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PAPER
Unsupervised Speckle Level Estimation of SAR Images Using
Texture Analysis and AR Model

Bin XU†a), Yi CUI††, Guangyi ZHOU†, Biao YOU†, Nonmembers, Jian YANG†, Member,
and Jianshe SONG†††, Nonmember

SUMMARY In this paper, a new method is proposed for unsupervised
speckle level estimation in synthetic aperture radar (SAR) images. It is
assumed that fully developed speckle intensity has a Gamma distribution.
Based on this assumption, estimation of the equivalent number of looks
(ENL) is transformed into noise variance estimation in the logarithmic SAR
image domain. In order to improve estimation accuracy, texture analysis is
also applied to exclude areas where speckle is not fully developed (e.g.,
urban areas). Finally, the noise variance is estimated by a 2-dimensional
autoregressive (AR) model. The effectiveness of the proposed method is
verified with several SAR images from different SAR systems and simulat-
ed images.
key words: AR model, equivalent number of looks (ENL), synthetic aper-
ture radar (SAR), texture analysis.

1. Introduction

Speckle originated from coherent imaging is a typical effec-
t in synthetic aperture radar (SAR) images. For multilook
processed SAR images [1], the speckle level is common-
ly characterized by the equivalent number of looks (ENL).
Accurate estimation of the ENL plays an important role in
many applications of SAR image processing. The ENL is
a key input parameter that affects the despeckling perfor-
mances for many classical and state-of-the-art filters [2]–
[5]. In addition, it is an important evaluating indicator for
SAR image despeckling [6], [7], and it is also very useful for
target/edge detection [8], image classification [9], interfero-
gram estimation [10] and so on. Since all these applications
are very important in SAR and polarimetric SAR image pro-
cessing, it is very urgent to estimate the ENL accurately.

By the definition of the ENL, a homogeneous area
where speckle is fully developed must be selected for super-
vised estimation of the ENL. A well-trained human can easi-
ly identify a homogeneous area, but an automatic processing
chain is surely preferable in many applications. There are
several unsupervised methods. The methods proposed by
Lee et al. [11], [12] draw a scatter plot of the mean versus
standard deviation for each pixel within a sliding window.
The Hough transform or angular sweep method is then used
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to estimate the ENL. The methods in [13] and [14] calculate
the local ENL using a moving window over the SAR image.
Then the ENL is estimated as the mode of the local ENL his-
togram. The method proposed by Cui et al. [15] establishes
a lookup table between the ENL and the noise variance in
the logarithmic SAR image, where the noise variance is es-
timated using a high-pass filter with image downsampling.

In this paper, we propose a new method for unsuper-
vised speckle level estimation of SAR images. This method
also transforms ENL estimation to noise variance estimation
in the log-intensity SAR data [15]. However, two modifica-
tions are proposed to improve the estimation accuracy. First,
the textural information in the SAR image is analyzed and
flat regions are automatically chosen to estimate the speck-
le level. Second, the autoregressive (AR) model instead of
high-pass filtering and downsampling is adopted to estimate
the variance of the additive noise in the logarithmic SAR
image.

The rest of the paper is organized as follows. Section
2 introduces the preparatory work including the logarithmic
SAR image statistics and additive noise model. Noise vari-
ance estimation using texture analysis and AR model is p-
resented in Section 3. Section 4 presents several results to
discuss the improvement and the time complexity of the pro-
posed method. Finally, Section 5 concludes this paper.

2. Logarithmic SAR Image Statistics and Additive
Noise Model

In this section, we introduce the logarithmic SAR image s-
tatistics and the additive noise model of the logarithmic SAR
image.

