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ABSTRACT 
 
This paper proposes a novel patch-wise image inpainting 
algorithm using the image signal sparse representation over 
a redundant dictionary, which merits in both capabilities to 
deal with large holes and to preserve image details while 
taking less risk. Different from all existing works, we 
consider the problem of image inpainting from the view 
point of sequential incomplete signal recovery under the 
assumption that the every image patch admits a sparse 
representation over a redundant dictionary. To ensure the 
visually plausibility and consistency constraints between the 
filled hole and the surroundings, we propose to construct a 
redundant signal dictionary by directly sampling from the 
intact source region of current image. Then we sequentially 
compute the sparse representation for each incomplete patch 
at the boundary of the hole and recover it until the whole 
hole is filled. Experimental results show that this approach 
can efficiently fill in the hole with visually plausible 
information, and take less risk to introduce unwanted 
objects  or artifacts.  
 

Index Terms— Image inpainting, texture synthesis, 
sparse representation, Lasso, L1 norm minimization 
 

1. INTRODUCTION 
 
Image inpainting aims to automatically fill in the holes of 
image that are to be removed for artistically or confidential 
considerations. Generally speaking, there are two main 
categories of image inpainting approaches in the literature: 
PDE based approaches [2,18] and exemplar based 
approaches. The formers aim to extend the lines or edges in 
known area into the user specified areas, which pay 
sufficient attention to structure propagation, but do not 
suitably deal with large regions due to the blur effects in 
their case. The later approaches [8,9] adopt texture synthesis 
method to synthesize the pixels in the user specified region. 
For a particular target patch, they search the most suitable 
source patch from remaining regions to replace the target 
patch. Later, [6] considers the structure propagation as well 
as texture synthesis by computing patch priorities for 

determining the filling order. Their improvements [3, 13] 
have also been proposed by some researchers. 

Some others also pay attention to both texture and 
structure propagations. Sketch model [11] has been used to 
restore the missing structure, and then patch based synthesis 
is deployed to fill in the regions [5]. Similar works in [10, 
16] use PDE based method and tensor voting, respectively, 
to restore the structure, and then deploy texture synthesis to 
fill the specified regions. Works in [17] allow user to 
manually specify important missing structure information, 
and then deploy dynamic programming or belief 
propagation to complete the structure before synthesizing 
the pixels in target regions.  

Generally speaking, exemplar based approaches work 
well to synthesize the texture in target areas, thus are more 
suitable to deal with large regions, e.g. to remove 
background persons in a photograph, and to keep image 
details in the filled region. However, it always selects the 
most suitable patch for the current place, thus is a greedy 
method, which results in a risk of introducing unwanted 
object or artifact to the area to inpaint, which can be seen in 
the bottom right images in figure2 (a) and (b). As we will 
point out, this inpainting method can be viewed as a special 
case of our proposed algorithm here, and the general cases 
of our methods are less greedy. Our main contribution is to 
borrow the signal sparse representation technique to address 
the inpainting problem, and bridging the gap between sparse 
representation and texture synthesis. Signal sparse 
representation means that the signal admits a sparse 
representation over a redundant dictionary, which we will 
review in the following section. In this paper, we view this 
problem as the recovery of incomplete image signals, with 
each signal corresponding to a patch. We fill the hole patch-
wisely based on the sparse representation of each patch. 

The rest part of this paper is organized as follows. In 
the second section, we simply review the used sparse 
representation technique: Lasso. In the third section, we 
describe our inpainting algorithm. The experimental results 
are listed in section four. Finally, we discuss the relation 
between the proposed algorithm and some related issues, 
and then we conclude this paper. 
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2. SPARSE REPRESENTATION 
 
Recently, signal sparse representation draws lots of 
researchers’ attention. Donoho [7] proved that the L1 norm 
is a good approximation of L0 norm. Thus, many techniques 
are supported. 

