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Abstract 

In this paper, a novel real-time human detection system 
based on Viola’s face detection framework and 
Histograms of Oriented Gradients (HOG) features is 
presented. Each bin of the histogram is treated as a 
feature and used as the basic building element of the 
cascade classifier. The system keeps both the 
discriminative power of HOG features for human 
detection and the real-time property of Viola’s face 
detection framework. Experiments on DaimlerChrysler 
pedestrian benchmark data set and INRIA human 
database demonstrate that this framework is more 
powerful than Viola’s object detection framework on 
human detection.  

1. Introduction 

Human detection in images has becoming an increasingly 
important research area in both computer vision and 
pattern recognition community because of its potential 
applications in video surveillance, driving assistance 
system and content-based image retrieval. However, 
human detection is a challenging problem due to the 
various appearances caused by different clothes and 
articulations of body parts, as well as varying backgrounds.  

In this paper, we present a novel real-time human 
detection system by integrating Viola’s famous object 
detection framework [1] and Histograms of Oriented 
Gradients (HOG) features [2]. We treat each bin of the 
histogram as an individual feature and build the whole 
system using the new feature pool. Each feature in our 
system can be evaluated in 8 look-ups with the help of 
integral images, so it costs about the same time as a haar 
feature. By substituting the Haar features with the HOG 
features, our system keeps the speed advantage of Viola’s 
object detection framework as well as the discriminative 
power of HOG features on human detection. Experiments 
demonstrate that our system achieves a better accuracy at 
nearly the same speed as original haar features for human 
detection. 

The rest of this paper is organized as follows: section 2 
reviews related work; section 3 gives the architecture of 
our human detection framework; section 4 details the 
definition and evaluation of our HOG feature pool; section 
5 demonstrates the experimental results and finally section 
6 concludes the paper. 

2. Previous work 

Despite all the difficulties on human detection, a lot of 
work has been done recent years. Previous methods differ 
in three perspectives: first, they may use different features 
such as edge, haar features and gradient orientation 
features; second, they may use different classifiers such as 
Nearest Neighbor, Neutral Network, SVM and Adaboost; 
third, they may treat the image region as a whole or detect 
each part first and then combine them by these parts’ 
geometrically configurations. We classify previous 
methods into three categories based on the features they 
use. 

Edge features have been used in earlier work. Gavrila 
and Philomin [3] uses edge template as the feature and 
compare edge images to a template dataset using the 
chamfer distance. This method has been experimented on 
a vehicle of DaimlerChrysler. Edge feature is affected by 
background clutter greatly and not very robust. 

Haar features have been used successfully in face 
detection and also adopted by a lot of researchers for 
human detection. Oren et al. [4] combine over-complete 
haar features and SVM classifiers to detect pedestrians. 
Mohan et al. [5] extend Oren’s work using a cascade SVM 
to detect human component first and then vote for a 
human. Viola et al. [6] extend the haar features to capture 
spatial-temporal information for moving-human detection 
in surveillance system but adopt the boosted cascade 
classifier.  

Recently, gradient orientation features such as SIFT 
descriptor [7] and HOG descriptors [2] have attracted 
more attention. Shashua et al. [8] manually divide the 
human into 13 regions and compute SIFT-like features of 
each region, then combine these features using Adaboost 
to train the classifier and detect pedestrians on a moving 
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vehicle. Dalal and Triggs [2] propose HOG features as 
human representation, which achieve amazing good 
results combined with SVM classifiers. Later they extend 
their approach to detect humans in video streams using 
oriented histograms of flow and appearance [9]. Zhu et al. 
[10] integrate the cascade-of-rejecters approach with HOG 
features to speed up Dalal’s method greatly, using linear 
SVM as weak classifier. There are also other systems that 
use gradient orientation features but adopt a parts-based 
approach that aims at dealing with the great variability in 
appearance due to body articulation or occlusion. For 
example, Mikolajczyk et al. [11] represent human parts as 
co-occurrences of local orientation features. Their system 
proceeds by detecting features, then parts and eventually 
humans are detected based on assemblies of the parts. 

