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Abstract—Nonnegative Matrix Factorization (NMF), a relatively novel paradigm for dimensionality reduction, has been in the

ascendant since its inception. It incorporates the nonnegativity constraint and thus obtains the parts-based representation as well as

enhancing the interpretability of the issue correspondingly. This survey paper mainly focuses on the theoretical research into NMF over

the last 5 years, where the principles, basic models, properties, and algorithms of NMF along with its various modifications, extensions,

and generalizations are summarized systematically. The existing NMF algorithms are divided into four categories: Basic NMF (BNMF),

Constrained NMF (CNMF), Structured NMF (SNMF), and Generalized NMF (GNMF), upon which the design principles,

characteristics, problems, relationships, and evolution of these algorithms are presented and analyzed comprehensively. Some related

work not on NMF that NMF should learn from or has connections with is involved too. Moreover, some open issues remained to be

solved are discussed. Several relevant application areas of NMF are also briefly described. This survey aims to construct an

integrated, state-of-the-art framework for NMF concept, from which the follow-up research may benefit.

Index Terms—Data mining, dimensionality reduction, multivariate data analysis, nonnegative matrix factorization (NMF)

Ç

1 INTRODUCTION

ONE of the basic concepts deeply rooted in science and
engineering is that there must be something simple,

compact, and elegant playing the fundamental roles under
the apparent chaos and complexity. This is also the case in
signal processing, data analysis, data mining, pattern
recognition, and machine learning. With the increasing
quantities of available raw data due to the development in
sensor and computer technology, how to obtain such an
effective way of representation by appropriate dimension-
ality reduction technique has become important, necessary,
and challenging in multivariate data analysis. Generally
speaking, two basic properties are supposed to be satisfied:
first, the dimension of the original data should be reduced;
second, the principal components, hidden concepts, promi-
nent features, or latent variables of the data, depending on
the application context, should be identified efficaciously.

In many cases, the primitive data sets or observations are
organized as data matrices (or tensors), and described by
linear (or multilinear) combination models; whereupon the
formulation of dimensionality reduction can be regarded as,
from the algebraic perspective, decomposing the original
data matrix into two factor matrices. The canonical methods,
such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Independent Component
Analysis (ICA), Vector Quantization (VQ), etc., are the
exemplars of such low-rank approximations. They differ
from one another in the statistical properties attributable to

the different constraints imposed on the component
matrices and their underlying structures; however, they
have something in common that there is no constraint in the
sign of the elements in the factorized matrices. In other
words, the negative component or the subtractive combina-
tion is allowed in the representation. By contrast, a new
paradigm of factorization—Nonnegative Matrix Factoriza-
tion (NMF), which incorporates the nonnegativity constraint
and thus obtains the parts-based representation as well as
enhancing the interpretability of the issue correspondingly,
was initiated by Paatero and Tapper [1], [2] together with
Lee and Seung [3], [4].

As a matter of fact, the notion of NMF has a long history
under the name “self modeling curve resolution” in
chemometrics, where the vectors are continuous curves
rather than discrete vectors [5]. NMF was first introduced
by Paatero and Tapper as the concept of Positive Matrix
Factorization, which concentrated on a specific application
with Byzantine algorithms. These shortcomings limit both
the theoretical analysis, such as the convergence of the
algorithms or the properties of the solutions, and the
generalization of the algorithms in other applications.
Fortunately, NMF was popularized by Lee and Seung due
to their contributing work of a simple yet effective
algorithmic procedure, and more importantly the emphasis
on its potential value of parts-based representation.

Far beyond a mathematical exploration, the philosophy
underlying NMF, which tries to formulate a feasible model
for learning object parts, is closely relevant to perception
mechanism. While the parts-based representation seems
intuitive, it is indeed on the basis of physiological and
psychological evidence: perception of the whole is based on
perception of its parts [6], one of the core concepts in certain
computational theories of recognition problems. In fact there
are two complementary connotations in nonnegativity—
nonnegative component and purely additive combination.
On the one hand, the negative values of both observations
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and latent components are physically meaningless in many
kinds of real-world data, such as image, spectra, and gene
data, analysis tasks. Meanwhile, the discovered prototypes
commonly correspond with certain semantic interpretation.
For instance, in face recognition, the learned basis images are
localized rather than holistic, resembling parts of faces, such
as eyes, nose, mouth, and cheeks [3]. On the other hand,
objects of interest are most naturally characterized by the
inventory of its parts, and the exclusively additive combina-
tion means that they can be reassembled by adding required
parts together similar to identikits. NMF thereupon has
achieved great success in real-word scenarios and tasks. In
document clustering, NMF surpasses the classic methods,
such as spectral clustering, not only in accuracy improve-
ment but also in latent semantic topic identification [7].

To boot, the nonnegativity constraint will lead to sort of
sparseness naturally [3], which is proved to be a highly
effective representation distinguished from both the com-
pletely distributed and the solely active component de-
scription [8]. When NMF is interpreted as a neural network
learning algorithm depicting how the visible variables are
generated from the hidden ones, the parts-based represen-
tation is obtained from the additive model. A positive
number indicates the presence and a zero value represents
the absence of some event or component. This conforms
nicely to the dualistic properties of neural activity and
synaptic strengths in neurophysiology: either excitatory or
inhibitory without changing sign [3].

Because of the enhanced semantic interpretability under
the nonnegativity and the ensuing sparsity, NMF has
become an imperative tool in multivariate data analysis,
and been widely used in the fields of mathematics,
optimization, neural computing, pattern recognition and
machine learning [9], data mining [10], signal processing
[11], image engineering and computer vision [11], spectral
data analysis [12], bioinformatics [13], chemometrics [1],
geophysics [14], finance and economics [15]. More specifi-
cally, such applications include text data mining [16], digital
watermark, image denoising [17], image restoration, image
segmentation [18], image fusion, image classification [19],
image retrieval, face hallucination, face recognition [20],
facial expression recognition [21], audio pattern separation
[22], music genre classification [23], speech recognition,
microarray analysis, blind source separation [24], spectro-
scopy [25], gene expression classification [26], cell analysis,
EEG signal processing [17], pathologic diagnosis, email
surveillance [10], online discussion participation prediction,
network security, automatic personalized summarization,
identification of compounds in atmosphere analysis [14],
earthquake prediction, stock market pricing [15], and so on.

There have been numerous results devoted to NMF
research since its inception. Researchers from various fields,
mathematicians, statisticians, computer scientists, biolo-
gists, and neuroscientists, have explored the NMF concept
from diverse perspectives. So a systematic survey is of
necessity and consequence. Although there have been such
survey papers as [27], [28], [12], [13], [10], [11], [29] and
one book [9], they fail to reflect either the updated or the
comprehensive results. This review paper will summarize
the principles, basic models, properties, and algorithms of

NMF systematically over the last 5 years, including its

various modifications, extensions, and generalizations. A

taxonomy is accordingly proposed to logically group them,

which have not been presented before. Besides these, some

related work not on NMF that NMF should learn from or

has connections with will also be involved. Furthermore,

this survey mainly focuses on the theoretical research rather

than the specific applications, the practical usage will also

be concerned though. It aims to construct an integrated,

state-of-the-art framework for NMF concept, from which

the follow-up research may benefit.
In conclusion, the theory of NMF has advanced sig-

nificantly by now yet is still a work in progress. To be

specific: 1) the properties of NMF itself have been explored

more deeply; whereas a firm statistical underpinning like

those of the traditional factorization methods—PCA or

LDA—is not developed fully (partly due to its knottiness).