Tibshirani [18] proposed a regression method: Lasso. He 
added a L1 norm penalty to the loss function of ordinary 
least square regression, which results in the sparsity of the 
coefficient. We briefly review it now. 
Given the dictionary and input signal 

. For convenience, we assume the data 
 are normalized. The Lasso algorithm is to estimate the 

coefficient  of a signal over the given dictionary by  
        (1) 

The term  encourages the sparsity of the fitted 
coefficient vector, and the parameter  controls the tradeoff 
between the reconstruction error and the sparsity. This 
formulation is based on the model that and is 
sparse, i.e. only a few components of are nonzero. 

It is more interesting, when some components of signal 
are corrupted, which means the model is modified into 

           (2) 
  is the error and the  is nonzero if and only if the   is 

corrupted.  It is a problem to find out which components of 
the signal are corrupted. However, in our application, this 
is avoided because the user specifies holes, i.e. the target 
region to inpaint, which means that we can know which 
pixels are corrupted or not. So here we only consider the 
case that the indexes of the corrupted components of  are 
known. We denote the corrupted signal component index set 
by . Let  denotes the vector obtained by 
removing the components whose indexes are in  from  , 
i.e.  is made up by all the non-corrupted components of  

. is the corresponding dictionary matrix, which is 
obtained by removing all the columns whose indexes are in 
I  from . Now the sparse coefficient  can be estimated as 
follows. 

              (3) 
Then, we recover the corrupted signal via   the    in (4). 
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So, combining (3) and (4), we can recover the 
corrupted signal. 

 
3. INPAINTING ALGORITHM 

 
Now we describe our algorithm for image inpainting via 
sparse representation. 
 
3.1. Filling order 
 

Given an input image, the user selects the target region, 
which is to be removed and filled. Then usually the left is 
treated as the target region. Of course, it can be also 
specified by the user. We denote the target region , the 
source region and the boundary of target region . 
We grow the image from the boundary of the hole towards 
the inside.  

Here we follow [6] to determine the filling order 
because it efficiently reserves the structure information. At 
each iteration, we compute the priority  for every pixel 

 on the boundary , we select the pixel with maximum 
priority as . The patch centers at  is to be addressed in 
the current iteration. Since the patch centers on the boundary, 
so some pixels of the patch are in the target region, thus the 
patch can be view as a incomplete signal with the existing 
components corresponding to the pixels in source region and 
lost components corresponding to the pixels in target region. 
To recover this selected signal (patch), we use sparse 
representation, which will be detailed in 3.2. After recovery 
of the current patch, the boundary of target region is updated. 
Then we compute the priority for the next iteration.  For 
details of the priority computing, please refer to [6]. 
 
3.2. Signal recovery 
 
Now, we address the selected . Let a k-dimensional 
vector  denotes the patch centered at . Obviously, 
k n n , where n is the width or height of the patch. 
Since  is at the boundary, some components of  
belongs to the target region and the others belongs to the 
source region. Fortunately, based on the user’s selection, we 
easily know the division of . Recall what we have 
discussed in section 2. Now we consider the  as the , 
which is to be recovered. Intuitively, the index set of 
components of  belong to target region can be considered 
as I . 

So now, we compute the sparse representation of the 
current patch and recover it by (3) and (4).   Detailedly,  

        (5) 

,ˆ
ˆ( ) ,

m

m

i
pi

p

i

if i I

if i Ixβ
                                   (6) 

where   is the dictionary for sparse representation and how 
to construct the dictionary will be discussed in 3.3. 
Now we get the recovered , according to which we 
reset the value of the pixels in the patch centered  to 
visualize our result.   
 
3.3. Dictionary construction 
 
To compute the sparse representation of signal, we first have 
to construct a dictionary, based on which we solve the Lasso 
regression. Many techniques can be adopted to fix the 
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dictionary, such as Matching Pursuit [15] Basis Pursuit [4], 
or K-SVD [1]. 

According to our observation, the filled target region 
should be visually consistent with source region so that the 
entire image looks plausible. This means that not only the 
texture should be consistent, but also the noise should also 
be the same level. So we directly samples or even use all the 
patches in the source region to construct the dictionary 
without any preprocessing. For example, if we get M 
patches from the source region, the fixed dictionary should 
have M columns. Each column corresponds to a patch. This 
technique of using the original image as dictionary has been 
used in face recognition, background modeling, etc [12,19] 
to achieve encouraging results. 
 
