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Abstract

Zhang, Y.J. and J.J. Gerbrands, Transition region determination based thresholding, Pattern Recognition Letters 12 (1991)

13-23.

We present a newly developed thresholding technique which is not based on the image’s gray-level histogram. This technique
is fully automatic and quite robust in the presence of noise and unexpected structures. Moreover, no empirical parameters are
vsed, and po limitations on shape and size of objects are imposed. A comparison with histogram based threshold selection is

also discussed.

1, Intréduction

Thresholding is a popular tool used in image seg-
mentation. A wide range of thresholding tech-
niques have been developed, a survey of them can
be found in Sahoo.et al. (1988).

Standard app:r‘o'aches to threshold selection are
often based on locating valleys or peaks in the
image’s gray-level histogram. Two classes can be
distinguished: (1) direct histogram analysis (e.g.,
Prewitt and Mendelsohn {1966}, Rosenfeld and
Torre (1983)); (2) histogram transformation (e.g.,
Weszka and Rosenfeld (1979)).

'~ Here we introduce a new threshold selection
method which is not based on the gray-level histo-
gram, but on the determination of the transition

- region between objects and background,

The existence of the transition region in the
discrete image has been discussed by Gerbrands

Keywaords. Automatic threshold selection, transition region, effective average gradient.

(1988). The conclusion is that ‘‘even if the con-
tinuous image contains ideal step edges, the dis-
crete image, which results from sensing the image
and sampling according to the Shannon theorem,
will contain transition regions which are quite
distinct™ (at Ieast one pixel wide). This region is
geometrically located between objects and back-
ground, and is composed of pixels which have
intermediate gray-levels between those of objects
and of the background (Zhang (1989)).

2. Development of the method

In the following, we first introduce a new
parameter that represents some interesting
characteristics of the image. In addition we intro-
duce a technique to reduce the effect of noise,
which makes use of this parameter. We then relate

0167-8655/91/%$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland} 13
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EAGoy (L) EAGhigh (L)
(a) (b}
L | L
o L jow im-1 0 - Lhigh m-1

Figure 1. Typical curves of EAG(L) versus L. (a) Typical EAGiqu(L) curve. (b) Typical EAGpgm(L} curve.

this parameter to the definition and the determina-
tion of the transition region. Once the transition
region has been determined, threshold selection
can take place.

2.1. Effective Average Gradient

First, we introduce the concept of EAG (Effec-
tive Average Gradient). Let f(;,f) bc an image
function;

JG.J), feG, ijes M

where §=[1,2,...] is a set of integers representing
spatial coordinates of the pixels, and G=[0,1,...]
is a set of integers representing the gray-levels of
pixels. The EAG of a gradient image g(7, /) obtained
from an original image f(i, /) by using gradient
operators (such as discussed by Pratt (1978)), is
defined by the following equation:

G
FEAG=— 2
G P @
where
TG= Y g(.Jj) 3)
Ljes

is the total magnitude value of the gradient image,
and '

TP= Y pG.j) @
i.jes

is the total number of pixels with non-zero gradient
values, as p(i, /) is defined by:

L. 1 if g, j)+0,
peg) = {0 ifgli,j)=0. ©
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From the above definitions, we can see that only
the pixels which have non-zero gradient value are
involved in the calculation of EAG, which is the
meaning of ‘effective’. The EAG represents a
selected statistic of the image.

To reduce the influence of noise, a type of image
transformation, called  clip transformation, is
introduced. Given an original image f(i,f) and a
gray-level L (L € G), a transformed image f;(/, )
can be obtained by using the following clip trans-
formation:

. [rep itren>L,
fL(:,n—{L oy ©)

From the transformed image £; (i, /), a gradient
image g, (/, /) can be obtained. The EAG of image
gr(i.7) is a function of L (for a given gradient
operator). It should be written as EAG(L). More-
over, EAG(L) is also dependent upon which part
of the image is clipped out by the transformation.
In equation (6), the low gray-level part of the
original image has been clipped (all gray-levels not
exceeding I. are changed to L). If we clip the high
gray-level part of the image by using the transfor-
mation as follows:

oo L irG3L,
d “’”_{fﬁ,n if £, )<L @

a different EAG(L) will be obtained.