2) Some problems like the ones mentioned in [29] have been

solved, especially those with additional constraints; never-

theless a lot of other questions are still left open.
The existing NMF algorithms are divided into four

categories here given in Fig. 1, following some unified

criteria:

1. Basic NMF (BNMF), which only imposes the non-
negativity constraint.

2. Constrained NMF (CNMF), which imposes some
additional constraints as regularization.

3. Structured NMF (SNMF), which modifies the stan-
dard factorization formulations.

4. Generalized NMF (GNMF), which breaks through
the conventional data types or factorization modes
in a broad sense.

The model level from Basic to Generalized NMF

becomes broader. Therein Basic NMF formulates the

fundamental analytical framework upon which all other

NMF models are built. We will present the optimization

tools and computational methods to efficiently and robustly

solve Basic NMF. Moreover, the pragmatic issue of NMF

with respect to large-scale data sets and online processing

will also be discussed.
Constrained NMF is categorized into four subclasses:

1. Sparse NMF (SPNMF), which imposes the sparse-
ness constraint.

2. Orthogonal NMF (ONMF), which imposes the
orthogonality constraint.

3. Discriminant NMF (DNMF), which involves the
information for classification and discrimination.

4. NMF on manifold (MNMF), which preserves the
local topological properties.

We will demonstrate why these morphological constraints

are essentially necessary and how to incorporate them into

the existing solution framework of Basic NMF.
Correspondingly, Structured NMF is categorized into

three subclasses:

1. Weighed NMF (WNMF), which attaches different
weights to different elements regarding their relative
importance.
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2. Convolutive NMF (CVNMF), which considers the
time-frequency domain factorization.

3. Nonnegative Matrix Trifactorization (NMTF), which
decomposes the data matrix into three factor
matrices.

Besides, Generalized NMF is categorized into four
subclasses:

1. Semi-NMF, which relaxes the nonnegativity con-
straint only on the specific factor matrix.

2. Nonnegative Tensor Factorization (NTF), which
generalizes the matrix-form data to higher dimen-
sional tensors.

3. Nonnegative Matrix-Set Factorization (NMSF),
which extends the data sets from matrices to
matrix-sets.

4. Kernel NMF (KNMF), which is the nonlinear model
of NMF.

The remainder of this paper is organized as follows: first,
the mathematic formulation of NMF model is presented,
and the unearthed properties of NMF are summarized.
Then the algorithmic details of foregoing categories of NMF
are elaborated. Finally, conclusions are drawn, and some
open issues remained to be solved are discussed.

2 CONCEPT AND PROPERTIES OF NMF

Definition. Given an M dimensional random vector xx with
nonnegative elements, whoseN observations are denoted as
xxj;j¼1;2;...;N , let data matrix be XX ¼ ½xx1; xx2; . . . ; xxN � 2 IRM�N

�0 ,
NMF seeks to decompose XX into nonnegative M � L basis
matrix UU ¼ ½uu1; uu2; . . . ; uuL� 2 IRM�L

�0 and nonnegative L�N
coefficient matrix VV ¼ ½vv1; vv2; . . . ; vvN � 2 IRL�N

�0 , such that
XX � UUV , where IRM�N

�0 stands for the set of M �N
element-wise nonnegative matrices. This can also be written
as the equivalent vector formula xxj �

PL
i¼1 uuiVV ij.

It is obvious that vvj is the weight coefficient of the
observation xxj on the columns of UU , the basis vectors or the
latent feature vectors of XX. Hence, NMF decomposes each
data into the linear combination of the basis vectors.

Because of the initial condition L� minðM;NÞ, the
obtained basis vectors are incomplete over the original
vector space. In other words, this approach tries to
represent the high-dimensional stochastic pattern with far
fewer bases, so the perfect approximation can be achieved
successfully only if the intrinsic features are identified in UU .

Here, we discuss the relationship between L and M, N a
little more. In most cases, NMF is viewed as a dimension-
ality reduction and feature extraction technique with L�
M; L� N ; that is, the basis set learned from NMF model is
incomplete, and the energy is compacted. However, in
general, L can be smaller, equal or larger than M. But there
are fundamental differences in the decomposition for L <
M and L > M. It is a sort of sparse coding and compressed
sensing with overcomplete basis when L > M. Hence, L
need not be limited by the dimensionality of the data,
which is useful for some applications, like classification. In
this situation, it may benefit from the sparseness due to
both nonnegativity and redundant representation. One
approach to obtain this NMF model is to perform the
decomposition on the residue matrix EE ¼ XX � UUV repeat-
edly and sequentially [30].

As a kind of matrix factorization model, three essential
questions need answering: 1) existence, whether the
nontrivial NMF solutions exist; 2) uniqueness, under what
assumptions NMF is, at least in some sense, unique;
3) effectiveness, under what assumptions NMF is able to
recover the “right answer.” The existence was showed via
the theory of Completely Positive (CP) Factorization for the
first time in [31]. The last two concerns were first mentioned
and discussed from a geometric viewpoint in [32].

Complete NMF XX ¼ UUV is considered first for the
analysis of existence, convexity, and computational com-
plexity. The trivial solution always exists as UU ¼ XX and
VV ¼ IIN . By relating NMF to CP Factorization, Vasiloglou
et al. showed that every nonnegative matrix has a
nontrivial complete NMF [31]. As such, CP Factorization
is a special case, where a nonnegative matrix XX 2 IRM�M

�0 is
CP if it can be factored in the form XX ¼ UUUUT ; UU 2 IRM�L

�0 .
The minimum L is called the CP-rank of XX. When
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combining that the set of CP matrices forms a convex cone
with that the solution to NMF belongs to a CP cone,
solving NMF is a convex optimization problem [31].
Nevertheless, finding a practical description of the CP
cone is still open, and it remains hard to formulate NMF
as a convex optimization problem, despite a convex
relaxation to rank reduction with theoretical merit pro-
posed in [31].

Using the bilinear model, complete NMF can be
rewritten as linear combination of rank-one nonnegative
matrices expressed by

XX ¼
XL
i¼1

UU�iVV i� ¼
XL
i¼1

UU�i 	 VV i�ð ÞT ; ð1Þ

where UU�i is the ith column vector of UU while VV i� is the ith
row vector of VV , and 	 denotes the outer product of two
vectors. The smallest L making the decomposition possible
is called the nonnegative rank of the nonnegative matrix XX,
denoted as rankþðXXÞ. And it satisfies the following trivial
bounds [33]

rankðXXÞ 
 rankþðXXÞ 
 minðM;NÞ: ð2Þ

While PCA can be solved in polynomial time, the
optimization problem of NMF, with respect to determining
the nonnegative rank and computing the associated factor-
ization, is more difficult than its unconstrained counterpart.
It is in fact NP-hard when requiring both the dimension and
the factorization rank of XX to increase, which was proved
via relating it to NP-hard intermediate simplex problem by
Vavasis [34]. This is also the corollary of CP programming,
since the CP cone cannot be described in polynomial time
despite its convexity. In the special case when rankðXXÞ ¼ 1,
complete NMF can be solved in polynomial time. However,
the complexity of complete NMF for fixed factorization
rank generally is still unknown [35].

