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In this paper, a novel one-dimensional correlation filter based class-dependence feature analysis (1D-CFA)
method is presented for robust face recognition. Compared with original CFA that works in the two
dimensional (2D) image space, 1D-CFA encodes the image data as vectors. In 1D-CFA, a new correlation
filter called optimal extra-class origin output tradeoff filter (OEOTF), which is designed in the low-
dimensional principal component analysis (PCA) subspace, is proposed for effective feature extraction.
Experimental results on benchmark face databases, such as FERET, AR, and FRGC, show that OEOTF based
1D-CFA consistently outperforms other state-of-the-art face recognition methods. This demonstrates the
effectiveness and robustness of the novel method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, face recognition has become a popular
area of research in pattern recognition and computer vision due
to its wide range of commercial and law enforcement applications,
such as biometric authentication, video surveillance, and information
security [1].

Until now, a great number of face recognition methods have
been developed and one of the most successful techniques is the
appearance-based method. When using appearance-based methods,
a face image is usually considered as a point in the high-dimensional
space. Then, the statistical learning method is applied to derive
an effective representation (a low-dimensional feature). Finally, a
classifier is designed in the feature space. Linear subspace learn-
ing methods, such as Eigenface [2], Fisherface [3], LDA/FKT (linear
discriminant analysis/Fukunaga–Koontz transform) [4], C-LDA (com-
plete LDA) [5], MMSD (multiple maximum scatter difference) [6],
and Laplacianface [7] are typical dimensionality reduction methods
to find a low-dimensional feature space.

Turk and Pentland [2] proposed Eigenface algorithm for face
recognition. The algorithm uses principal component analysis (PCA)
which finds the principal components of the distribution of face
images for dimensionality reduction. Note that PCA is optimal for
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representation, not necessarily for classification. Therefore, Fisher-
face algorithm [3] uses LDA to search a set of basis components
which maximizes the ratio of between-class scatter to within-class
scatter. Due to the `small sample size' problem [8] in face recog-
nition, the within-class scatter matrix is usually singular. Thus, the
execution of LDA encounters computational difficulty. PCA is often
used as a preprocessing step to reduce the dimensionality [3] and
LDA is then performed in the low-dimensional PCA subspace where
the within-class scatter matrix becomes nonsingular. However, this
method may result in the loss of important discriminative informa-
tion [4]. Many methods [4–6] have been developed to take full ad-
vantage of the discriminative information in the face space. LDA/FKT
[4] obtains the discriminant subspace by applying FKT on the within-
class scattermatrix and between-class scattermatrix while C-LDA [5]
and MMSD [6] derive the discriminant features both in the range of
the between-class scatter matrix and in the null space of the within-
class scatter matrix. Unlike PCA and LDA which attempt to preserve
the global Euclidean structure, Laplacianface algorithm [7] that is
based on locality preserving projections (LPP) finds a face subspace
to preserve the local structure of face manifold.

It can be seen that the projection matrices obtained by traditional
linear subspace learning methods [2–7] are related to the statistical
characteristics of all training samples. The projection axis tries to
preserve (e.g. PCA) or discriminate (e.g. LDA) all classes.

Recently, Kumar et al. [9,10] proposed a novel linear subspace
learning method called class-dependence feature analysis (CFA) for
face recognition. Different from traditional linear subspace learning
methods, the projection axis obtained by CFA tries to discriminate
one specific class from all other classes. Different projection axes
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concern different classes. In particular, CFA is based on the design of
advanced correlation filter technique which emphasizes the outputs
of one face class and suppresses the outputs of other face classes.
According to different criterions, different correlation filters [11] can
be designed.

Original CFA [9,10] designs correlation filters in the two-
dimensional (2D) image space. For simplicity, we call original CFA
based on the 2D correlation filter 2D-CFA. As a result, 2D-CFA cannot
be applied to vector data or M-th order (M�3) tensor data directly.
In our previous work [12], a tensor correlation filter based CFA
(TCF-CFA) method which generalizes 2D-CFA by encoding the image
data as tensors was presented. It has been proved that TCF-CFA can
be derived in a similar way as 2D-CFA, which is a special case of
TCF-CFA when the image data are encoded as second-order tensors
(i.e. image matrices) [12]. Moreover, commonly used correlation
filters in TCF-CFA, such as MACE (minimum average correlation en-
ergy) filter [13], MVSDF (minimum variance synthetic discriminant
function) filter [14], and OTF (optimal tradeoff filter) [15], have the
same form as those in 2D-CFA.

