12 GHz. The elevation angle θ
is fixed at 15◦, and the azimuth angle ϕ sweeps over 60◦ from
−40◦ to 20◦.

First, we analyze the feature extraction with IASM at dif-
ferent SNRs. The scene contains all six canonical scatterers.
Two kinds of Gaussian noise with different variances (related
to SNRs) are separately added to the complex phase history
data to produce two groups of noisy EM data, and their SNRs
are 20 and −5 dB, respectively. The noisy frequency-aspect
magnitude responses and their associated CBP images are
shown in Fig. 10. The resultant parameter estimates through
inverse scattering are listed in Table III. For each SNR, we
perform 50 times of inverse scattering for different noisy data
to estimate the means and the standard deviations. Obviously,
the estimates of the geometrical parameters, including the radii
(R̂sph, R̂top), the lengths (L̂cyl, L̂dih, L̂pla), and the orienta-
tions (ϕ̂cyl, ϕ̂dih, ϕ̂tri, ϕ̂pla), are very close to the truth values.
In particular, the −5-dB SNR does not cause great impacts on

the estimation. By contrast, even when the EM data are free
of noise, the estimates of several frequency dependence factors
deviate appreciably from the GTD-inferred values, as well as
the estimates in the inverse scattering experiment of individual
canonical scatterers. This phenomenon is probably caused by
the situation that the scatterers in a scene are affected by other
scatterers around them. For example, the scattering response of
the cylinder is partly distorted due to the existence of shadowing
and diffraction effects, which lead to the estimation bias of λi.
The estimations of a portion of aspect dependence factors have
relatively large variances (see the bold numbers in Table III),
which conforms to the estimations in the inverse scattering
experiment of individual canonical scatterers. Nonetheless, in
most cases, these biases bring no risks to the discrimination of
the properties of the scatterers.

Second, we compare the feature extraction ability of IASM
with that of ASM. Since ASM cannot efficiently describe arc
scatterers, we consider a scene of only point- and line-segment-
scatterers, including dihedral, trihedral, cylinder, and rectan-
gular plate. The simulated scattering response is separately
modeled by ASM and IASM. The original magnitude response,
the residual magnitude responses, and their CBP images are
shown in Fig. 11. We can conclude that IASM not only helps to
capture more energy from the scene response but also provides
a sparser description about the scene with less atoms than ASM.

Third, we compare IASM with the recently proposed
model—physical and polynomial basis function (PPBF) [6].
PPBF confines to describe point scattering, and therefore, the
trihedral scattering response is used to make a comparison.
We model the scattering response in Fig. 8(a) with one PPBF
atom. The reconstructed and residual scattering responses are
shown in Fig. 12(a) and (b), respectively. PPBF introduces no
aspect dependence into the model so that it cannot efficiently
match the trihedral response. Although the frequency depen-
dence factor can be accurately estimated, the residual energy
is much greater than that obtained by IASM [see Fig. 8(b)].
The peak value of the IASM residual CBP image is 25 dB
lower than that of the PPBF residual image. Thus, it is evident
that PPBF is inadequate for modeling wide-angle scattering
responses.

C. Inverse Scattering for a Realistic Target

The selected data for the inverse scattering experiment
are the VV polarized scattering response of a backhoe with
0◦-elevation,−50◦ ∼ 50◦-azimuth aperture, and a bandwidth of
4 GHz. The data contain 346× 1524 samples, i.e., N = 346×
1524. As discussed in Section III-D, the computational cost
is proportional to N . We generate the candidate parameter set
with all N samples, whereas to speed up the implementation,
we perform the subsequent ISBL optimization on downsampled
data which are obtained by randomly selecting N/10 samples
with distinct indices from the data set. Hereinafter, we discuss
the results from three aspects.

First, the ISBL method motivates a sufficient sparse solution.
To avoid excessive iterations, we force to terminate the pro-
cess when the number of atom reaches 70. The dominant en-
ergy is concentrated into these atoms (see Fig. 13). The original
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TABLE III
MEANS AND STANDARD DEVIATIONS OF THE PARAMETER ESTIMATES AT DIFFERENT SNRS

Fig. 11. Inverse scattering comparison between IASM and ASM. (a) Backscat-
tering response of point- and line-segment-scattering reflectors, including one
dihedral, one trihedral, one cylinder, and one rectangular plate. (b) and (c)
Residual responses after the dominant energy extracted by 11 ASM atoms and
10 IASM atoms, respectively. (d)–(f) CBP images of (a)–(c), respectively.

scattering response, the residual response, and their CBP im-
ages are shown in Fig. 14. More importantly, the extracted
features comprise an efficient description for the backhoe. The
power of the original response is 26.35 dB, while the residual

Fig. 12. Extracted and residual response after inverse scattering for a trihedral,
and the residual CBP image. (a) Extracted response. (b) Residual response after
dominant components extracted by PBF. (c) residual CBP image.