Another related work is so-called Nonnegative Rank
Factorization (NRF) focusing on the situation of rankðXXÞ ¼
rankþðXXÞ, i.e., selecting rankðXXÞ as the minimum L [33].
This is not always possible, and only nonnegative matrix
with a corresponding simplicial cone (A polyhedral cone is
simplicial if its vertex rays are linearly independent.)
existed has an NRF [36].

In most cases, the approximation version of NMF XX �
UUV instead of the complete factorization is widely utilized.
An alternative generative model is

XX ¼ UUV þ EE; ð3Þ

where EE 2 IRM�N is the residue or noise matrix represent-
ing the approximation error.

These two modes of NMF are essentially coupled with
each other, though much more attention is devoted to the
latter. The theoretical results on complete NMF will be
helpful to design more efficient NMF algorithms [31], [34].
The selection of the factorization rank L of NMF may be
more creditable if tighter bound for the nonnegative rank is
obtained [37].

In essence, NMF is an ill-posed problem with nonunique
solutions [32], [38]. From the geometric perspective, NMF
can be viewed as finding a simplicial cone involving all the

data points in the positive orthant. Given a simplicial cone
satisfying all these conditions, it is not difficult to construct
another cone containing the former one to meet the same
conditions, so the nesting can work on infinitively thus
leading to an ill-defined factorization notion. From the
algebraic perspective, if there exists a solution XX � UU0VV 0,
let UU ¼ UU0DD, VV ¼ DD�1VV 0, then XX � UUV . If a nonsingular
matrix and its inverse are both nonnegative, then the
matrix is a generalized permutation with the form of PPS,
where PP and SS are permutation and scaling matrices,
respectively. So the permutation and scaling ambiguities
for NMF are inevitable. For that matter, NMF is called
unique factorization up to a permutation and a scaling
transformation when DD ¼ PPS. Unfortunately, there are
many ways to select a rotational matrix DD which is not
necessarily a generalized permutation or even nonnegative
matrix, so that the transformed factor matrices UU and VV are
still nonnegative. In other words, the sole nonnegativity
constraint in itself will not suffice to guarantee the
uniqueness, let alone the effectiveness. Nevertheless, the
uniqueness will be achieved if the original data satisfy
certain generative model. Intuitively, if UU0 and VV 0 are
sufficiently sparse, only generalized permutation matrices
are possible rotation matrices satisfying the nonnegativity
constraint. Strictly speaking, this is called boundary close
condition for sufficiency and necessity of the uniqueness of
NMF solution [39]. The deep discussions about this issue
can be found in [32], [38], [39], [40], [41], and [42]. In
practice, incorporating additional constraints such as
sparseness in the factor matrices or normalizing the
columns of UU (respectively rows of VV ) to unit length is
helpful in alleviating the rotational indeterminacy [9].

It was hoped that NMF would produce an intrinsically
parts-based and sparse representation in unsupervised
mode [3], which is the most inspiring benefit of NMF.
Intuitively, this can be explained by that the stationary
points of NMF solutions will typically be located at the
boundary of the feasible domain due to the first order
optimality conditions, leading to zero elements [37]. Further
experiments by Li et al. have shown, however, that the pure
additivity does not necessarily mean sparsity and that NMF
will not necessarily learn the localized features [43].

Further more, NMF is equivalent to k-means clustering
when using Square of Euclidian Distance (SED) [44], [45],
while tantamount to Probabilistic Latent Semantic Analy-
sis (PLSA) when using Generalized Kullback-Leibler
Divergence (GKLD) as the objective function [46], [47].

So far we may conclude that the merits of NMF, parts-
based representation and sparseness included, come at the
price of more complexity. Besides, SVD or PCA has always
a more compact spectrum than NMF [31]. You just cannot
have the best of both worlds.

3 BASIC NMF ALGORITHMS

The cynosure in Basic NMF is trying to find more efficient
and effective solutions to NMF problem under the sole
nonnegativity constraint, which lays the foundation for the
practicability of NMF. Due to its NP-hardness and lack of
appropriate convex formulations, the nonconvex formula-
tions with relatively easy solvability are generally adopted,
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and only local minima are achievable in a reasonable
computational time. Hence, the classic and also more
practical approach is to perform alternating minimization
of a suitable cost function as the similarity measures
between XX and the product UUV . The different optimization
models vary from one another mainly in the object
functions and the optimization procedures.

These optimization models, even serving to give sight of
some possible directions for the solutions to Constrained,
Structured, and Generalized NMF, are the kernel discus-
sions of this section. We will first summarize the objective
functions. Then the details about the classic Basic NMF
framework and the paragon algorithms are presented.
Moreover, some new vision of NMF, such as the geometric
formulation of NMF, and the pragmatic issue of NMF, such
as large-scale data sets, online processing, parallel comput-
ing, and incremental NMF, will be discussed. In the last part
of this section, some other relevant issues are also involved.

3.1 Similarity Measures or Objective Functions

In order to quantify the difference between the original data
XX and the approximation UUV , a similarity measure
DðXX UUVk Þ needs to be defined first. This is also the objective
function of the optimization model. These similarity mea-
sures can be either distances or divergences, and correspond-
ing objective functions can be either a sole cost function or
optionally a set of cost functions with the same global
minima to be minimized sequentially or simultaneously.

The most commonly used objective functions are SED
(i.e., Frobenius norm) (4) and GKLD (i.e., I-divergence) (5) [4]

DF XX UUVkð Þ ¼ 1

2
XX � UUVk k2

F¼
1

2

X
ij

XXij � UUV½ �ij
� �2

; ð4Þ

DKL XX UUVkð Þ ¼
X
ij

XXij ln
XXij

UUV½ �ij
�XXij þ UUV½ �ij

 !
: ð5Þ

There are some drawbacks of GKLD, especially the gradients
needed in optimization heavily depend on the scales of
factorizing matrices leading to many iterations. Thus, the
original KLD is renewed for NMF by normalizing the input
data in [48]. Other cost functions consist of Minkowski family
of metrics known as ‘p-norm, Earth Mover’s distance metric
[18], �-divergence [17], �-divergence [49], �-divergence [50],
Csiszár’s ’-divergence [51], Bregman divergence [52], and
�-�-divergence [53]. Most of them are element-wise mea-
sures. Some similarity measures are more robust with respect
to noise and outliers, such as hypersurface cost function [54],
�-divergence [50], and �-�-divergence [53].

Statistically, different similarity measures can be deter-
mined based on a prior knowledge about the probability
distribution of the noise, which actually reflects the
statistical structure of the signals and the disclosed compo-
nents. For example, the SED minimization can be seen as a
maximum likelihood estimator where the difference is due
to additive Gaussian noise, whereas GKLD can be shown to
be equivalent to the Expectation Maximization (EM) algo-
rithm and maximum likelihood for Poisson processes [9].