To distinguish, we call the effective average
gradient based on the transformation of (6) the low
part clipped EAG,, (L} while the effective average
gradient based on the transformation of (7) is called
high part clipped EAGy,(L).
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Two drawings to show the typical curves of
EAG(L) versus L are given in Figure l(a) for
EAG (L) and in Figure 1(b) for EAGyu(L).
Common properties of both curves are that without
clipping, the EAGs do not equal zero; for increas-
ing L, the EAGs increase in the beginning and
decrease after one maximum; and finally, both
EAGs become zero. These points will be made evi-
dent in the following discussions..

2.2. Maximum points of Effective Average
Gradient

From Figure 1 we can see that both EAG,,(L)
and EAGy,, (L) reach a maximum at two given
gray-levels Ly, and Ly, respectively:

Ligy = Arg {rgag [EAG](,'W(Ln] L ®
Lhigh=Arg{rgieag [EAGhigh(Ln]. ©
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Those two maximum points have the following
important properties regardless of the relative
gray-levels of the objects and background:

First property. There exist one and only one L,
and Lyg, respectively.

Second property. Both L, and Ly, have signifi-
cant discrimination meaning (see proof).

Third property. Ly, is never smaller than Ly,.

The physical interpretations of the maximum
points and their properties can be found in Zhang
(1989). We will give the analytical proofs of these
properties in Appendix A.

2.3. Definition of transition region

A transition region in an image is a 2-D region
whose gray-level range is limited by two borders in

Figure 2. The transition region of a real image.
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Figure 3. Comparison example. (a) One real world image. (b} Histogram of image (a). (c) Segmentation result using threshold determin-
ed by histogram modification method. () Segmentation result using threshold determined by our method.

1-D gray-level space. These two borders are Lo,
and Lygn, which can be determined by equations
(8) and (9), respectively. The transition region can
be written as:

td,j), i,JeS, teR (19

where R = [Ligw> Ligw+ 1s +++» Luign] is a subset of G.

A real example of the transition region for a cell
image is shown in Figure 2, where the transition
region is geometrically limited by two contours. It
is easy to see that the real border separating the
object from the background is located somewhere
between these two contours, i.e., inside the transi-
tion region. The uniqueness of the transition region
for a given object is gnaranteed by the first property
of the maximum point of EAG(Z.). From the second
property, we know that the pixels in the transition
region generally have a high contrast compared to
their neighborhoods. The third property is illus-

16

trated by the fact that the two contours do not
CrOss.

2.4. Transition region determination and
threshold selection

The determination of the transition region is
related to its definition. To detect a tramsition
region, it is necessary to find its two borders L,
and Lyign, which can be calculated according to
equations (8) and (9), respectively. Intuitively, we
should determine EAG,,(L) and EAGy;(L) for
all LeG to discover their maximum points.
However, according to equation (2), EAG is deter-
mined by the pixels in a range of gray-levels. For
a slight change of L, only a small fraction of these
pixels are affected, so that the EAG value will not
change radically, In fact, the curve of EAG versus
L is a rather smooth curve (see examples in the next
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section). To find the maximum value from such a
curve, one fast iterative procedure to short-cut the
cilculations has been designed, as is discussed in
Appendix B. Using this procedure, the computa-
tion time for images with 256 gray-levels can be
reduced by a factor of about 25,

Delineation of the transition region makes the
selection of a threshold straightforward. As the
boundary pixels are contained in the transition
region, a threshold can be determined on the basis
of the pixels in this region. For example, the
threshold value can be the mean gray-level of all
pixels belonging to the transition region, or the
mode of the histogram of the transition region.

3. Comparison and discussion

Liedtke et al. (1987), after discussing several
segmentation technigques, have pointed out that
“the amount of relevant ¢ priori knowledge that
can be incorporated into the segmentation algo-
rithm is decisive for the reliability of the method.”
Below, we discuss and compare our method with
histogram based methods in terms of what a priori
information of the image is used. We compare also
the performance of different methods in the
presence of noise as real images are always con-
taminated by noise.

In direct histogram analysis technigques, only
1-D gray-level information—the pixel popula-
tion—is used. All pixels of the image have equal
contribution to the threshold selection. The in-
fluence of ‘noise corrupted pixels increases as the
noise increases, since the relative difference be-
tween the gray-levels of the object and background
will decrease in such cases.

In histogram transformation techniques, local
contrast information is employed. The contribu-
tion of each pixel to the threshold selection is
weighted according to its ‘edge value’ (the rate of
change of gray-level at this pixel). However, no
distinction between real edges and noise edges is
made. Since noise corrupted pixels generally have
higher edge values, the influence of noise on the
threshold selection becomes even more important
with the introduction of local contrast infor-
mation.