2.1 Logarithmic SAR Image Statistics

It is well established that the speckle in SAR images can be
described by the following multiplicative noise model [1],

Ii, j = Ri, j · ni, j, (1)

where Ii, j denotes the observed intensity at a pixel (i, j); Ri, j
denotes the underlying target backscattering coefficient; ni, j
denotes the multiplicative noise. For convenience, we on-
ly take intensity image into consideration in this study. If
the speckle of the SAR image is fully developed, ni, j can
be assumed to be a unit mean random variable of Gamma
distribution parameterized by the ENL [1],
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pn(n) =
(ENL)ENLnENL−1

Γ (ENL)
e−nENL, n ≥ 0, (2)

where Γ () is the Gamma function. In general, the ENL of a
homogeneous region can be calculated by

ENL =
(mean)2

variance
. (3)

According to [16], the mean and variance of the loga-
rithm of the multiplicative noise are

E [ln (n)] = ψ(0) (ENL) − ln (ENL) , (4)

var [ln (n)] = ψ(1) (ENL) , (5)

respectively. Here ψ(m)(ENL) is the polygamma function of
order m.

Equation (5) indicates that there is one-to-one relation-
ship between var [ln (n)] and the ENL. If var [ln (n)] is ob-
tained, the ENL can be solved numerically. Consequently,
estimation of the speckle noise level, i.e., the ENL, can be
equivalently transformed to estimation of the noise variance
in the logarithmic domain, which will be the focus of this
paper hereafter.

2.2 Additive Noise Model

By logarithmic transformation of (1), the multiplicative
noise becomes additive, i.e.,

ui, j = si, j + vi, j, (6)

where

ui, j = ln
(
Ii, j

)
, (7)

si, j = ln
(
Ri, j

)
+ ψ(0) (ENL) − ln (ENL) , (8)

vi, j = ln
(
ni, j

)
− ψ(0) (ENL) + ln (ENL) . (9)

By (4), vi, j is a zero-mean additive noise. So the autocor-
relation function (ACF) of u(i, j) at coordinate (0,0) can be
estimated by

r0,0 = E
[
u2
]
. (10)

Similarly, the ACF of s(i, j) at coordinate (0,0) is

r̄0,0 = E
[
s2
]
. (11)

Because s and v are independent stochastic processes, the
variance of the additive noise is

var (v) = E
[
u2
]
− E
[
s2
]
− E[v]2

= r0,0 − r̄0,0
. (12)

Since r0,0 can be easily obtained with the noisy process ui, j,
the remaining problem is the estimation of r̄0,0.

The basic idea to estimate r̄0,0 is that it can be interpo-
lated by the adjacent ACF values of ui, j (see Fig.1). Thus
from a broader perspective, the problem is closely related

(a) The ACF of v along the x-axis.

(b) The ACFs of u and s along the x-axis.

Fig. 1 The ACFs of v, u and s along the x-axis. Ax is the effective range
of noise ACF along the x-axis.

to ACF estimation (or spectral estimation, if in the view of
frequency domain) for a stationary process. For such prob-
lems, the AR model is a very simple and effective method
as is well established in the modern spectral estimation the-
ory. Therefore, the estimation of r̄0,0 will be accomplished
with the AR model in Section 3.2. However, since the noise
vi, j is often spatially correlated [1], the ACF of ui, j within
the effective range of noise ACF must be excluded. Fig.1
shows the 1-dimensional examples of the ACFs of v, u, and
s, where Ax denotes the effective range of the noise ACF. A
simple way to estimate the effective range of the noise ACF
is stated in [15] where a high-pass filter hi, j is applied to the
log-transformed SAR image ui, j. Here hi, j is selected as the
Laplace operator [17],

h =

 1 −2 1
−2 4 −2
1 −2 1

 . (13)

After high-pass filtering, the filtered image wi, j is mainly
related to the noise process vi, j and can be approximated as
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[15],

wi, j ≈ vi, j ∗ hi, j, (14)

where ”*” stands for the convolution operation.
Suppose that rvi, j and rwi, j are the ACFs of vi, j and wi, j.