Given that while the optimization problem is not jointly
convex in both UU and VV , it is separately convex in either UU

or VV , the alternating minimizations are seemly the feasible
direction. A phenomenon worthy of notice is that although
the generative model of NMF is linear, the inference
computation is nonlinear.

3.2 Classic Basic NMF Optimization Framework

The prototypical multiplicative update rules originated by
Lee and Seung—the SED-MU and GKLD-MU [4] have still
been widely used as the baseline. The SED-MU and GKLD-
MU algorithms use SED and GKLD as objective functions,
respectively, and both apply iterative multiplicative updates
as the optimization approach similar to EM algorithms. In
essence, they can be viewed as adaptive rescaled gradient
descent algorithms. Considering the efficiency, they are
relatively simple and parameter free with low cost per
iteration, but they converge slowly due to a first-order
convergence rate [28], [55]. Regarding the quality of the
solutions, Lee and Seung claimed that the multiplicative
update rules converge to a local minimum [4]. Gonzales and
Zhang indicated that the gradient and properties of
continual nonincreasing by no means, however, ensure the
convergence to a limit point that is also a stationary point,
which can be understood under the Karush-Kuhn-Tucker
(KKT) optimality conditions [55], [56]. So the accurate
conclusion is that the algorithms converge to a stationary
point which is not necessarily a local minimum when the
limit point is in the interior of the feasible region; its
stationarity cannot be even determined when the limit point
lies on the boundary of the feasible region [10]. However, a
minor modification in their step size of the gradient descent
formula achieves a first-order stationary point [57]. Another
drawback is the strong correlation enforced by the multi-
plication. Once an element in the factor matrices becomes
zero, it must remain zero. This means the gradual shrinkage
of the feasible region, which is harmful for getting more
superior solution. In practice, to reduce the numerical
difficulties, like numerical instabilities or ill-conditioning,
the normalization of the ‘1 or ‘2 norm of the columns in UU is
often needed as an extra procedure, yet this simple trick has
changed the original optimization problem, thereby making
searching for the global minimum more complicated.
Besides, to preclude the computational difficulty due to
division by zero, an extra positive additive value in the
denominator is helpful [56].

To accelerate the convergence rate, one popular method
is to apply gradient descent algorithms with additive
update rules. Other techniques such as conjugate gradient,
projected gradient, and more sophisticated second-order
scheme like Newton and Quasi-Newton methods et al. are
also in consideration. They choose appropriate descent
direction, such as the gradient direction, and update the
element additively in the factor matrices at a certain
learning rate. They differ from one another as for either
the descent direction or the learning rate strategy. To satisfy
the nonnegativity constraint, the updated matrices are
brought back to the feasible region, namely the nonnegative
orthant, by additional projection, like simply setting all
negative elements to zero. Usually under certain mild
additional conditions, they can guarantee the first-order
stationarity. These are the widely developed algorithms in
Basic NMF recent years.
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Using SED as the objective function, the multiplicative
and gradient descent algorithms are special cases of a
general framework called “Alternating Nonnegative Least
Squares (ANLS),” which is Alternating Least Squares (ALS)
modified under the nonnegativity constraint. Considering
the separate convexity, the two-variable optimization
problem is converted into the Nonnegative Least Squares
(NLS) optimization subproblems. Given the SED function of
two factor matrices, these procedures perform a constrained
minimization with respect to one matrix while holding the
other matrix fixed; and then the minimization is performed
again with the roles of the matrices reversed as follows:

min
UU�0

DF XX UUVkð Þ ¼ min
UU�0

1

2
XX � UUVk k2

F ; ð6Þ

min
VV�0

DF XX UUVkð Þ ¼ min
VV�0

1

2
XX � UUVk k2

F : ð7Þ

This approach corresponds to the so-called “block coordi-
nate descent” method. The NLS optimization subproblems
can be cast as a common form of the existing convex
quadratic programming algorithms. The two blocks can be
further partitioned into several more basic separable cells
upon which it is sometimes possible to perform an exact
block coordinate descent, i.e., find a global minimum of
subproblems for each block of variables. Of course this
general framework is also suitable for the GKLD objective
function, as long as the one-variable optimization problems
have closed-form solutions or are otherwise tractable.

In brief, the majority of Basic NMF algorithms can be
unified as alternating minimizations or block coordinate
descent schemes with different block sizes and various
optimization approaches for each block. It is mainly
because the decoupled subproblems are relatively solvable
and can be handled efficiently. For deep understanding one
may refer to [9], [37]. There have been no efficient
algorithms updating UU and VV simultaneously so far.
Moreover, in most cases, only convergence to stationary
points is warranted which satisfies KKT (first-order)
optimality conditions as follows:

UU � 0;rUUD XX UUVkð Þ � 0; UU �rUUD XX UUVkð Þ ¼ 0;

VV � 0;rVV D XX UUVkð Þ � 0; VV �rVV D XX UUVkð Þ ¼ 0:
ð8Þ

where � is the Hadamard (component-wise) multiplication.
Another simple observation is that UU and VV are dual
variables in the objective functions; so once the update rule
for UU is obtained, the similar procedure can be performed
on VV .

3.3 Paragon Algorithms

To provide the technological details, some paragon algo-
rithms based on the above the optimization framework will
be elaborated here.

Merritt and Zhang [58] proposed an interior-point
gradient method using a search direction equivalent to that
used in the LS algorithm. The objective function is minimized
if the updated value is positive; otherwise a certain
proportion of the longest step is chosen as the update step
to ensure the positive constraint. This sorting operation
guarantees the nonnegativity as well as decreasing the

objective function as far as possible. Moreover, the conver-
gence of the algorithm was also proved.

Gonzales and Zhang [55] traced the SED-MU model back
to the original adaptive additive update formula. To
expedite the decreasing speed of the objective function per
iteration, they introduced another multiplicative regulatory
factor besides the original adaptive learning rate. They also
confined the update step into a proportion of the maximum
step. This modification of the standard Lee-Seung algorithm
is interesting, but the convergence to a local minimum is still
not in effect similar to the original algorithm.

Broadly speaking, NMF can be considered as a bound-
constrained optimization problem. Chu et al. [28] informed
the strict first-order optimization model and the corre-
sponding KKT condition. After this, some typical methods,
such as Newton-type approaches, like sequential quadratic
programming, alternating direction iteration Newton, and
projected Newton method, reduced quadratic model
approaches, and gradient approaches are used, respec-
tively. The paper gives sight of some possible directions,
where these algorithms are different in the performance and
the convergences were not proved.

The “ANLS using Projected Gradient (PG) methods”
proposed by Lin [56] is the crest of the previous work on
Basic NMF, which makes headway in the bound-constrained
optimization. The standard Lee-Seung algorithms actually
minimize the auxiliary functions, leading to the nonincreas-
ing of the original objective functions. However, the
minimization of the auxiliary functions does not amount to
the minimization of the objective functions, and the
difference between the two closely depends on the design
of the auxiliary functions. This is the deep-seated reason for
the slow convergence displayed by the standard algorithms.
Thus, the direct minimization of the objective functions
might be helpful. By using PG methods which select the
adaptive gradient decent step size based on the strategy
called “Armijo rule along the projection arc,” the ANLS
optimization (6), (7) with warranted convergence is
achieved. The efficiency of the algorithm rests on the
convergence rate of the subproblems per iteration. With
adjustment between faster convergence and lower complex-
ity per iteration, this mode has also been extended in solving
Constrained NMF.