In this paper, we mainly concentrate on one-dimensional corre-
lation filter based CFA (1D-CFA), since traditional algorithms [2–7]
show great superiority by encoding the face image data as vectors.
As far as we know, few investigations concern the design of corre-
lation filters in the 1D form for the face recognition problem.

It is worthwhile to highlight several aspects of the proposed ap-
proach here:

1. Correlation filters are designed in the low-dimensional PCA sub-
space. Compared with original CFA which designs correlation fil-
ters in the 2D image space [9,10], the correlation filters in 1D-CFA
are designed in the 1D feature space. Designing correlation filters
in the low-dimensional PCA subspace makes them less sensitive
to noise.

Table 1
Summary of the notations used

Notations Description

N Number of training samples for all classes
Nl Number of training samples for class l
L Number of classes
p Dimensionality of low-dimensional feature
�h 1D correlation filter in the space domain
�H 1D correlation filter in the frequency domain

YI
l = [�YI

1, . . . , �YI
Nl
] Intra-class transformed feature matrix, where �YI

i is the
1D Fourier transform of intra-class low-dimensional
feature �yIi for class l

YE
l = [�YE

1, . . . , �YE
N−Nl

] Extra-class transformed feature matrix, where �YE
i

is the 1D Fourier transform of extra-class low-
dimensional feature �yEi for class l

Fig. 1. Training of correlation filters (left) and feature vector extraction (right) in 2D-CFA. Note that 2D fast Fourier transform (2DFFT) is an efficient algorithm to compute
2D discrete Fourier transform (2DDFT).

2. A new correlation filter is proposed. A new correlation filter called
optimal extra-class origin output tradeoff filter (OEOTF) which fo-
cuses on the origin correlation outputs is proposed. Two related
correlation filters called minimum average extra-class origin cor-
relation output energy (MAEOCE) filter and minimum extra-class
origin variance synthetic discriminant function (MEOVSDF) fil-
ter are also presented. Extensive experimental results show that
OEOTF is very effective for feature vector extraction.

The rest of the paper is organized as follows: Section 2 briefly
reviews original CFA (2D-CFA) and widely used correlation filters.
In Section 3, 1D correlation filter based CFA (1D-CFA) and OEOTF
are discussed in detail. In Section 4, extensive experimental results
on the FERET, AR, and FRGC (face recognition grand challenge) face
databases are given. Comparisons between different linear subspace
learning methods are also shown. Finally, conclusions are provided
in Section 5.

For convenience, important notations used throughout the rest
of the paper are listed in Table 1. Vectors are denoted by an arrow
on top of the alphabet. Bold and upper case symbols refer to the
frequency plane term while light and lower case symbols represent
quantities in the space domain.

2. 2D correlation filter based class-dependence feature analysis

During the training stage, a set of 2D-CFA projection vectors (cor-
relation filters) is generated and all of these correlation filters are
used for feature vector extraction. More precisely, a specific correla-
tion filter which discriminates one class from all other classes in the
training set is designed for each face class. Overall a bank of class-
dependence correlation filters is obtained [10]. And a new face image
evaluated on all the correlation filters generates a feature vector in
which each component represents the similarity between the new
face image and a certain face class in the training set. See Fig. 1 for
illustration.

The key of 2D-CFA is the design of correlation filters. Correlation
filters work in the frequency domain (i.e. the 2D Fourier transforms
of images). On the other hand, the phase spectrum is usually believed
to contain more structural information in images that derive human
perception than the magnitude spectrum [9]. Therefore, by going
to the frequency domain, phase information is directly modeled by
correlation filters.

The most simple correlation filter is known as the matched filter
which is simply the complex conjugate of the 2D Fourier transform
of the reference pattern. It has been shown that the matched filter
is optimal for detecting a pattern which is the addition of the refer-
ence pattern and white noise [16]. However, in applications like face
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recognition, due to variations of illumination, expression and age,
etc., the probe face image is not simply the reference face image
corrupted by additive white noise. Therefore, the matched filter is
not suitable for face recognition problem.

Mahalanobis et al. [13] proposed the MACE filter. The objective
of MACE filter is to minimize the average energy of the correlation
outputs while satisfying correlation peak (origin correlation output)
amplitude constraints.

More specifically, the average energy of the correlation outputs
is �H+D �H, where �H represents the correlation filter in the frequency
domain and D is a diagonal matrix whose diagonal entries are the
average power spectrum of all N training images. `+' denotes con-
jugate transpose. And the linear constraint is X+ �H = �c, where X =
[�X1, �X2, . . . , �XN] and �Xi is the vector version of the 2D Fourier trans-
form of the i-th training image. �c= [c1, c2, . . . , cN]

T is an N× 1 vector
and ci denotes the origin correlation output of the i-th training im-
age. Specifically, ci is equal to 1 for intra-class training samples and
0 for extra-class training samples.