Let lx and ly denote the lag lengths of rvi, j along the x-axis
and the y-axis respectively. If the effective range of rvi, j is
(2lx + 1) × (2ly + 1), then the effective range of rwi, j becomes
(2lx + 5) × (2ly + 5) [15]. Thus the effective range of the
noise ACF can be deduced from the ACF of the high-pass
filtered image. In order to improve the estimation accuracy,
a 10 times interpolation by zero-padding fast Fourier trans-
form or chirp z-transform is applied to rwi, j. To determine the
effective range of rwi, j, we consider that the amplitude of rwi, j
larger than a predefined threshold (in percentage of rw0,0) is
effective. Empirically, we find that 1% of the amplitude of
rw0,0 is a proper choice since it produces an effective range
with good trade-off of both sufficiently low noise ACF side-
lobes and gap small enough to ensure the interpolation accu-
racy. For simplicity, only the main lobe and first sidelobe of
rwi, j are considered to estimate the effective range. In general,
the boundary of the effective range forms an oval shape.

3. Noise Variance Estimation Using Texture Analysis
and AR Model

3.1 Texture Analysis

Since the ENL is related to the Gamma distribution noise
model which is only applicable for fully developed speckle,
the presence of highly textured areas will cause significant
ENL underestimation [11]–[15]. So such areas should be
excluded for ENL estimation. The textural information is
very rich in urban areas and poor in flat areas. Since textural
features can be used for image classification [21]–[23], we
analyze the textural information in SAR images and select
flat regions where speckle is fully developed to estimate the
speckle level.

The gray-level co-occurrence matrix (GLCM) is an ef-
fective tool for describing textural features. The elements in
the GLCM represent the co-occurrence probabilities of the
gray-levels and can be calculated by

pi j(d, θ) =
S i j∑G

i, j=1 S i j
, (15)

where i and j are gray-levels; d denotes the interpixel dis-
tance; θ stands for the orientation angel between two pixels;
G is the number of gray-levels and S i j represents the number
of occurrences of gray-levels i and j.

From the GLCM, 28 textural features can be derived
[21]. The textural feature used in this study is entropy
(ENT ) which is defined as

ENT = −
∑G

i=1

∑G

j=1
pi j ln pi j. (16)

In order to identify proper candidate areas, the image

is divided into K × K non-overlapping blocks. For each
block, the entropy is calculated by (15) and (16). It is ex-
pected that those blocks with the smallest entropy will be the
least affected by texture. Therefore, we select the last sev-
eral blocks with the lowest entropy as our candidate areas
for ENL estimation. In practice, the percentage is fixed to
the last 30% of all the blocks ranked by descending entropy.
This choice was tested by using several SAR images and we
found that it is effective. It is worth mentioning that the gray
level of the SAR image should be quantized to 0∼255 before
texture analysis by GLCM. Although difference methods of
quantization may change the absolute values of the calcu-
lated entropy for each block, their ranks will be invariant in
general. Hence in this paper, the method proposed by Zhou
et al. [25] is adopted for simple quantization.

3.2 AR Model

Now the remaining problem is the estimation of noise vari-
ance in the logarithmic SAR image for the K × K blocks
selected by texture analysis. According to (12), we need to
estimate r̄0,0 for each block.

In this paper, we use a 2-D AR model [18]–[20] to es-
timate r̄0,0. For each K × K block, the ACF is

ri, j = E
[
ux,yux+i,y+ j

]
. (17)

The size of the ACF is N × N where

N = 2K − 1. (18)

As the ACF of the block is symmetrical, we use forward lin-
ear prediction to estimate r̄0,0. In the 2-D case, the forward
linear predictor r̄i, j is

r̄i, j =

p∑
m=0

q∑
n=0

cm,nri−m, j−n , (m, n) , (0, 0), (19)

where cm,n are the linear predictor coefficients and (p, q) is
the order of the 2-D AR model. It should be noted that the
range of (i, j) is

S 1 = {−N ≤ i ≤ N,−N ≤ j ≤ N}\A, (20)

where A denotes the effective range of rvi, j and ”\” is the set
difference.