PATTERN RECOGNITION LETTERS
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In the transition region determination based
thresholding technique, the contribution of each
pixel to the threshold selection is weighted accord-
ing to its gradient value and its gray-level related to
the whole gray-level distribution of the image. The
gradient value of noise corrupted pixels belonging
to the object and/or background will be diminish-
ed or even suppressed by the clip transformation.
The 1-D gray-level information, such as the ex-
pected absolute gray-level of objects and back-
ground, the 2-D local contrast information, such
as the gradient value of pixels, and the 2-D global
information, such as the pixel arrangement, are
combined to improve the performance of threshold
selection,

Except the above difference about the incorpo-
ration of a priori knowledge, another important
point is how such knowledge is used in the thresh-
old selection. The technique of histogram modifi-
cation for threshold selection, discussed by
Weszka and Rosenfeld (1979) and many others,
has several variants. The most general one consists
of constructing a transformed histogram by
calculating the average of the ‘edge values’ for
each gray-level of the image, and then choosing the

AEV(L}

4] 255

Figure 4. The curve of average edge value (Weszka and
Rosenfeld (1979)) for Figure 3{a).

17
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peak from the transformed histogram, The authors
claim that this average should certainly be higher
for the border pixel gray-levels than that for the in-
terior pixel gray-levels, However, as each time the
calculation is based on the pixels with only one
gray-level, a possible difficulty can arise. Unwant-
ed structures and/or noise having high edge value

(a)
EAGIow(L)
L
g 265
(b}
EAGhigh{L}
L
0 255

Figure 5. EAG(L) curves for the image of Figure 3(a).-
(a) EAG o, (L) curve, (b} E4 Gy (L) curve.
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will cause the peak of the transformed histogram
to be located at a gray-level corresponding to those
structures or noise. The threshold value thus ob-
tained will not be appropriate. On the contrary, in
our method, the calculation of EAG is based on all
pixels which have non-zero gradient value. Since
the pixel number involved is rather high, the
disturbance of undesirable structures and/or noise
is limited.

The above theoretical comparison can be further
iflustrated by the following real world example. In
Figure 3(a), a cell image which involves some noise
and undesirable structures is shown. Its histogram
is given in Figure 3(b). The difficulty of using
direct histogram analysis techniques arises as the
valley is not visible. The results of segmentation
using the above mentioned histogram transforma-
tion method and our method are shown in Figures
3(c) and 3(d), respectively. By comparing Figure
3(c) with Figure 3(d), the advantage of our method
is quite noticeable.

To see the difference more clearly, let us com-
pare Figures 4 and 5. In Figure 4, the transformed
histogram curve (i.e., the average ‘edge value’
curves) for the image of Figure 3(a) is presented.
The EAG,, and EAG, curves for the same
image are shown in Figures 5(a) and 5(b}, separate-
ly. When we compare Figure 4 with Figure 5, we
notice the irregularity of the transformed histo-
gram curve as well as the smoothness of the EAG
curves. The vulnerability of the histogram modifi-
cation technique and the robustness of our method
are obvious. We should note that although we only
show one real example here, such situations are
generally expected, as we have discussed before
showing this example,

4. Conclusions

We have introduced a new threshold selection
method. Since it is based on the determination of
the transition region, no histogram calculation is
needed. A comparison with histogram based thresh-
old selection methods is also presented.

This technique is possible to be extended to the
case of multi-thresholding. In fact, we have used it
in the quantitative analysis of megakaryocyte in
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bone marrow tissue (see Zhang (1990). In that
analysis task, the nucleus and cytoplasm of mega-
karyocytes (they have different mean gray levels)
need to be separated from other structures. A two-
step procedure has been designed. In the first step,
the whole cell is extracted from the image. This
result is then used in the second step where the
cytoplasm is separated from the nucleus. Finally,
the images are split into three types of regions:
nucleus, cytoplasm and other structures. Qur tech-
nique has been used in both steps to determine two
thresholds (one for each step). The results are quite
satisfactory. In one experiment with about 200
images, more than 95% of nucleus and cytoplasm
are appropriately segmented.