Based on the above optimization criterion, the optimum solution
of MACE filter can be shown to be [13]

�HMACE = D−1X(X+D−1X)−1�c (1)

Kumar [14] proposed the MVSDF filter. MVSDF filter minimizes
the correlation output noise variance �H+C �H, where C is a diagonal
matrix whose diagonal elements represent the noise power spectral
density while satisfying the correlation peak amplitude constraints.
The solution of MVSDF filter is [14]

�HMVSDF = C−1X(X+C−1X)−1�c (2)

In order to produce sharp correlation peaks, MACE filter empha-
sizes high spatial frequencies which make MACE filter very suscep-
tible to the input noise. On the other hand, MVSDF filter emphasizes
low spatial frequencies to reduce noise. OTF [15] combines MACE
filter and MVSDF filter together to produce sharp correlation peaks
and suppress noise. The optimum solution of OTF is [15]

�HOTF = T−1X(X+T−1X)−1�c (3)

where T= �D+
√
1 − �2C, 0���1, is a parameter that controls the

tradeoff. � = 0 leads to MVSDF filter and � = 1 leads to MACE filter.
OTF has been widely used in the face recognition problem [9,10,12].

3. 1D correlation filter based class-dependence feature analysis

In this section, we first introduce the framework of 1D-CFA in
Section 3.1. Then, the detailed derivation of the new correlation filter
is presented in Section 3.2. Lastly, similarity measure and discussions
are given in Sections 3.3 and 3.4, respectively.

Fig. 2. Training of correlation filters in 1D-CFA. Note that 1D fast Fourier transform (1DFFT) is an efficient algorithm to compute 1D discrete Fourier transform (1DDFT).

3.1. 1D-CFA

On the whole, the framework of 1D-CFA is similar to 2D-CFA
except that 1D-CFA designs 1D correlation filters in the low-
dimensional PCA subspace.

After original feature extraction (original image matrix) and
vectorization, the face image is represented as a high-dimensional
vector. Then, PCA is performed to reduce the data dimensionality.
Finally, in the low-dimensional subspace, correlation filters are de-
signed by using the 1D Fourier transforms of the low-dimensional
features (considered as 1D signals). See Fig. 2 for illustration.

Once correlation filters are designed for each face class in the
training set, the feature vector of the face image can be extracted
as shown in Fig. 3. To be specific, the feature vector is derived by
the inner products of low-dimensional feature and all designed 1D
correlation filters that are represented in terms of space domain.

It is worth noting the difference between 1D-CFA we propose in
this study and TCF-CFA (M = 1) [12], where correlation filters are
designed without any dimensionality reduction step. Experimental
results show that PCA is a necessary and effective step for 1D-CFA
to obtain a good performance.

3.2. Optimal extra-class origin output tradeoff filter (OEOTF)

3.2.1. Background
1D-CFA needs to design a correlation filter for each face class in

the training set. Suppose the correlation filter designed for the l-th
class is �h. Let �gi(n) denote the correlation output produced by �h in
response to �yi
�gi(n) = �yi(n) � �h(n) (4)

where `�' stands for the correlation function of two 1D signals. �yi
is the low-dimensional feature of the i-th training image in the PCA
transformed subspace.

Fig. 3. Feature vector extraction in 1D-CFA.
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The output can also be expressed using the frequency domain
representations of �yi and �h:

�gi(n) =
p−1∑

k=0

�Yi(k)∗ · �H(k)ej2�kn/p (5)

where �Yi(k), �H(k) are the 1D Fourier transforms of �yi and �h, respec-
tively. `∗' denotes the conjugate operation.

Notice that the point �gi(0) is often referred to the origin correla-
tion output or correlation peak. According to Eq. (5), �gi(0) can be rep-
resented as the inner product of �Yi and �H. That is, �gi(0)=

∑p−1
k=0

�Yi(k)∗ ·
�H(k) = �Y+

i
�H.

3.2.2. OEOTF
From Fig. 3, we see that only the origin correlation outputs (inner

products of input feature and correlation filters) are used during the
extraction process of feature vector. However, OTF [15] aims at the
optimization of the whole correlation output plane. As a result, the
optimization criterion of OTF is not consistent with the extraction of
feature vector. Motivated by it, we develop a new correlation filter
called OEOTF which only optimizes the origin correlation outputs.