In compact vector notation, (19) can be rewritten as

r̄i, j = rT
i, jc, (21)

where the superscript “T ” denotes the matrix transpose; ri, j
and c are listed in (22) and (23), respectively.

ri, j=

[
ri, j−1· · ·ri, j−q, ri−1, j· · ·ri−1, j−q

... · · ·
...ri−p, j· · ·ri−p, j−q

]T
(22)

c =
[
c0,1 · · · c0,q, c1,0 · · · c1,q

... · · ·
...cp,0 · · · cp,q

]T
(23)

The forward linear prediction error ei, j is
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ei, j = ri, j − rT
i, jc. (24)

Because of (20), the range of (i, j) in (24) is

S 2 = {(k, l)|p − N ≤ k ≤ N, q − N ≤ l ≤ N}\S 3, (25)

where S 3 caused by the effective range of rvi, j is

S 3 =
∪

(i, j)∈A
{(k, l)|i ≤ k ≤ p + i, j ≤ l ≤ q + j}. (26)

The forward linear prediction error vector is

e = a − Rc, (27)

where e, R and a are

e = (· · · ei, j · · ·)T
(i, j)∈S 2

, (28)

R = (· · · ri, j · · ·)T
(i, j)∈S 2

, (29)

a = (· · · ri, j · · ·)T
(i, j)∈S 2

. (30)

Now the problem is to minimize eTe. The optimal so-
lution of the linear predictor coefficients is

c = (RT R)−1RT a. (31)

With the linear predictor coefficients, r̄0,0 can be easily
obtained. For example, if A is {(-1,0), (0,0), (1,0), (0,-1),
(0,1)}, then r̄−1,0, r̄0,−1, and r̄0,0 can be obtained in turn as
follows

r̄−1,0 = rT
−1,0c, (32)

r̄0,−1 = rT
0,−1c, (33)

r̄0,0=rT
0,0c+a0,1(r̄0,−1−r0,−1)+a1,0(r̄−1,0−r−1,0). (34)

After the noise variance is estimated for each K × K
block, the mean of the results is regarded as the final esti-
mate of the noise variance in the logarithmic SAR image.
Then the ENL can be solved by numerical methods.

4. Experimental Results

4.1 Experimental Data

In Fig.2, ten SAR images from several different SAR sys-
tems are used to test the performance of the proposed
method. The detailed information including sensor name,
polarization and imaging area can be found in Table 1.

In order to further illustrate the advantages of using the
AR model for ENL estimation, the proposed method is also
tested on 1000 simulated SAR images. Each image contain-
s a 128 × 128 homogeneous area contaminated by 4-look
Gamma noises.

4.2 Results and Discussion

The unsupervised speckle level estimation algorithm is sum-
marized in Fig.3, where several additional parameters are set

Table 1 The detailed information of the test SAR images.

No. Sensor name Polarization Imaging area
1 AIRSAR VV San Francisco, USA
2 AIRSAR VV Sydney, AUS
3 Convair HH Ice Area, CAN
4 Convair HH Ottawa, CAN
5 PISAR HH Tsukuba, JPN
6 SIR-C VV Tienshan, CHN
7 PALSAR HH Beijing, CHN
8 RADARSAT-2 HH Dalian, CHN
9 TerraSAR-X HH Dalian, CHN
10 TerraSAR-X HH Dalian, CHN

as follows. First, as the specific choices of G and (d, θ) in
(15) only affect the absolute values of ENT of each block
but less likely their relative ranking, the influence of these
two parameters on the result of texture analysis is insignifi-
cant. For simplicity, we set (d, θ) = (1, 0) and G = 20 which
is pointed out by Ulaby et al. [23] as a good choice for SAR
image classification. Also in consideration of both computa-
tional efficiency and estimation accuracy, the SAR image is
empirically divided into 31×31 non-overlapping blocks and
an AR model of (p, q) = (5, 5) is applied for noise variance
estimation.

As a first step, the effective range of rvi, j can be estimat-
ed by the method described in Section 2.2. For example, rwi, j
of AIRSAR image of San Francisco (see Fig.2(a)) is shown
in Fig.4(a) and the effective range of rwi, j is the black region
as shown in Fig.4(b). From the relationship between the ef-
fective range of rvi, j and the effective range of rwi, j, we can
obtain that A is {(-1,0), (0,0), (1,0), (0,-1), (0,1)}. Similar
results have been also obtained for other SAR images.