In most situations, the first-order (gradient) optimization
scheme is enough for approximate NMF with noise added. If
a more accurate solution is necessary, we can then switch to
performing optimization on second-order approximations
in the Taylor expansion of the objective function; where-
upon Zdunek and Cichocki [24] developed a projected
quasi-Newton optimization approach. To avoid computing
the inverse of the whole Hessians which are usually large
and ill-conditioned, the regularized Hessians with the
Levenberg-Marquardt approach are inverted by the Q-less
QR factorization. Again, replacing the negative values with
very small positive values makes theoretical analysis of the
convergence difficult. The projection step cannot guarantee
monotonic decreasing of the objective function, which may
lead to inaccurate approximation results. Zdunek and
Cichocki [59] furthered the work using a more sophisticated
hybrid approach based on Gradient Projection Conjugate
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Gradient (GPCB), where the Gradient Projection method is
exploited to find zero-value components (active), and the
Newton steps are taken only to compute positive compo-
nents (inactive) with the Conjugate Gradient method.

Cichocki and Zdunek [60], [61] carried out a systematic
evaluation and comparison of several PG-based NMF
algorithms including projected Landweber, Barzilai-Borwein
gradient projection (GPSR-BB), projected sequential sub-
space optimization (PSESOP), interior-point Newton, and
sequential coordinate-wise, with regard to their performance
in terms of signal-to-interference ratio and elapsed time using
a simple benchmark of mixed partially dependent nonnega-
tive signals. Briefly speaking, the best and most promising
algorithms are PSESOP, GPSR-BB, and interior-point gradi-
ent method. However, the final selection of the algorithms is
problem size dependent.

Berry et al. [10] recommended ALS NMF algorithm by
computing the solutions to the subproblems as uncon-
strained LS problems with multiple right-hand sides and
maintaining nonnegativity via setting negative values to
zero per iteration. This approximate solution to constrained
LS subproblem as unconstrained one, although fast, makes it
difficult to analyze the convergence of the overall algorithm.
In the framework of the two-block coordinate descent
method where any limit point will be stationary point, Kim
and Park [62] introduced a fast algorithm based on ANLS
and the active set. The constrained LS problem in matrix
formula with multiple right-hand side vectors is decoupled
into several independent nonnegative LS problems with
single right-hand side, each of whom is solved by using the
active set method of Lawson and Hanson. The KKT
condition-based convergence criterion is also presented.

The central notion in ANLS or block coordinate descent
consists in the partition of variables with convexity
preserved. From (1), it is obvious that if every block does
not contain UUml and VV ln simultaneously, (i.e., an element of
a column of UU and an element of the corresponding row of
VV ), the optimization problem under this partition is convex.
More precisely, given a subset of indices K � R ¼ f1; 2; . . . ;
Lg, NMF is convex for the following two subsets of
variables [37]:

PK ¼ fUU�i i 2 Kj g [ fVV j� j 2 RnKj g; ð9Þ

and its complement

QK ¼ fUU�i i 2 RnKj g [ fVV j� j 2 Kj g: ð10Þ

In the standard NLS approach mentioned above, the
problem (6) is further decoupled into M independent
NLS subproblems in L variables corresponding to each row
of UU . However, the solutions to these subproblems are still
nontrivial and relatively expensive. We may also find that
this is not the only partition method as long as the
convexity holds.

Li and Zhang [63], [64] proposed an exact block
coordinate descent algorithm called FastNMF, which tries
to optimize instead one single variable at a time in the
above ANLS framework. The closed-form solutions to these
subproblems can be directly obtained based on the
convexity of a much simpler univariate parabola function.
The analytical solutions of several variables can be further
unified into a parallel vector formula according to the
separability of the objective function. This partition mode

results in much simpler iteration rules with easy imple-
mentation as well as quick and stable convergence. Cichocki
and Phan suggested similar FASTHALS algorithm [65].
FastNMF or FASTHALS along with the accelerated versions
is one of the best strategy for solving NMF problems, partly
because NMF solutions are expected to be parts-based,
which means columns of UU (resp. rows of VV ) will be almost
disjoint (i.e., share few nonzero entries), makes the coupling
between variables in the NLS subproblems rather low, and
thereby allows an exact coordinate descent method to be
capable of solving the nearly separable NLS subproblems
efficiently [37].

3.4 New Vision of Basic NMF

The Basic NMF algorithms mentioned above are all based
on the algebraic iterative optimization models, which have
some drawbacks in common [38]: the solutions are usually
sensitive to the initializations, and thus are not guaranteed
to be unique. More importantly, the notion of optimizing an
objective function is not obviously and necessarily equiva-
lent to that of identifying the underlying actual components
of the data sets, which is instead the ultimate destination of
NMF. Hence Klingenberg et al. [38] proposed a seminal
formulation coined the Extreme Vector Algorithm (EVA),
on the basis of the geometric interpretation of NMF [32]. For
one thing, the dimensionality reduction is achieved by other
matrix factorization preprocessing like SVD. For another, in
the reduced space or nonsingular condition, EVA searches
for the smallest simplicial cone containing overall data
points, which is the most informative with respect to where
the data are located in the positive orthant. This is identical
to selecting the vertex vectors of the projected boundary
polygon of the original data points on the unit hypersphere
as the basis vectors. This manipulation decouples the
functions of reducing dimensionality and identifying latent
data structure into two independent stages, and thereby
might yield better performance. It is original to think from
the geometric view, whose formulation is independent of
the chosen optimization methods and even the designated
objective functions. Besides, EVA identifies more represen-
tative components compared with similarity measures-
based optimization. Meanwhile, the data are supposed to
satisfy, at least approximately, the extreme data property,
which guarantees the existence of basis vectors yet limits
the distribution pattern of the data set. In such case, it
achieves lower approximation error than SED-MU at the
cost of higher computational consumption. However, to
choose the boundary points as the basis vectors (i.e., to
select the smallest simplicial cone) will discover the hidden
concepts only in certain generative model. And the
previous dimensionality reduction procedure, if inap-
propriate, might lose some information even though EVA
itself is effective. Furthermore, the boundary outliers will
strongly influence the final results. In fact, this paper has
enlightened the scrutiny of how to choose the optimization
goal so as to find the true prominent features.

The above EVA can be regarded as conic coding
suggested in [66] under certain constraints imposed on
the basis vectors in another sense. Correspondingly, Convex
NMF [67] proposed by Ding et al. can be viewed as convex
coding also in [66]. To be specific, the data set is generated
by the basis vectors uui; reversely, the basis vectors uui are
also generated by the data set. To promote the traceability,
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UU is confined as the convex combination of the columns of
XX, namely, UU ¼ XXG and XX � XXGV . For that matter basis
vectors are tantamount to the centers of the data points. In
addition, there is an appealing property of Convex NMF:
without additional constraints, the factor matrices GG and VV
are naturally sparse. The convergence of the algorithm is
warranted too. The similar work was also recommended as
Concept Factorization [68]. Finally, this generalization is
helpful in developing Kernel NMF—�ðXXÞ ¼ �ðXXÞGGV .