The basic idea of OEOTF is to optimize two criterions of the origin
correlation outputs for extra-class samples under the constraints on
the origin correlation outputs for intra-class samples. To be specific,
OEOTF is derived by combining MAEOCE filter and MEOVSDF filter.

The objective of MAEOCE filter is to minimize the origin correla-
tion output energy for extra-class low-dimensional features, that is,

min
�H

1
N − Nl

N−Nl∑

i=1

|�gi(0)|2 = min
�H

1
N − Nl

N−Nl∑

i=1

∣∣∣∣∣∣

p−1∑

k=0

�YEi (k)∗ · �H(k)

∣∣∣∣∣∣

2

= min
�H

1
N − Nl

N−Nl∑

i=1

|�YE+
i

�H|2

= min
�H

1
N − Nl

N−Nl∑

i=1

�H+ �YEi �YE+
i

�H

= min
�H

�H+
⎛
⎝ 1
N − Nl

N−Nl∑

i=1

�YEi �YE+
i

⎞
⎠ �H

= min
�H

�H+RY �H (6)

where

RY = 1
N − Nl

N−Nl∑

i=1

�YEi �YE+
i

�YEi , i= 1, . . . ,N −Nl are the 1D Fourier transforms of extra-class low-
dimensional features for class l.

For intra-class low-dimensional features in the l-th class, the con-
straints are that the origin correlation outputs are all equal to 1, that
is,

YI+l
�H = �u (7)

where YIl = [�YI1, . . . , �YINl
]. �YIi , i=1, . . . ,Nl, are the 1D Fourier transforms

of intra-class low-dimensional features for class l. �u= [1, . . . , 1]T is an
Nl × 1 vector.

Therefore, the objective of MAEOCE filter is to

min
�H

�H+RY
�H (8)

subject to the linear constraint YI+l
�H = �u.

The objective of MEOVSDF filter is to minimize the origin correla-
tion output noise variance for extra-class low-dimensional features
while satisfying linear constraint for intra-class low-dimensional fea-
tures. Therefore, the objective of MEOVSDF filter is to

min
�H

�H+C �H (9)

subject to the linear constraint YI+l
�H=�u, where C is a diagonal matrix

whose diagonal elements represent the noise power spectral density
of extra-class low-dimensional features. C is an identity matrix if the
input noise is modeled as additive white noise.

MAEOCE filter emphasizes high spatial frequencies to produce
sharp correlation peaks (since narrow functions in the correlation
output should correspond to broad support in frequency domain [9])
while MEOVSDF filter suppresses high spatial frequencies to achieve
noise tolerance. To trade off two criterions, OEOTF is derived by
combining MAEOCE filter and MEOVSDF filter. Thus, the objective of
MEOVSDF filter is to

min
�H

�H+T �H (10)

subject to the linear constraint YI+l
�H = �u, where T = �RY +√

1 − �2C, 0���1. � = 0 leads to MEOVSDF filter and � = 1 leads
to MAEOCE filter.

The solution to this problem can be founded by using the method
of Lagrange multipliers. Similar derivation of the constrained opti-
mization problem can be found in Refs. [13,14]. The optimum solu-
tion of Eq. (10) can be shown to be

�HOEOTF = T−1YIl(Y
I+
l T−1YIl)

−1�u (11)

3.3. Similarity measure

After feature vector extraction, it needs to design a classifier. In
this study, the simple nearest neighbor classifier is applied. There are
four commonly used similarity measures: the L1 norm, the Euclidean
distance (L2 norm), the Mahalanobis distance, and the whitened co-
sine distance. For CFA, the whitened cosine distance among these
four is observed to provide the best performance [9,10]. We use
whitened cosine distance in all the experiments. The computation
of whitened cosine distance is shown

s(�x, �y) = −(�x · �y)
‖�x‖‖�y‖ (12)

where �x and �y are vectors. `‖ · ‖' represents L2 norm.

3.4. Discussions

Let us compare the differences between OTF and OEOTF. Based
on the above analysis, both OTF and OEOTF try to produce sharp cor-
relation peaks while achieving noise tolerance. However, the design
criterions of the two filters are totally different. OTF optimizes the
tradeoff of the average correlation output energy and output noise
variance under the constraints on the origin correlation outputs for
all training samples, whereas OEOTF minimizes the tradeoff of the
average origin correlation output energy and origin output noise
variance for extra-class samples, while the origin correlation outputs
for intra-class samples are fixed. In contrast to OTF which concerns
the entire correlation output plane, OEOTF just focuses on the ori-
gin correlation outputs. Furthermore, the constraints of OEOTF are
easier than OTF, since only the origin correlation outputs for intra-
class samples are considered. In addition, note that OEOTF can also
be designed in the space domain, since only the origin correlation
outputs are used in the optimization criterion. However, to compare
with OTF, we mainly discuss OEOTF in the frequency domain.
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From the perspective of pattern recognition, the design criterion
of OEOTF is simpler than OTF (without considering all the outputs in
the correlation output plane). The generalization capability of OEOTF
may be better. Furthermore, the optimization criterion of OEOTF is
more consistent with the extraction of feature vector than that of
OTF. Therefore, OEOTF is more effective for feature vector extraction.