Fig. 13. Local and global objective functions versus iteration times or atom
number.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: IASM OPTIMIZED BY INCREMENTAL SPARSE BAYESIAN LEARNING 13

Fig. 14. Backscattering response and residual response after inverse scattering for the backhoe, and their CBP images. (a) Backscattering response. (b) Residual
response after dominant components extracted by IASM. (c) Extracted response. (d) and (e) CBP images of (a) and (b), respectively. (f) Illustration of the extracted
features, which all associate with some certain geometrical components, except those features circled by green dot lines.

response is 11.17 dB, and that is, more than 97% of energy
is modeled by IASM. In fact, we can subsequently analyze
the weak scatterers with the residual responses. Since the
modeling of the dominant energy with IASM eliminates the
major strong interferences on the weak scattering components,
we can do the analysis for the weak scattering components more
effectively. In addition, we compare our results in Fig. 14 with
the “composite, point-enhanced” imaging result in [41]. Our
result embodies many finer and clearer geometrical structures
but discards some weaker scatterers and a few of the scattering
responses from irregular geometrical structures. The point-
enhanced method used in [41] is equivalent to calculating a
sparse approximation with the overcomplete dictionary whose
columns are generated by the ideal point-scattering model.
Essentially, this point model cannot motivate a sufficient sparse
solution as our model. Furthermore, the employed optimiza-
tion method in [41] usually encounters a high computational
burden.

Second, the extracted features by IASM are useful for shape
interpretation. As depicted in Fig. 15, most features accurately
reflect some geometrical structures. In particular, many indis-
tinguishable structures in the CBP image have been resolved
into true geometrical structures. However, three edges inside
the dot ellipses and circles have no corresponding structures.
It is believed that the blade attached in front of the backhoe
has a special groove that will cause multiple scattering. This
additional scattering may lead to the artificial scatterers outside
the blade.

Third, the computational cost for ISBL is affordable. The
personal computer used in the experiment has an Intel E5
processor with 2.10-GHz main frequency and 16.00-GB mem-

Fig. 15. Mapping the extracted 2-D features (painted red) by IASM into the
3-D geometrical components (painted gray). (a) Full view. (b) Partial enlarged
view of the partitioned region in (a) with blue dashed lines.

ory. The BFGS iteration times, the function evaluation times,
and the running time taken for each ISBL iteration are individ-
ually recorded to evaluate the complexity with the conclusion
in Section III-D. As shown in Fig. 16, the evaluated complexity
and the real running time have similar change trends. In fact, if
the parallel computation is applied for the function evaluation,
the computational efficiency can be further greatly improved.
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Fig. 16. Running time and computational complexity versus iteration times or
atom number.

V. CONCLUSION

In this paper, we have proposed an improved ASM to mathe-
matically unify the benchmarking canonical scattering models.
The developed model utilizes a cosine function to replace the
original aspect dependence function, introduces a physical pa-
rameter to describe the migrating displacement phenomenon,
and provides an approximate rectangular window to characterize
the shadowing effects. In addition, the complex-valued ISBL
has been employed to perform sparsity-driven inverse scattering
with IASM at an affordable computational cost. The numerical
experiments were carried out on the simulated canonical scat-
tering responses and the public-released wide-angle SAR data
of a backhoe. The results have revealed that IASM has excellent
compatibility with not only canonical primitives but also realis-
tic targets, and the extracted features can provide accurate geo-
metrical information about the target. The GTD-inferred values
of canonical primitives have been experimentally evaluated by
the proposed methodology, and several discrepancies have been
initially discussed based on the experimental results.

Future works will focus on twofold: first, considering that
IASM is merely appropriate for point-, line-segment-, and arc
scatterers, there is still a need for research on more general
models for arbitrary curve- and polyline-scatterers; second,
the quasi-Newton iterative algorithm employed in ISBL opti-
mization cannot guarantee global optimal solutions, so we will
further study on other global optimization algorithms in future.

APPENDIX A
PARTIAL DERIVATIVES OF THE LOCAL AND GLOBAL

OBJECTIVE FUNCTIONS ON THE PARAMETERS

According to [42], the partial derivatives of the local and
global objective functions on the parameters can be given by
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where �( ) denotes the real part of a complex-valued variable.
To greatly reduce the computational complexity of matrix in-
version in (A1), we derive the following formulas:
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∂ϑT
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−1 ∂φi

∂ϑT
i

=
αi+si
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{
βφH

i
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∂ϑT
i

−β2(ΦHφi)
H
Cw

(
ΦH∂φi

∂ϑT
i

)}

tHC−1
−i

∂φi

∂ϑT
i

=βtH
∂φi

∂ϑT
i

− β2(ΦHt)
H
Cw

(
ΦH ∂φi

∂ϑT
i

)

+
q∗i

αi + si

(
φH

i C
−1
−i

∂φi

∂ϑT
i

)
(A3)

where the computation formulas for si and qi are given in [23].
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