In this study, the ENL estimation results of the pro-
posed method are compared with two other unsupervised
ENL estimation algorithms. One is that proposed by Cui et
al. [15] which estimates the noise variance of the logarith-
mic image using a high-pass filter (HPF) and image down-
sampling. The other one is that proposed by Foucher et al.
[13] which calculates the ENL in a small moving window
over the whole image and uses the kernel density estimation
(KDE) to choose the mode of the distribution as the final
estimated ENL. In addition, the ENL is also estimated by
supervised method [1], i.e., calculating the (mean)2

/variance
of a homogeneous region which is selected manually and
marked by the white rectangles in Fig.2. In this paper, this
supervised ENL estimation is taken as the reference value
for evaluation of unsupervised algorithms (although it may
not necessarily represent the true ENL). Table 2 shows the
nominal number of looks (NNL) and the ENL results esti-
mated by the supervised method, the proposed method, the
proposed method without texture analysis, the high-pass fil-
ter based method (Method 1) [15] and the local window and
KDE based method (Method 2) [13].

Method 2 relies on the assumption that most of the re-
gions in the SAR image are homogeneous. However, this
assumption does not necessarily hold in richly textured ter-
rain such as urban areas since SAR images of urban areas
are known to be highly heterogeneous and can be described
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 2 Ten SAR images used to test the performance of the proposed method.

Input: SAR image(intensity image)
Step:
1. Texture analysis
a) SAR image gray-level quantization by [25].
b) Divide the quantized image into K × K non-overlapping blocks.
c) Calculate the GLCM and entropy by (15) and (16).
d) Select 30% of the blocks corresponding to smaller entropy for subsequent noise estimation.
2. Logarithmic transformation of the original (unquantized) SAR image
3. Noise estimation in the logarithmic SAR image
a) In the logarithmic SAR image, calculate the ACF of each block obtained by texture analysis.
b) For each block, calculate R and a by (22), (25), (29) and (30), and compute the linear predictor coefficients by (31). Then r̄0,0 can be easily obtained.
c) For each block, estimate the noise variance by (12). The mean of the estimation results is considered as the final estimation of the noise variance.
4. Estimation of the speckle level with the noise variance by numerical methods
Output: The ENL

Fig. 3 Unsupervised speckle level estimation algorithm proposed in this study.

by the Fisher distribution [26], [27]. It can be seen from Ta-
ble 2 that this method underestimates the ENL for most of
the test SAR images especially for those images where the

assumption does not hold. On the other hand, the proposed
method and Method 1 show better results.

Essentially, the proposed method and Method 1 both
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Table 2 ENL estimation results. Method 1 is based on HPF with 2-fold down-sampling [15], and
method 2 is based on the KDE with a 11 × 11 window [13]. The supervised estimation results and the
best unsupervised estimation results are shown in bold.

No. NNL* Supervised Proposed Proposed Method 1 Method 2
method (Without texture analysis)** (HPF) (KDE)

1 4 2.89 3.21 2.70 2.48 0.95
2 18 8.19 8.60 4.18 2.91 0.33
3 10 5.40 5.07 4.57 4.14 3.03
4 10 4.89 4.88 4.06 2.28 0.27
5 4 1.84 1.46 1.36 1.37 1.00
6 4 2.58 2.46 2.49 2.42 2.04
7 6 4.72 4.43 4.08 4.12 2.89
8 4 2.51 2.54 2.09 2.10 0.71
9 1 0.98 1.04 1.03 1.00 0.98

10 1 0.99 1.04 1.02 0.99 0.89

* The NNL is the multiplication of the processing looks in the range and azimuth direction.
** In this case, all of the blocks are selected and textural information is not analyzed.

(a) rwi, j of AIRSAR image of San Francisco (see Fig.2(a)).

−5 −4 −3 −2 −1 0 1 2 3 4 5
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−4

−3

−2

−1

0

1

2

3

4

5

(b) The effective range of rwi, j.