It should be pointed out that traditional correlation filters are de-
signed in the 2D image space due to their shift-invariance property
in the image space [9,10]. Hence, designing correlation filters in the
1D PCA subspace seems to violate the shift-invariance property. The
main reason why we can do so lies in that the face images provided
in the face database are well centered, rendering the shift-invariance
advantages of correlation filter most irrelevant [9]. In fact, from
Fig. 3, it can also be observed that only the origin correlation out-
puts are used for feature extraction. Therefore, the shift-invariance
property is not important since the face images are well centered.
In this study, all face images in the databases are normalized so that
they are well aligned.

4. Experiments

In this section, the recognition accuracy of 1D-CFA is evaluated
on three well-known benchmark face databases (FERET [17], AR [18],
and FRGC [19]). We compare 1D-CFA with the performance of other
state-of-the-art face recognition methods including Eigenface [2],
Fisherface [3], LDA/FKT [4], C-LDA [5], MMSD[6], Laplacianface [7],
TCF-CFA (M = 1) [12], and 2D-CFA [9,10].

All the facial images are normalized according to the eye coordi-
nates for scaling, translation and rotation, such that the eye centers
are in fixed position. All the images are cropped to the size of 64×64.
And histogram equalization is applied to the face images for pho-
tometric normalization. No further preprocessing is done. The near-
est neighbor classifier is employed for all methods. All methods use
whitened cosine distance measure except Eigenface which employs
the standard Mahalanobis distance measure.

4.1. Face databases and parameters setting

The FERET face database [17] has become a standard database for
testing and evaluating state-of-the-art face recognition algorithms.
We test on a subset of the FERET face database. This subset includes
800 images of 200 individuals (each one has four images). Several
examples are given in Fig. 4. The AR face database [18] contains over
4000 face images of 126 people, including frontal view of faces with
different facial expressions, lighting conditions and occlusions. The
images of 120 individuals were taken in two sessions (separated by
two weeks) and each session contains 13 color images. We select 14
face images (each session contains seven images) from each of these
120 individuals. Fig. 5 shows sample images of one person. We select
6000 images for 300 individuals (each one has 20 images) from FRGC
version 2.0 face database [19]. The face images were captured in both
controlled and uncontrolled conditions with harsh illumination and
expression variations. Fig. 6 shows sample images of one person.

Fig. 4. Samples of the cropped images of two persons on the FERET face database.

For all face databases, m different images per individual are ran-
domly chosen to form the training set. The rest of the images in the
database are used for testing. Totally, 20 experiments are performed.
The final result is the average recognition rate over 20 random train-
ing sets. For FERET database, m is chosen as 2 and 3. For both AR
and FRGC databases, m is chosen as 2, 4, and 6.

According to Ref. [20], the effectiveness of Fisherface is heavily
dependent on the number of principal components used in the PCA
stage. We have implemented Fisherface by using PCA to reduce the
dimensionality to �(N − L), where 0 <��1. N is the number of all
training samples and L is the number of classes. We present the
best result of Fisherface with � varying from 0.8 to 1. For MMSD,
the parameter c which can be used to adjust to balance between
the range of the between-class scatter matrix and the null space of
the within-class scatter matrix is empirically chosen to be 10 [6].
For Laplacianface, supervised mode with Gaussian kernel is applied.
And the tradeoff parameter � in both OTF and OEOTF is set to 10−9

which shows good performances for all CFA methods. The reduced
dimensionality p of PCA subspace in 1D-CFA is chosen as N − 1.

4.2. Experimental results on face databases

Table 2 shows the top mean recognition rate as well as the stan-
dard deviation achieved by each method and the corresponding di-
mensionality of reduced subspace. Table 3 compares 1D-CFA and
2D-CFA with different correlation filters on three face databases.