Linear Projection-Based NMF (LPBNMF) suggested by

Li and Zhang [69], where VV ¼ QQX and XX � UUQX, can be

regarded as the dual problem of Convex NMF. This is

similar to the subspace PCA under the nonnegativity

constraint. The main motivations consist in that VV is the

nonlinear projection of XX on UU , which can only be achieved

by iterative procedure thus leading to low efficiency of the

algorithm; besides, the sparse features will not be necessa-

rily learned by Basic NMF. By contrast, the dimensionality

reduction in LPBNMF is achieved by linear transformation,

which combines the optimization methods of foregoing

FastNMF [63], [64] with the multiplicative update rules. The

convergence and stability of the algorithm were also

proved. Analogous with Convex NMF, LPBNMF has the

properties of making UU and QQ inclined to be orthogonal in

the column and row directions, respectively, which means

sparseness under nonnegativity. Yuan, Yang, and Oja also

constructed a similar framework [70], [71].
Given that computing a globally optimal rank-one

approximation can be done in polynomial time while the

general NMF problem is NP-hard, Gillis and Glineur [72]

introduced Nonnegative Matrix Underapproximation

(NMU) to solve the higher rank NMF problem in a

recursive way. After identification of an optimal rank-one

NMF solution ðuu; vvÞ, the similar rank-one factorization can

be performed on the residue matrix RR ¼ XX � uuvvT sequen-

tially. Besides, to maintain the nonnegativity for RR so as to

make the decomposition keep on, an upper bound con-

straint UV 
 X is introduced. Then an algorithm based on

Lagrangian relaxation was proposed to find approximate

solutions to NMU. Similar to the previous variants of NMF,

the additional constraint of NMU is shown to generate

sparser factors, leading naturally to a better parts-based

representation with low reconstruction error.

3.5 Pragmatic Issue

In practice for real-world problems with big matrices like

Netflix or of ill-conditioned and badly scaled nature, nothing

can be a simple gradient descent of the SED cost functions.

The situation varies greatly even for dense and sparse data

matrices. Here, we mainly focus on two kinds of situations:

one is for large-scale data, and the other is online processing.
For large-scale NMF where L�M;L� N , XX is usually

low rank, which implies that the problem XX � UUV becomes

highly redundant and thus there is no need to process all

elements of XX to estimate UU and VV precisely. In other

words, a proper chosen subset of the whole data matrix is

enough. To be specific, Cichocki and Phan [65] switched the

large-scale factorization to two sets of linked factorizations

on much smaller block matrices

XXr � UUrVV ; for fixed UUr ð11Þ
XXc � UUVV c; for fixed VV c ð12Þ

�

where XXr 2 IRR�N
�0 and XXc 2 IRM�C

�0 are submatrices con-
structed from the preselected rows and columns of XX,
respectively, and UUr 2 IRR�L

�0 and VV c 2 IRL�C
�0 are reduced

matrices by using the same indices for the rows and
columns as those used in XXr and XXc, accordingly. Here,
R�M;C � N . The minimization of the two correspond-
ing cost functions can then be performed sequentially. As
for the selection of the submatrices, there are several
strategies [65]. For instance, we can randomly select
R rows and C columns of XX, or choose such rows and
columns that provide the largest ‘p norm values. An
alternative is to choose the cluster representatives after
clustering XX into R rows and C columns.

Besides, much better performance can be achieved by
using suitable optimization algorithms for large-scale data
sets. Some projected gradient methods, such as interior-
point gradient, quasi-Newton, and projected sequential
subspace optimization, are promising candidates due to
their high efficiency [61], [73]. Another consideration to
decrease the computational consumption is the parallel
implementation of the existing Basic NMF algorithms,
which tries to divide and distribute the factorization task
block-wisely among several CPUs or GPUs [74].

In other situations, the data steam continuously arrives
in a sequential manner. This online processing characteristic
demands NMF to update the latent factors incrementally by
combining the old factors with the newly arrived data.
Apart from reducing the computational load and storage
demand caused by the batch nature of conventional static
NMF, it will be able to track the dynamic structures and
evolutionary patterns of latent components naturally. It can
also be viewed as the incremental update mechanism of
NMF similar to incremental EM and incremental PCA.

A natural assumption is that the new individual sample
will not make a big difference on the optimality of the basis
matrix learned from the previous data set [75], [76]. For that
matter it is adequate to update only the basis matrix UU
along with the coefficient vector vvNþ1 of xxNþ1, while
maintaining the coefficient vectors vv1; . . . ; vvN of old samples
from xx1 to xxN when the latest sample xxNþ1 is added. By
assigning different weights to the residuals to differentiate
the new sample from the old ones in the objective function,
this can be viewed and solved as a special case of Weighted
NMF. Another trick called Block NMF applies NMF in the
categorized subsets obtained by the prediscriminant proce-
dure [77]. When a new category or a new sample in the
existing categories arrives, it is reduced to update only the
relevant category rather than the overall data set at the cost
of requiring some additional prior classification informa-
tion. Besides, a theoretical formulation along with the
approximate analytical solution to the incremental problem
was proposed in [78], where the newly updated basis
matrix is linearly transformed from the previous one as a
tolerable approximation when the real relation is nonlinear.

3.6 Other Open Issues

Because of the local rather than global minimization
characteristic, it is obvious that the initialization of UU and
VV will directly influence the convergence rate and the
solution quality. Algorithms with poor starting conditions
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might converge slowly to incorrect or even irrelevant
solution. The random seeding adopted by Lee and Seung
[4] is unable to give a desirable initial estimation. Wild et al.
utilized spherical k-means clustering [79], which is much
more complex as preprocessing and might stop at relatively
poor local solution. Some other alternatives include
initialization via SVD [80], relaxed k-means clustering [81],
PCA, fuzzy clustering, Gabor wavelet [82], population
based algorithms [83], and the like [84]. However, the
problem of selecting suitable starting matrices cannot be put
in a nutshell, which is indeed situation dependent. A
seeding method appropriate for one data set is possibly
poor for another. There are some extra considerations in
large-scale data processing task, such as the computational
cost of the initial guess itself. The additional imposed
constraints or structures will make things more complicated
too. In practice, incorporating different initialization ap-
proaches might be helpful.

To mitigate the problem of local minima, Cichocki and

Zdunek [85], [60] recommended a simple yet effective

approach named multilayer NMF by replacing the basis

matrix UU with a set of cascaded factor matrices. That is

XX � UU ð1ÞUU ð2Þ    UUðT ÞVV . The initial factorization is the

standard NMF XX � UU ð1ÞVV ð1Þ, and then the decomposition

is performed on the last obtained factor matrix VV ðiÞ

repeatedly and sequentially, layer-by-layer, given the

previous factorization result VV ði�1Þ � UU ðiÞVV ðiÞ. Moreover,

different update rules and initial conditions are allowed in

the cascade system. Due to its distributed structure, this

hierarchical multistage procedure combined with multistart

initialization will greatly reduce the risk of converging to

local minima of cost functions and enhance the performance

of NMF algorithms. Interestingly, this is somewhat similar

to [30], where the former is accumulation while the latter is

continued multiplication.
A systematic mechanism to determine the number L of

the basis vectors has not been established effectively by
now, partly due to its difficulty. The algorithms designed
above assume L is prespecified. In practice, the trial and
error approach is often adopted, where L is set in advance
and then adjusted according to the feedback of the
factorization results, such as the approximation errors. Or
an alternative is to choose the value of L, from the candidate
pools, corresponding to the best factorization result. Some-
times, the prior knowledge in the specific applications, such
as the number of categories in clustering, can be incorpo-
rated in the procedure. If there were more adequate
theoretical results about the nonnegative rank of matrices,
this situation might have been ameliorated.