Fig. 4 rwi, j and its effective range of AIRSAR image of San Francisco
(see Fig.2(a)).

estimate the noise variance in the logarithmic SAR image.
However, Method 1 relies on the condition that the speckle
of the whole image is fully developed whereas the proposed
method pre-selects flat areas and so only requires that the
speckle in these least textured regions is fully developed.
Hence when the image has a lot of rich texture regions such
as urban regions, the proposed method is expected to pro-
duce a much better result than Method 1. It can be seen
in Table 2 that the proposed method performs similarly to

Table 3 The mean and variance of the ENL results of simulated images.

Supervised Proposed Method 1
method (Without texture analysis) (HPF)

mean 3.9986 3.9985 3.9951
variance 0.0025 0.0021 0.0063

Method 1 for the two single-look test images but gives bet-
ter results than Method 1 for the other multi-look images,
especially for the second and the fourth test images. This is
because both the latter two images are largely covered by ur-
ban areas where the speckle is not fully developed. The pro-
posed method analyzes the textural information to exclude
the urban area for ENL estimation which consequently leads
to improved results. In addition, the proposed method also
performs better than the same approach but without texture
analysis (see the 4th and 5th column of Table 2). Clearly, the
inclusion of texture analysis turns out to be an indispensable
step for reliable ENL estimation.

Now we consider the effect of the AR model on ENL
estimation. It can be seen from Table 2 that the proposed
method even without texture analysis gives better results
than Method 1 for the first four images and produces sim-
ilar results to Method 1 for the other six images. Thus the
superiority of AR model can be seen. To further confirm
this superiority, we use 1000 simulated images as described
in Section 4.1. Table 3 shows the mean and variance of the
ENL results estimated by the supervised method, the pro-
posed method without texture analysis and Method 1. From
Table 3, one can see that using AR model to estimate the
ENL can achieve a similar mean to those obtained by the
supervised method and Method 1. However, the variance of
the ENL results estimated by AR model is much closer to
that obtained by the supervised estimation than that using a
high-pass filter. With these results from real SAR images
and simulated images, we can conclude that AR model is a
more accuracy approach for ENL estimation.

Although the time complexity of the proposed method
is higher than Method 1, the time complexity of the pro-
posed method is still acceptable. Table 4 gives the compu-
tation time of the test SAR images. The proposed method
was running on Matlab platform and the PC used to run this
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Table 4 The computation time of the test SAR images by the proposed
method.

No. Image size Computation
time

1 900×1024 2.01s
2 601×889 1.05s
3 544×523 0.56s
4 222×342 0.21s
5 1000×1000 1.91s
6 256×256 0.15s
7 666×400 0.53s
8 500×400 0.44s
9 1000×1000 2.01s
10 1200×1200 2.81s

method had an Intel Core i5 processor with 2.80-GHz main
frequency and 4.00-GB main memory. In general, the com-
putation time is proportional to the image size and process-
ing a 1000 × 1000 image typically takes around 2 seconds.

It should be noted that the estimation of the ENL is
affected by the polarization and different polarizations lead
to different estimation results. The polarimetric information
can be jointly exploited to improve the ENL estimation ac-
curacy. Anfinsen et al. [14] extended the definition of the
ENL to the polarimetric SAR data based on the complex
Wishart distribution. Thus the proposed method can also be
extended to multi-polarization SAR data and we will focus
on this point in future.

5. Conclusion

In this paper, an unsupervised method for speckle level esti-
mation of SAR images has been proposed. The logarithmic
SAR image statistics were adopted to transform the ENL
estimation into the noise variance problem. Then we used
texture analysis to avoid using rich textured areas (such as
urban areas) where speckle is not fully developed. Finally,
we applied a 2-D AR model for the noise variance estima-
tion.

The proposed method was validated with real SAR im-
ages from different systems and simulated images. Experi-
mental results showed that the combined approach of texture
analysis and AR model can effectively improve the accuracy
of unsupervised ENL estimation. In addition, the computa-
tional time of the proposed method was also found accept-
able for practical applications.
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