From Tables 2 and 3, the main observations from the performance
comparisons include:

• PCA is an effective preprocessing step for 1D-CFA. Since some
structure information is lost during the vectorization step, TCF-
CFA (M = 1) with OTF obtains a worse performance than OTF
based 2D-CFA. However, by taking PCA as a preprocessing step,
OTF based 1D-CFA can achieve a comparable performance over
OTF based 2D-CFA. The reason lies in that PCA is an effective
method to reduce the noise and extract the most representational
features [21].

• OEOTF based 1D-CFA outperforms other state-of-the-art face
recognition methods. We can see that OEOTF based 1D-CFA con-
sistently performs better than other methods, especially on the
FRGC face database. Note that the performances of C-LDA and
MMSD are comparable to OEOTF based 1D-CFA on the FERET and
AR databases but more dimensions are needed. Although useful
structure information is lost in 1D-CFA due to the vectorization
of the 2D image matrix, OEOTF based 1D-CFA still outperforms
OTF based 2D-CFA. More specifically, compared with OTF based
2D-CFA, the recognition rate of OEOTF based 1D-CFA for the AR
database increases about 3%; the recognition rate increases about
10–18% for the FERET and FRGC databases. Hence, the generaliza-
tion performance of OEOTF based 1D-CFA is significantly better
than OTF based 2D-CFA.

• Joint optimization of 1D-CFA with MAEOCE filter and MEOVSDF
filter can achieve much better recognition performance than
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Fig. 5. Samples of the cropped images of one person on the AR face database.

Fig. 6. Samples of the cropped images of one person on the FRGC face database.

Table 2
Top recognition rates (mean±std. dev.%) and corresponding reduced dimension of different algorithms on the FERET, AR, and FRGC face databases

Algorithm FERET (2 train) FERET (3 train) AR (2 train) AR (4 train) AR (6 train) FRGC (2 train) FRGC (4 train) FRGC (6 train)

Eigenface 63. 90 ± 1. 6 (397) 66. 75 ± 3. 0 (595) 73. 90 ± 2. 7 (236) 86. 18 ± 1. 1 (101) 90. 98 ± 1. 0 (101) 47. 38 ± 0. 8 (127) 64. 35 ± 0. 8 (305) 73. 30 ± 0. 7 (323)
Fisherface 73. 58 ± 1. 5 (73) 79. 03 ± 2. 1 (172) 80. 46 ± 1. 7 (74) 90. 92 ± 1. 0 (119) 92. 96 ± 1. 0 (119) 48. 13 ± 1. 1 (161) 57. 31 ± 1. 2 (251) 62. 90 ± 1. 1 (287)
Laplacianface 74. 69 ± 1. 7 (199) 82. 15 ± 2. 2 (199) 85. 29 ± 1. 3 (119) 92. 17 ± 0. 7 (119) 93. 76 ± 0. 6 (119) 53. 31 ± 0. 9 (299) 65. 12 ± 1. 0 (305) 69. 05 ± 0. 6 (305)
LDA/FKT 74. 94 ± 1. 5 (199) 82. 15 ± 2. 2 (199) 85. 39 ± 1. 4 (119) 92. 15 ± 0. 8 (119) 93. 67 ± 0. 6 (119) 51. 63 ± 5. 6 (299) 58. 62 ± 0. 9 (299) 66. 37 ± 2. 8 (299)
C-LDA 80. 55 ± 1. 1 (217) 91. 57 ± 1. 6 (226) 87. 38 ± 1. 4 (155) 93. 94 ± 1. 7 (236) 95. 54 ± 0. 6 (236) 59. 81 ± 1. 1 (359) 74. 22 ± 0. 9 (413) 78. 73 ± 0. 8 (521)
MMSD 80. 40 ± 1. 4 (235) 91. 65 ± 1. 4 (289) 86. 86 ± 1. 6 (173) 94. 31 ± 0. 8 (290) 95. 34 ± 0. 5 (416) 60. 91 ± 0. 9 (359) 73. 52 ± 0. 8 (449) 77. 07 ± 0. 8 (629)
2D-CFA (OTF) 74. 95 ± 1. 5 (200) 82. 15 ± 2. 2 (200) 85. 40 ± 1. 4 (120) 92. 16 ± 0. 8 (120) 93. 69 ± 0. 6 (120) 54. 26 ± 0. 8 (300) 66. 01 ± 1. 0 (300) 69. 55 ± 0. 6 (300)
TCF-CFA (M=1)
(OTF)

72. 08 ± 1. 7 (200) 79. 85 ± 1. 9 (200) 84. 35 ± 1. 3 (120) 91. 65 ± 0. 9 (120) 93. 31 ± 0. 6 (120) 52. 73 ± 0. 8 (300) 64. 62 ± 0. 9 (300) 68. 34 ± 0. 8 (300)