3.3. Overall algorithm 
 
As discussed above, the overall algorithm we proposed is 
given in Table 1 for convenience. 
 

Table 1:  Inpainting Algorithm Proposed 
Input: an image, source region ,target region  
1. Dictionary Construction: Directly sampling or use all 

patches from to construct the dictionary 
2. Do until all pixels in  are filled. 

-a. Compute the priority for all pixels at the 
boundary , and select the patch with 
maximum priority to address. This patch is 
viewed the incomplete signal. 

-b. Use (5), (6) to recover the incomplete 
signal(patch) 

-c. Set the pixels in the target region of selected 
patch to values according to recovered signal, 
and update the boundary  

Output: the inpainted image 
 

4. EXPERIMENTAL RESULTS 
 
To verify our algorithm, we conduct experiments on a lot of 
natural images, which we will describe concisely. 

Figure 1 shows some results by our algorithm. In each 
row, the left image is the original image, the middle shows 
the target area selected by user, and the right one is the final 
inpainting result. We can easily see that our algorithm can 
deal with large holes, which we will discuss in 5.1. In the 
first two rows, we can also see that the algorithm recovers 
the structure very well. Figure 2 shows two results of our 
algorithm compared with the results of classic algorithm by 
[6]. In Figure2(a) and (b), the top-left images are the 
original ones, the top-right ones show the target area 
selected by users, the bottom-left are the inpainting results 
by our proposed algorithm, while the bottom-right ones 
show the results by [6]. We find that the results by [6] 
introduce unwanted objects while our algorithm does not 
take such risk, and gains better result. Actually, it is because 
our algorithm is less greedy than [6]. In each step, [6] 

selects the local best patch to inpaint the target patch, while 
our algorithm selects a small set of patches and inpaints the 
target patch based on a linear combination of them. So our 
algorithm is less greedy for not selecting a local optimal 
patch, more efficient to reduce the SSD error to ensure 
visually plausibility for using a linear combination, and will 
not suffer the blurring of image for L1 norm constraint 
encourages the sparsity of the linear combination, i.e. the L1 
norm reduces the number of patches selected. Based on all 
the merits and supporting experimental results, it can be 
shown that general sparse representation based algorithm 
proposed works better on image inpainting better than 
texture synthesis based algorithm[6], which is the state of art. 

   

   

   
Figure 1: Inpainting results of propose algorithm 

 
5. DISCUSSION AND CONCLUSION 

 
Here we discuss the relation between our algorithm and 
several related ones, and then we simply conclude this paper. 
 
5.1. Relation with some related works 
 
A famous texture synthesis based inpainting algorithm 
proposed by [6] selects the most suitable patch from the 
source region at each step, thus it can be viewed as a special 
case of our algorithm if we constrain that only one patch is 
selected in each step. Actually, it can be implemented to 
tune the parameter  each step. So, texture synthesis is 
actually a sparse representation method with the constraint 
that L0 norm (the number of nonzero entity in vector) equals 
to 1. Thus, the gap between texture synthesis and sparse 
representation is bridged. However, in general, our 
algorithm selects several columns of the dictionary, i.e. 
several different patches if we construct the dictionary by 
directly sampling patches, and use a linear combination of 
them to fit the target patch. Thus, our algorithm has higher 
capability to fit diverse patches for its form of linear 
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combination, and is less greedy for not choosing the optimal 
one, which has been shown in figure 2. 

  

  
     (a) 

  

     
     (b) 
Figure 2: Inpainting results of proposed algorithm and [6]  

 
A similar algorithm [14] with ours also use sparse 

representation to do image inpainting. However they are 
mainly aimed on image restoration, not image inpainting 
specially. Thus their algorithm suffers from several 
drawbacks. First of all, as they said in the paper, they can 
only address holes smaller than 10 10 pixels. Secondly, 
they have to use additional information rather the given 
image to construct the dictionary, while our algorithm only 
relies on the given image. Last but not least, they view the 
inpainting as denoising: they treated the pixels to inpaint as 
image noise. However, we claim that inpainting is not 
denoising: if the surroundings are polluted by heavy noise, 
the filled region should also be polluted by noise so as to 
ensure the visually plausibility. [14] uses k-SVD [1] to 
construct a dictionary, which is efficient for denoising but 
insufficient for inpainting because it fails to capture the the 
noise property in images. In our algorithms, we directly 
sample patches from the source region to construct the 
dictionary, which render our algorithm preserves the noise 
property very well. 