We conclude by indicating some principal char-
acteristics of the transition region determination
based thresholding technique:

(1) Fully automatic and quite general:

As described earlier, the transition region be-
tween objects and background is located and
delimited automatically, without any human in-
tervention. The threshold value can then be
calculated automatically on the basis of this
region. Additionally, no subjective experimental
parameters and no limitation on shape and/or size
of objects are introduced, so that the calculations
can be deterministically carried out. Moreover, as
no connectivity constraints have been introduced
during the determination of the transition region,
the method is not limited to the single object case.

(2) Robust and accurate:

The clip transformation has the property to limit
the influence of disturbing structures. The final
threshold value can hardly be affected by the
presence of such structures. Moreover, there is an
averaging process inherent to the calculation of the
EAG. The EAG values are determined on the basis
of a large number of pixels from a range of gray-
levels, so that the effect of noise to the threshold
selection is decreased and more accurate results
can be expected.

(3) Computational efficiency:
Theoretically, the clip transformation as well as
the calculations of the gradient, TG and TP are all
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operations which may be implemented in parallel.
Practically, these operations are standard ones
which are included in most commercially available
image processing systems. Finally, the short-cut
processes discussed above permit fast computation
of the transition region.
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Appendix A

Proof for three properties of maximum points
of EAG

For the sake of clarification, we assume, without
loss of generality, that the given image has one ob-
ject on the background, and the object is sur-
rounded by a noisy border ramp. Moreover, since
the calculation is performed for the entire image,
we will only treat an edge ramp which can be ¢con-
sidered as the average of all profiles of the border
ramp. As a result, such an edge ramp will be rather
smooth and from a practical point of view can be
considered as monotonous.

Below, the proof is based on continuous func-
tions. Digital images are only approximations of
continuous functions, but the extension to real
images is straightforward (the continuous case can
be considered as the sets G and S going to infinity).

First property. There exist one and only one L,
and Ly, respectively,
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g(i)

i

9,(i)

o @) h

° Lo e

Figure 6. Profile representation of the edge ramp. (a) An edge ramp and its gradient. (b} Clipped edge ramp and its gradient.

The proof is only given for L,,; a similar proof
can be derived for Ly,

An edge ramp and its gradient are illustrated in
Figure 6(a), where:

I=f0) (A.1)

is a function of gray-level versus spatial coor-
dinate.

For every /, a corresponding / exists. The inverse
function can be defined as:

i=f . - ' (A.2)

For each given L, if we use it to clip f{i), one
clipped edge ramp f;(i} and one clipped edge
ramp gradient g,(i) are produced. Figure 6(b)
shows an example.

..niiill““ﬂllm..

g, (i}

i

Figure 7. Geometric interpretation of the numerator in the right
side of equation (A.7).
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As L can be variable, according to (A.2), we
have:

i =/, (A.3)

EAG,,(L) can be, according to Figure 7, writ-
ten as:

fir gr() di

- (A.4)
In—1p

EAG, (L) =
Now, we calculate the derivative of EAG,,,(L)
with respect to L. Keeping in mind that i, is a
function of L, and according to the Leibniz’s
theorem for differentiation of an integral (see,
e.g., Abramowitz and Stegun (1964)), we have:

i O g () di- Gy —in)es )
(=i )

EAGio (L) =

(A.5)

The derivative of i; with respect to L can be
written successively:

i={fT MDY =16 = 1Vgli). (A6)
Taking (A.6) into (A.5), we finally obtain:
i gLy di— Gy —igLtin)

EAG(L) = — -
CoulL) (=i Y er )

(A.T)
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(b}

Figure 8. Drawings to demonstrate the existence of the stationary point of EAG,.{L). (a} The clip gray level L corresponds to a
rather small value {;. {b) The clip gray level L corresponds to a rather big value i.

The denominator in the right side of equation
(A.7) is positive for 0<iy<i,. The sign of
EAGy,, (L) is then determined by the numerator.
The two terms of the numerator in (A.7) have sim-
ple geometric interpretations (see Figure 7):

The first term equals the area under the curve of
g, (i) from i=i; to i=i,, while the second one
equals the area of the rectangle with height g; (i;)
and width (¢, —i;). At the stationary point, these
two areas are equivalent,