1D-CFA (OTF) 75. 07 ± 1. 5 (200) 82. 25 ± 2. 2 (200) 85. 38 ± 1. 4 (120) 92. 13 ± 0. 7 (120) 93. 68 ± 0. 6 (120) 54. 32 ± 0. 8 (300) 65. 99 ± 1. 0 (300) 69. 50 ± 0. 6 (300)
1D-CFA (OEOTF) 83. 65 ± 1. 4 (200) 92. 40 ± 1. 5 (200) 87. 83 ± 1. 4 (120) 95. 40 ± 0. 6 (120) 96. 84 ± 0. 5 (120) 62. 98 ± 0. 9 (300) 81. 10 ± 0. 7 (300) 87. 58 ± 0. 6 (300)

Table 3
Top recognition rates (mean±std. dev.%) and corresponding reduced dimension of 2D-CFA and 1D-CFA with different correlation filters on the FERET, AR, and FRGC face
databases

Algorithm FERET (2 train) FERET (3 train) AR (2 train) AR (4 train) AR (6 train) FRGC (2 train) FRGC (4 train) FRGC (6 train)

2D-CFA (MACE) 36. 24 ± 1. 4 (200) 44. 48 ± 2. 4 (200) 62. 57 ± 1. 1 (120) 77. 85 ± 0. 9 (120) 83. 32 ± 1. 0 (120) 34. 19 ± 0. 7 (300) 47. 53 ± 0. 8 (300) 53. 74 ± 0. 6 (300)
2D-CFA (MVSDF) 74. 91 ± 1. 7 (200) 82. 10 ± 2. 3 (200) 83. 39 ± 1. 4 (120) 91. 15 ± 1. 1 (120) 93. 08 ± 0. 7 (120) 53. 35 ± 1. 2 (300) 64. 27 ± 0. 9 (300) 67. 52 ± 1. 0 (300)
2D-CFA (OTF) 74. 95 ± 1. 5 (200) 82. 15 ± 2. 2 (200) 85. 40 ± 1. 4 (120) 92. 16 ± 0. 8 (120) 93. 69 ± 0. 6 (120) 54. 26 ± 0. 8 (300) 66. 01 ± 1. 0 (300) 69. 55 ± 0. 6 (300)
1D-CFA (MAEOCE) 75. 02 ± 1. 5 (200) 82. 25 ± 2. 3 (200) 85. 39 ± 1. 4 (120) 92. 12 ± 0. 7 (120) 93. 15 ± 0. 6 (120) 54. 25 ± 0. 9 (300) 65. 97 ± 1. 0 (300) 69. 50 ± 0. 6 (300)
1D-CFA (MEOVSDF) 14. 55 ± 1. 6 (200) 20. 80 ± 1. 9 (200) 25. 73 ± 1. 2 (120) 40. 92 ± 1. 0 (120) 51. 76 ± 1. 5 (120) 14. 95 ± 0. 7 (300) 24. 81 ± 0. 8 (300) 32. 85 ± 0. 8 (300)
1D-CFA (OEOTF) 83. 65 ± 1. 4 (200) 92. 40 ± 1. 5 (200) 87. 83 ± 1. 4 (120) 95. 40 ± 0. 6 (120) 96. 84 ± 0. 5 (120) 62. 98 ± 0. 9 (300) 81. 10 ± 0. 7 (300) 87. 58 ± 0. 6 (300)

with each correlation filter used separately. OEOTF based 1D-CFA
is more effective for face recognition than MAEOCE filter and
MEOVSDF filter based 1D-CFA. Experimental results also indicate
that OTF based 2D-CFA still outperforms MACE filter and MVSDF
filter based 2D-CFA. Therefore, joint optimization of two different

correlation filters can improve the capability of CFA to reject false
alarms.

Overall, OEOTF based 1D-CFA has a good performance for face
recognition.
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Fig. 7. Recognition rate vs. PCA energy ratio on the FERET, AR, and FRGC face databases.