Another ignored issue is the choice of objective func-
tions. Among them, SED is the most widely used and
deeply investigated. Different objective functions corre-
spond to varied probability distribution assumptions.
However, the original NMF model has no such prior
statistical presumptions on the data set, and these objective
functions are most effective when the data set matches the
statistical distribution. So to what extent these additional
assumptions would affect the problem, and how to select
and evaluate different objective functions need to be
plumbed in depth.

4 CONSTRAINED NMF ALGORITHMS

As discussed previously, Basic NMF will not get the
unique solution under the sole nonnegativity constraint.
Hence, to remedy the ill-posedness, it is imperative to
introduce additional auxiliary constraints on UU and/or VV
as regularization terms, which will also incorporate prior
knowledge and reflect the characteristics of the issues
more comprehensively.

The various Constrained NMF models can be unified
under the similar extended objective function

DC XX UUVkð Þ ¼ D XX UUVkð Þ þ �J1ðUÞ þ �J2ðVV Þ; ð13Þ

where J1ðUUÞ and J2ðVV Þ are the penalty terms to enforce
certain application dependent constraints, � and � are small
regularization parameters balancing the tradeoff between
the fitting goodness and the constraints. The optimization
problem of (13) can be solved by modifying existing Basic
NMF algorithms.

According to different formula of J1ðUUÞ and J2ðVV Þ,
Constrained NMF algorithms are categorized into four
subclasses:

1. Sparse NMF,
2. Orthogonal NMF,
3. Discriminant NMF, and
4. NMF on manifold.

4.1 Sparse NMF

The sparseness constraint is helpful in improving the
uniqueness of the decomposition along with enforcing a
local-based representation. Sparse NMF is the most widely
and deeply mined one in overall Constrained NMF
problems, and has nearly been a necessity in practice.
What must be addressed here is which factor matrix, UU or
VV , is selected as the candidate on which the sparseness
constraint is imposed [86]. In fact this question is applica-
tion dependent. If the basis vectors, columns of UU , are
sparse, they themselves are parts-based; in other words,
every basis influence only a small part of each observation.
If columns of VV are sparse, each observation is approxi-
mated by a linear combination of a limited number of basis
vectors. If rows of VV are sparse, then each basis vector is
used to approximate a limited number of training data or a
limited number of training data are used to infer each basis
vector, which is related with clustering closely. The
paragon work of Sparse NMF is Nonnegative Sparse
Coding (NSC) [87], employing the combination of SED
and the ‘1-norm of VV , the sparseness penalty term, as the
objective function, and NMF with Sparseness Constraints
(NMFSC) [88], using SED as the objective function and
enforcing sparseness by means of nonlinear projection at
each iteration based on the sparseness measure from the
relationship between ‘1 and ‘2 norms, proposed by Hoyer
in year 2002 and 2004, respectively.

These two objective functions are usually adopted, such as
NSC [89], [90] and NMFSC [86]; meanwhile, some more
effective approaches are proposed to resolve the optimization
problems. In general, the solution to the factor matrix not to be
sparse is still effective by using Basic NMF approaches, while
the solution to the candidate matrix to be sparse is supposed
to be modified under the sparseness constraint.
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One of the highlights in NSC is to employ active set
based algorithm to solve the least-squares minimization
under the nonnegativity and sparseness constraints, i.e.,
modified Least Angle Regression and Selection (LARS) [89]
and NLS [26]. LARS is generally applied as an effective
method for unbounded SED minimization under the
‘1 norm constraint. Mørup et al. [89] modified it under
the nonnegativity constraint as NLARS to solve the NSC
optimization problem. Since LARS is to solve the LASSO
problem based on the active set algorithm, the modified
algorithm merely introduces the nonnegativity constraint in
the determination of the active and nonactive set by
removing the elements updated to zero from the active
set. This recasts the original Sparse NMF problem into
N separable LASSO subproblems. Similarly, NLS is another
effective approach to solving SED minimization based on
the active set. Then ANLS is selected by Kim and Park to
optimize their objective function [26], in which every
subproblem is solved by the fast NLS algorithm [25]. They
proved that this algorithm converges to a stationary point.

Unlike the above active set-based solution methods, Li
and Zhang [90] designed a stable and efficient NSC
algorithm called SENSC, which is alternating minimization
based on the properties of convex hyperparabolic functions,
the properties of parabola functions, the projection rule
from one point to the unit hypersphere at the origin, and the
projection rule from one point to the nonnegative data set.
In fact, SENSC can be viewed as modified FastNMF [63]
under the sparseness constraint. The convergence and
stability of SENSC were also proved.

As for NMFSC framework, Mohammadiha and Leijon
[86] introduced additional nonlinear projection in the
existing PG algorithms for Basic NMF to enforce sparsity.
And then they compared these PG algorithms in terms of
efficiency and execution time.

Apart from NSC and NMFSC, some other objective
functions are also suggested. The ‘2 norm of VV is selected as
the sparseness penalty term in the regular SED objective
function by Gao and Church [91]. Unfortunately, the
quadratic penalty may lead to low rather than sparse
values. In this sense, the sparse formula based on
the ‘1 norm would be more effective in controlling sparsity
than that based on the ‘2 norm [92]. Besides, the sparse
regulatory factor has a scaling effect because a large value of
this factor would suppress the ‘2 norm of VV , rending a
larger value of the ‘2 norm of UU . As such, the column
normalization of UU during iterations is needed. Another a
little more complex objective function involves the linear
combination of SED, summation of squares of the ‘1 norm
of the vectors in the candidate matrix to be sparse, and the
Frobenius norm of the other matrix not to be sparse [26].
The second term is the sparseness penalty term as usual.
And the third term is to suppress the corresponding matrix
so as to lower its element values and mitigate the scaling
effect mentioned above, which is the conspicuous difference
from other Sparse NMF algorithms.

It is another concern to seek for the mechanism to control
the sparsity desired. Unlike that based on the row vectors of
VV given by Hoyer, two sparsity measures are provided
based on the ‘0 and ‘1 � ‘2 norms of matrix VV , respectively
[89]. Hence, the specific sparsity can be controlled by a
single parameter.