3. The framework 

Our framework is the same as Viola’s famous face 
detection framework except the feature evaluation part. 
For face detection, the Haar feature is more appropriate 
because the grey pattern of face is very obvious. For 
example, the eyes are always darker than their surrounding 
areas. But for human detection, we can only rely on the 
shape of the human, so HOG feature is more appropriate. 
The opinion has been proved in the work of Dalal et al. [2] 
and Zhu et al. [10]. But in their work, each block is treated 
as a building element, which can not fit very well with 
Viola’s face detection framework. In order to keep Viola’s 
speed advantage, we build our human detection system in 
a much lower level. Each feature is defined by its owing 
block position, its cell position and the orientation bin. 
The new feature can be evaluated in 8 look-ups using 
integral images. We extract the HOG features of multi-
scale blocks and use the new feature pool to build the 
system, so the speed advantage of the whole system is 
kept.  

The architecture of the system is shown in Figure 1. It 
consists of a cascade of stage classifiers whose detection 
rate is very high and false alarm rate is medium. By a 
cascade of such classifiers, the detection rate of the whole 
system is high and the false alarm rate is extremely low. 
For example, if the detection rate and false alarm rate is 
0.995 and 0.5 for each stage, the detection rate of a 20 
stage system is about 90% while the false alarm rate is 
only 10-6. Most importantly, most of the background 
patches will be discarded in earlier stages of the cascade, 
increasing the detection rate greatly. The stage classifier 
itself consists of an ensemble of Classification and 
Regression Tree (CART) as weak classifiers combined by 
Adaboost. During training, the threshold of each stage 
classifier is adjusted and the number of weak classifiers is 
increased until the hit rate and false alarm rate meet 
predefined values. The CART classifier is trained 

aggressively, i.e., the leaf of the tree that decreases the 
error most will be split and corresponding feature and 
threshold will be saved as the parameters of the node. The 
node number of each CART can be used as a meta 
variable to control the complex of the whole system. 

Figure 1. System architecture 

4. The HOG feature pool 

The main purpose of using features instead of raw pixels 
as the input to a learning algorithm is to encode 
knowledge about the domain, which is difficult to learn 
from raw and finite set of input data. Take human 
detection for example, if we use raw pixel value as input, 
then the in-class variation caused by illumination will 
make the classification task very hard. From our 
knowledge, human shape is invariant to illumination, so 
we can use HOG features to encode shape information. By 
treating each bin of HOG features as a feature, we create a 
new feature pool of discriminative features for human 
detection used by Adaboost algorithm and cascade 
training. 

The speed of feature evaluation is also an important 
aspect because most object detection algorithms slide a 
fixed-size window at all scales over the input image and 
need to evaluate several thousands of image patches. Each 
feature in our feature pool can be computed at any 
position and any scale in the same constant time, only 8 
look-ups is needed, which enables the real time properties 
of our human detection system. 

4.1. Feature definition 

Each feature is defined by its cell 
position , , ,C x y w hc c c c , the parent block position 
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, , ,B x y w hb b b b  and the orientation bin number k , so 

each feature f is denoted by , ,f C B k . The gradients at 

the point ,x y of image I  can be found by convolving 
gradient operator with the image [2]: 

, 101 ,G x y I x yx ,     (1) 

and 

, 101 ,
T

G x y I x yy .     (2) 

The strength of the gradient at the point ,x y is

2 2
, , ,G x y G x y G x yx y .    (3) 

The orientation of the edge at the point ,x y is

,
, arctan

,

G x yyx y
G x yx

.     (4) 

We divide the orientation range ,
2 2

 into K  bins 

and denote the value of kth bin to be 

, ,
,

0
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Then the feature value is defined as  
,

,
, ,

,
,

x ykx y C
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4.2. Feature evaluation 

All the features can be computed very fast and in constant 
time by 8 lookups with the help of K+1 auxiliary integral 
images 
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,
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So each feature , ,f C B k can be evaluated in 8 lookups.  