Table 4
Recognition rate (mean%) vs. PCA energy ratio for OEOTF based 1D-CFA

PCA energy ratio (%) FERET (2 train) FERET (3 train) AR (2 train) AR (4 train) AR (6 train) FRGC (2 train) FRGC (4 train) FRGC (6 train)

80 41.04 57.42 60.97 75.01 84.01 36.80 53.70 62.77
90 63.38 79.58 78.28 89.40 94.09 49.06 69.55 78.74
93 69.75 85.45 81.59 91.92 95.37 52.76 73.71 82.42
95 74.30 88.22 83.00 93.37 96.08 55.29 76.17 84.38
98 80.06 90.77 85.41 94.83 96.74 59.10 79.20 86.66

100 83.65 92.40 87.83 95.40 96.84 62.98 81.10 87.58

4.3. Influence of PCA energy ratio on recognition performance

In the previous experiments, the PCA energy ratio that is based
on the eigenvalue of Karhunen–Loeve transform is taken to be 1 (i.e.
PCA subspace dimensionality is equal to N−1) for OEOTF based 1D-
CFA. In this subsection, we investigate the influence of PCA energy
ratio on the final recognition performance. Fig. 7 illustrates the plot of
top recognition rate versus PCA energy ratio on three face databases.
Some quantitative results are also given in Table 4.

From Fig. 7 and Table 4, it can be observed that OEOTF based CFA
obtains the best recognition rate when the PCA energy ratio is equal
to 1. Thus, all PCA dimensionality should be used to design a robust
OEOTF.

4.4. Comparisons between different linear subspace learning methods

It is worth remarking upon the performance comparisons
between different linear subspace learning methods including
Eigenface [2], Fisherface [3], LDA/FKT [4], C-LDA [5], MMSD [6],
Laplacianface [7], 2D-CFA [9,10], and 1D-CFA.

1. Eigenface is based on PCA which is optimal in sense of minimum
mean squared error (MMSE) for reconstruction. Thus, PCA may
not be optimal for classification problem. CFA emphasizes the
outputs of intra-class samples while suppressing the outputs of

extra-class samples. Therefore, CFA can extract discriminant fea-
tures to distinguish different classes well.

2. Fisherface, LDA/FKT, C-LDA, MMSD, and Laplacianface methods
are all based on the second order statistics of data while the
information in the higher-order statistics is not considered. On
the other hand, CFA directly models the phase information which
captures the high-order statistics in the frequency domain.

3. One property of CFA is that when new classes are added in the
training set, all previous trained correlation filters do not require
retraining [10]. The property is very useful in the real face recog-
nition applications.

4. While traditional linear subspace learning methods [2–7] need to
determine the optimal reduced dimensionality (ORD), the ORD of
CFA is equal to the number of classes in the training set.

5. Different from 2D-CFA which designs correlation filters in the 2D
image space, correlation filters in 1D-CFA are designed in the low-
dimensional PCA subspace and this makes them less sensitive to
noise. Another advantage of designing correlation filters in the
low-dimensional subspace is that the computational complexity
can be reduced. Take OEOTF for example, assuming that OEOTF is
designed in the 2D image space, the dimensionality of T will be
d2×d2 (suppose the image size is d×d). Note that T is not sparse.
Therefore, the computational complexity of Eq. (11) is high when
the face image is large. On the other hand, the dimensionality
of T is just (N − 1) × (N − 1), where N is the number of training
samples, with respect to OEOTF based 1D-CFA. Compared with
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OEOTF based 2D-CFA, the computational complexity of Eq. (11)
in OEOTF based 1D-CFA is greatly reduced for the small sample
size problem in this study.

5. Conclusions

In this paper, we present a novel one-dimensional correlation fil-
ter based class-dependence feature analysis (1D-CFA) method for ro-
bust and effective face recognition. Furthermore, a new correlation
filter called optimal extra-class origin output tradeoff filter (OEOTF)
is developed in 1D-CFA. By focusing on the origin correlation out-
puts, OEOTF can extract discriminant features effectively. Moreover,
we analyze the reason why correlation filters can be designed in the
low-dimensional PCA subspace for the face recognition problem. Ex-
tensive experimental results on benchmark face databases demon-
strate the superiority of OEOTF based 1D-CFA.

The approach presented in this study can also be applied to other
biometric recognition problems, such as iris recognition [22] and
palmprint recognition [23]. However, some limitations of this study
are: (1) the basic assumption of 1D-CFA is that all face images are
well centered. In other words, 1D-CFA is effective for frontal face
recognition. For face recognition with pose variations, 1D-CFA may
no longer be accurate. (2) In this paper, PCA is used to derive low-
dimensional features. However, whether it can be generalized to
other dimensionality reduction methods needs further research. (3)
1D-CFA needs to design a correlation filter for each face class in the
training set. Consequently, the computational complexity of 1D-CFA
is too high when there are thousands of face classes in the training
set. Further studies about this problem [24] are still necessary. (4)
Recent works [9,24] also show that nonlinear correlation filters (such
as kernel extension of OTF) can attain a good performance. How to
extend OEOTF in the kernel form needs further investigation.
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