Let us now consider the two drawings of Figure
8 to see the existence of the stationary point. It is
evident that in Figure 8(a), we will have Au> A4s,
ie.:

| 20 di=G,-izuy>o. a8)

i

while from Figure 8(b), we can get Au<Ads, i.e.:

fﬂ'
| a0 ai-0,~ izt <o. a9
2

As EAG,,,(L) is a continuous function, accord-
ing to the mean value theorem, there exists an
i=liy, (and also a corresponding L =1,,,), where

| <ijow <y, which makes:
EA Glr::)w (Liow) = 0. (A.10}

Loy 1s thus a stationary point of EAG,,(L). It

1
£ (i) i
i
Lo :
Loit-— g
0 i i
O TP
| g,(1)
g, (irgw)l— !
”III BTG . i
VAR i
450 ilr.lu

Figure 9, The changes of EAG),, (L} with respect {¢ a small increment 5L of Lig,. (@) If SL>0. (b) If 5L <0.
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¢ 1 L igh i

Figure 10. Drawing to show the relation of Ly, and Ligy,.

is also the only stationary point in the interior
region, since Au decreases monotonically whereas
Ay increases monotonically before Au attains zero.
Moreover, by taking equations (A.8) and (A.9) in-
to (A.7), respectively, we will get EAG),,{L}>0
for L< Ly, and EAG,,(L)<0 for L>L,. We
conclude that EAG,,, (L) attains the maximum at
L=1,,, and there is one and only one L,,.

Second property. Both Ly, and Ly, have signifi-
cant discrimination meaning,

Combining (A.8) and (A.9), we know that at the
maximum point (L,,,) there is:
f|'r
j 8() di = ({n — iow) 8 lhow) (A.11)
How

Comparing (A.11) with equation (A.4), we get:
EA Gy (Liow) = 81 lhow)- (A.12)

Now let us see what happens if we give Ly, a
small increment §L (Figure 9):

(1) For 8L>0, ie., iys >, Figure 9{a)
shows:

OTG/8TP>EAG (L) (BL20). (A.13)

The inequality of (A.13) means that a positive
increment &1 will cause some pixels with high gra-
dient values to be discarded from EAG,(L).

(2) For SL<0, ie., ipsr<lqy, Figure 9(b)

shows:
STG/6TP< EAG o (L1gw) (OL<0). (A.14)

The inequality of {A.14} means that a negative
increment JL causes some pixels with low gradient
values to be introduced into EAG,(L). Combin-
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ing {A.13) and (A.14), we know that L, is the
gray-level at which the image preserves maximum
number of pixels with high gradient value and
minimum number of pixels with low gradient value
in the low gray-level range of the image. Ly, has
a similar discriminaton meaning as L., but in
the high gray-level range,

Third property. Ly, is never smaller than Ly,

Suppose that g(i) attains its maximum value at
i=i,. According to the geometric representation
of Figure 7, i|,, must be at the left side of i, i.e.,
flow<im, and on the other hand, /g, must be at
the right side of i,, i.e., iyg>#,. Combining
these two inequalities, we have Jy. > fgy. These
relations are depicted in Figure 10. As [/ is a
monotonic function of i, we can conclude that
Ly will always be greater than Ly, in real
images.

Appendix B

Fast procedure to calculate maximum poinis
of EAG :

This procedure is adapted from an optimization
technique, i.e., the fraction method (Wang
(1979)). This method permits to find the maximum
of a continuous function with minimum trials.

“As we treat the digital image, we make use of the
series of Fibonacci defined as follows:

F(l}=1, F@2)=1, B
Fly=F(k=2)+F{k-1), k=3,4,.. ®.1)
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Lk-1 Lk
L 1 1 1
] L]
Lb Le
{a}
k = kmax
‘ Lk-1 = Lb + F(k-2)
L.k = Lb + Fik-1)
3 EAG calculation )
Y
EAG(Lk) > EAG(Lk-1
Lb = Lk-=1 Le = Lk
Lk-1 = Lk Lk = Lk-1
Lk = Lb + F(k-2) Lk-1 = Lb + F(k-3)
EAG(Lk-1) = EAG(Lk) EAG(Lk) = EAG(Lk-1)
¢ k=k - 1 )
I N
¥
Lk ’
{b)

Figure L1. Fasi procedure to calculate the maximum points of

to calculate EAG only at some discrete points.

Figure 11 shows the diagram of the adapted pro-
cedure which makes it possible to choose L from
the Fibonacci series for fast determination of max-
imum points of EAG, where L, and L, are the
lowest and highest gray-levels of the original im-
age, respectively. kg, can then be determined
from:

F+ 1)> Ly— Ly + 1> Flkina)- (B.2)
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