4.3. Feature pool build 

If we do not put any constraint on the relative position and 
size of the cell and the block, the feature number will be 
too large. Inspired by the extended haar feature definition 
of Lineart and Maydt [12], we only consider the relative 
position of the cell and the block shown in Figure 2. The 
black rectangle represents the position of the cell while the 
whole large rectangle denotes the position of the block. 
The ration between the width and the height of the block is 
1:2, 1:1 and 2:1. For a predefined training sample size, the 
feature template can be moved at a predefined stride step 
st and enlarged at a scale step sc . The minimum of the 
block is denoted by wmin  and hmin. The maximum of the 
block is just as large as the size of the training sample. The 
number of the feature pool is very large, for example if 
wmin=8, hmin=8, st=0.5, sc=1.2, K=9, and the training 
sample size is 18 36, the whole feature pool contains 
more than ten thousands features. 

We should note here that some similar feature pools 
have been defined in previous work. For example, the first 
line of Figure 2 is similar to the dominate orientation 
feature pool proposed by Levi and Weiss [13]. The second 
line of Figure 2 is similar to the feature set of Dalal’s [2] 
and Zhu et al. [10]. However, the feature pool defined here 
is much richer than those previous feature sets because we 
can add any new feature pattern here. The definition of 
this new feature pool is inspired the definition of extended 
haar features. Like the extended haar features, we can also 
add some rotated patterns, but they have not been included 
in the implementation right now. 

Figure 2. HOG feature templates
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5. Experiments 

There are some striking differences in the classification 
and detection performance of different systems reported in 
the literature. The variations come from different training 
data sets and different test criteria. In order to make 
objective and fair comparisons, we use two publicly 
available databases to compare the classification and 
detection performance of different systems. 

For comparisons of classification performance, we use 
the pedestrian benchmark data set proposed by Muder and 
Gavrila [14]. The content of the dataset is shown in Table 
1. We use similar performance analysis procedure as in 
[14]: for each system, three different classifiers are trained, 
each by selecting one out of the three training sets. Testing 
the three classifiers on the two test sets yields six different 
ROC curves, i.e., six different detection rates for each 
possible number of false positives. Then the mean 
detection rate and corresponding 0.95 confidence interval 
is computed. We use only one training set for each 
classifier instead of two in [14] to make the six ROCs 
more independent. The higher of the ROC curve, the 
better of the system. 

For comparisons of detection performance, we use the 
database and test criteria proposed by Dalal and Triggs [2]. 
The content of the database are shown in Table 2. For 
each system, one classifier is trained using the training set 
and the Detection Error Tradeoff (DET), i.e. miss rate 
versus FPPW curve on the test set is computed. The lower 
of the DET curve, the better of the system. In the 
following sections, we will propose two experiments. The 
first experiment demonstrates the effect of two important 
parameters of our system. The second experiment 
compares our system with previous systems. 

5.1. The effect of different parameters 

In this experiment we test the effect of two important 
parameters on our HOG-Adaboost-Cascade system: bin 
number K and the number of nodes of CART. The default 
values of the two parameters are 9 and 1 respectively. 
Other parameters are wmin=4,  hmin=4, st=0.5, sc=1.2. 
When changing one parameter, the other parameters take 
the default value. 

When training the two cascade systems, the minimum 
hit rate and maximum false alarm rate is 0.99 and 0.6 for 
each stage, totally 16 stages are trained; Gentle Adaboost 
are used because of its numerical stability; 4800 positive 
samples are taken from one positive sample set out of 
three; 5000 negative samples for the first stage of the 
cascade are generated randomly from one of the additional 
non-ped images training sets; negative images for 
subsequent stages are generated from the same additional 
non-ped images by bootstrapping using trained classifier. 

Points of each ROC are got by changing the number of 
stages used. When compute final ROC with confidence 
interval, spline interpolation is used when necessary. The 
results are shown in Figure 3. 