 
5.2. Conclusion 
 

In this paper, we propose an algorithm for image inpainting 
based on the sparse representation. Our algorithm can not 
only address large holes, but also maintain both texture 
consistency and noise consistency. Another merit of our 
algorithm is that it is less greedy than traditional texture 
synthesis based inpainting algorithm. We also bridge the 
gap between texture synthesis and sparse representation as 
discussed in 5.1. The experimental results show our 
algorithm is efficient to remove unwanted objects from 
digital graphs and is less greedy than state of art algorithm. 
 

6. REFERENCES 
 
[1] M. Aharon, M. Elad, and A.M. Bruckstein, “K-SVD: Design of 
Dictionaries for Sparse Representation”, Proceedings of 
SPARSE'05, Rennes, France, November 2005, pp.9-12. 
[2] M. Bertalmio, G. Saporo, V. Caselles and C. Ballester, “Image  
Inpainting,” In SIGGRAPH 2000 
[3]Q. Chen, Y. Zhang, and Y. Liu, “Image Inpainting with 
Improved Exemplar-Based Approach”, MCAM 2007, LNCS 477, 
pp.242-251, Springer-Verlag Berlin Heidelberg 2007 
[4]S.S. Chen, D.L. Donoho, and M.A. Saunders. “Atomic 
Decomposition by Basis Pursuit.” SIAM Review, 43(1), 2001, pp. 
129-159. 
[5]Y. Chen, Q. Luan, H. L, and O. Au, “Sketch-guided Texture-
based Image Inpainting,” In ICIP 2006 
[6] A. Criminisi, P. P´erez, and K. Toyama, “Object Removal by 
Exemplar-Based Inpainting,” In CVPR 2003 
[7]D. Donoho, “For most large underdetermined systems of 
equations, the minimal l1-norm near-solution approximates the 
sparsest near-solution”, Communications on Pure and Applied 
Mathematics, 59 (2006), pp. 907-934. 
[8]A. A. Efros and W. T. Freeman, “Image Quilting for Texture 
Synthesis and Transfer,” In SIGGRAPH 2001 
[9] A. A. Efros and T. K. Leung, “Texture Synthesis by Non-
parametric Sampling,” In ICCV 1999 
[10]H. Grossauer, “A Combined PDE and Texture Synthesis 
Approach to Inpainting,” In ECCV 2004 
[11]C. Guo, S-C. Zhu and Y. N. Wu, “Towards a Mathematical 
Theory of Primal Sketch and Sketchability”, In ICCV 2003 
[12]J. Huang, X. Huang, and D. Metaxas, “Simultaneous Image 
Transformation and Sparse Representation Recovery”. In CVPR 
2008 
[13]J. Jia and C-K. Tang, “Image Repairing: Robust Image 
Synthesis by Adaptive ND Tensor Voting”, In CVPR 2003 
[14] J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for 
Color Image Restoration,” IEEE Transaction on Image Processing, 
Vol. 17, No. 1, January 2008 pp.53-69 
[15]S. Mallat and Z. Zhang. “Matching pursuits with time-
frequency dictionaries.” IEEE Transaction on Signal Processing. 
41(12), 1993, pp. 3397-3415. 
[16]S. Masnou, J.-M. Morel, “Level Lines based Disocclusion,” In 
ICIP 1998 
[17]J. Sun, L. Yuan, J. Jia, and H-Y. Shum, “Image Completion 
with Structure Propagation,” In SIGGRAPH 2005 
[18] R. Tibshirani, “Regression Shrinkage and Selection via the 
Lasso”, Journal of the Royal Statistical Society. Series 
B(Methodological), Volume 58, Issue 1(1997), pp. 267-288 
[19] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, 
“Robust Face Recognition via Sparse Representation.” to appear 
IEEE Transaction on Pattern Analysis and Machine Intelligence.

700