From Figure 3 (a) we can see when K increase from 3 
to 6, the ROC becomes better. However, when it changes 
from 6 to 9, the ROC only increase very little at the low 
false positive side. So there is no necessary to increase K.
From Figure 3 (b), we can see that when the node number 
is 1, i.e. stump classifier is best. 

5.2. Comparisons with previous systems 

In order to build an efficient human detector, our HOG-
Adaboost-Cascade system absorbs the advantages of 
Viola’s Haar-Adaboost-Cascade system and Dalal’s HOG-
SVM-Bootstrapping system, so we compare the 
classification and detection performance of the three 
systems. For viola’s system, we use the implementation in 
OpenCV. For Dalal’s system we use their implementation 
in Linux.  

First, we compare their classification performance 
using DaimlerChrysler pedestrian data sets. When training 
our HOG-Adaboost-Cascade system, we use the default 
parameters in section 5.1. When training Viola’s Haar-
Adaboost-Cascade system, we take the same parameters as 
HOG-Adaboost-Cascade system for classifier architecture 
and all the features except the rotated. When training 
Dalal’s HOG-SVM-Bootstrapping system, we first train 
an initial classifier use both the positive and negative 
samples of each training set shown in Table 1 and then get 
more negative samples by bootstrapping from 
corresponding add-on non-ped images. Since our template 
is only 18x36, so the minimum cell is changed to 4x4 
instead of 8x8 in Dalal’s origin implementation. The 
results are shown in Figure 4(a). Second, we compare their 
detection accuracy and speed using the INRIA human 
database. For the two cascade systems, two 16 stage 
classifiers are trained, the minimum hit rate and max false 
alarm rate for each stage is 0.995 and 0.5. Then we test the 
three systems on the test set. The DET curves are shown in 
Figure 4 (b).Some results are shown in Figure 5. The time 
cost of the three systems when processing a 320x240 
image can be seen in Table 3. 

From Figure 4 and Table 3, we can see that our system 
achieve much better detection rate at comparable speed as 
Viola’s system. However, our system is inferior to Dalal’s 
system; this is because we simplify the feature evaluation 
part too much. Since most of the processing time is spent 
in the computation of the auxiliary integral images, so 
there is very little time difference when using sparse scan 
and dense scan. This explains why our system is much 
slower than Viola’s when using sparse scan and 
comparable when using dense scan. 
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Table 1. DaimlerChrysler pedestrian data set [14] 

Table 2. INRIA human data set [2] 
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Figure 3. Effect of different parameters. (a) Effect of bin number. (b) Effect of node number of CART. 
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Figure 4. Comparisons with previous systems. (a) Classification performance on DaimlerChrysler Pedestrian 

Database. (b)Detection performance on INRIA Human Database 

#Data 
sets 

Pedestrian Labels 
Per Set 

Pedestrian Examples 
Per Set 

Non-Pedestrian
Examples Per Set 

Additional Non-
Ped Images 

Training Sets 3 800 4800 5000 1200

Test Sets 2 800 4800 5000 0

#Data 
sets 

Human Labels Per 
Set

Human Examples Per 
Set 

Non-Human Examples 
Per Set 

Additional Non-
Human Images 

Training Set 1 1208 2416 0 1218

Test Set 1 566 1132 0 453
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Table 3. Speed comparisons of three different 
systems 

 Sparse scan 
(800 

windows 
per image) 

Dense scan
(12800 

windows per 
image) 

HOG-SVM-
Bootstrapping 

300ms 5sec 

Haar-Adaboost-Cascade 5ms 32ms 
HOG-Adaboost-

Cascade 
29ms 51ms 

6. Conclusion 

In this paper, we present a novel real-time human 
detection system based on Viola’s face detection 
framework and the HOG feature pool. The system 
keeps the discriminate power of HOG features and the 
real-time properties of Viola’s face detection 
framework. Besides human, the detection framework 
can also be used to detect other objects such as 
vehicles. Future research includes the integration of 
Haar feature and HOG feature into a framework for 
generic object detection and the detection of human in 
video streams. 
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Figure 5. Some of the detection results of INRIA human database 
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