Besides relying on additional explicit constraints on the
factors like the previous work, sparsity can be also achieved
by incorporating some structure information such as

Convex NMF [67] and LPBNMF [69], or modifying the
factorization mode slightly such as NMU [72] and Affine
NMF [93]. Laurberg and Hansen [93] introduced an offset
vector in the approximate term and obtained Affine NMF in
the form of XX ¼ UUV þ uu011T þ EE where 11 2 IRN is a vector
of all ones and uu0 2 IRM is the DC bias vector so as to
remove the base line from XX. The offset absorbs the
constant values of data matrices, thus making the factoriza-
tion sparser and enhancing the uniqueness with respect to
the possible offset caused by the additive noise.

4.2 Orthogonal NMF

Orthogonal NMF is NMF with orthogonality constraint on
either the factor UU or VV . The orthogonality principle was
first employed by Li et al. [43] to minimize the redundancy
between different bases, and then Ding et al. [16] broached
the concept of Orthogonal NMF explicitly. In the condition
of nonnegativity, orthogonality will necessarily result in
sparseness. Thus, it can be viewed as a special case of
Sparse NMF. However, there is a notable difference in the
optimization models between these two. Moreover, the
result of Orthogonal NMF corresponds to a unique sparse
area in the solution region, which learns the most distinct
parts. In this sense, it is necessary to probe Orthogonal
NMF separately.

If the basis vectors, columns of UU , are orthogonal, namely
UUTUU ¼ II, it obtains by all means the most distinct parts. If
rows of VV are orthogonal, that is VV VV T ¼ II, the orthogon-
ality improves clustering accuracy. The orthogonality can
also be imposed on both UU and VV , so-called biorthogonality,
which nevertheless has poor approximation performance in
most cases. Another highlight is the clustering interpreta-
tion of Orthogonal NMF, and it has been showed that
Orthogonal NMF amounts to k-means clustering [44], [45].
Orthogonal NMF on UU or VV is identical to clustering the
rows or columns of an input data matrix, respectively,
where one matrix corresponds to the cluster centers
(prototypes) and the other is associated with the cluster
indicator vectors. Due to this kind of interpretation and
relationship, Orthogonal NMF is preferable in clustering
tasks [16], [94], [95].

There exist two typical orthogonality penalty terms
which are embedded into the SED or GKLD objective
function. One involves the trace of the difference matrix
between the factor matrix and the identity matrix, i.e., the
first order quantity [16]. The other consists of the ‘2 norm of
the difference matrix between the factor matrix and the
identity matrix, i.e., the second order quantity [94], which is
similar to the optimization model used in Sparse NMF.

The former is an optimization problem under the
orthogonality constraint, which can be obviously solved as
unconstrained one by Lagrange multiplier approach. For
that matter the corresponding multiplicative update rule
similar to the standard algorithms is obtained [16]. How-
ever, the Lagrange multiplier is a symmetrical matrix with
many parameters, which increases the computational load.
As such, the orthogonality in the latter formulation is
controlled by a single parameter, decreasing the computa-
tional complexity. In like manner, the modified multi-
plicative update rule can be applied in the solution [94].

Another direction in the solution is to directly consider
Stiefel manifold, a parameter space possessing the ortho-
gonality constraint itself, and apply the canonical gradient
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decent in this subspace. Accordingly, Choi [95] converted
NMF with the orthogonality constraint into Stiefel manifold
with the nonnegativity constraint. And then the corre-
sponding multiplicative update rule with a lower computa-
tional complexity is achieved, which simplifies that in
Ding’s algorithms [16]. Yoo and Choi [96] further utilized
this principle to obtain the multiplicative update rule for
Orthogonal Nonnegative Matrix Trifactorization (ONMTF),
i.e., the biorthogonality imposed on both UU and VV (NMTF
will be discussed in the following sections).

An intuitive description of the above modified multi-
plicative update rules under the orthogonality constraint is
to replace certain term in the original multiplicative update
rules with a new one somewhat implying orthogonality.
For instance, when UUTUU ¼ II, the update rule in [95]
substitute XXTUU for VV T in the denominator. This makes
sense since the coefficients incline towards orthogonal
projection in this case.

4.3 Discriminant NMF

From the perspective of pattern recognition, Basic NMF can
be considered as unsupervised learning. By coupling
discriminant information with the decomposition, Basic
NMF is further extended to supervised alternatives—the
so-called Discriminant NMF or Fisher-NMF (FNMF)
methods—so as to unify the generative model and the
classification task into a joint framework. It is now being
successfully utilized in classification-based applications,
such as face recognition and facial expression recognition.
Wang et al. [97] at first introduced the Fisher discriminant
constraint, i.e., the difference between the within-class
scatter and the between-class scatter, as the penalty term in
GKLD to construct the objective function.

This formula is often accepted as the basic framework,
whereas some modifications are introduced, such as the
definitions of the between-class scatters [20] and choosing
SED instead of GKLD given that the latter is not well
defined on the boundary [21]. It is to be remarked that the
definitions of the within-class and between-class scatters in
[97] and [20] are both solely based on the coefficient matrix
VV , having noting to do with XX or UU . Since the actual
classification features are closely relevant to the projection
matrix UUTXX, while only having an indirect connection with
VV , UUTXX rather than VV is employed in the construction of the
discriminant constraint [21]. This operation makes the basis
vectors somewhat sparse with distinct parts-based features
helpful for classification.

Regarding the fact that the existing Discriminant NMF
algorithms cannot be guaranteed to converge, Kotsia et al.
[21] suggested PGDNMF algorithm based on the PG
methods in Basic NMF to solve this problem. The projected
gradient method proposed by Lin [56] is applied so as to
warrantee that the limit point is the stationary point.

The above work can be viewed as combining NMF with
LDA classifier. Another direction is to incorporate in the
NMF model the maximum margin classifier, especially a
Support Vector Machine (SVM) [19], which is more
informative and preferable for the classification task. It will
also benefit from the nonlinear kernels of SVM for linearly
inseparable cases.

4.4 NMF on Manifold

In some situations, the real-world data are often sampled
from a nonlinear low-dimensional submanifold embedded

in a high-dimensional ambient space, which is locally flat
and looks like a euclidean space. It has been shown that the
learning performance can be significantly enhanced if the
intrinsic geometrical structure is identified and preserved.
There have been numerous manifold learning algorithms,
such as ISOMAP, Locally Linear Embedding (LLE),
Laplacian Eigenmaps, and the like. They differ from one
another in the local topological property to be considered—
the local relationship between a point and its neighboring
points. While Basic NMF fits data in a euclidean space,
NMF on manifold is to explicitly incorporate NMF with the
proper local invariant properties and corresponding mani-
fold learning methods, leading to highly improved perfor-
mance in tasks like document and image clusterings [98].
The available incorporating approach is to combine the
geometrical information in the original NMF objective
function as the additional regularization term.

Graph regularized NMF (GRNMF) proposed by Cai et al.
[99], [98] modeled the manifold structure by constructing a
nearest neighborhood graph on a scatter of data points. They
borrowed the local invariance assumption that the points in
the mapped low-dimensional space should be close enough
with one another if they are neighbors in the original high-
dimensional space. To access this aim, the weighted squares
of the euclidian distances of the data points in the reduced
space are added in the SED objective function as the penalty
term, and the modified multiplicative update rules are
utilized to resolve it. This is equivalent to integrating NMF
with Laplacian Eigenmaps. Zhi et al. [100], [101] developed
analogous work, where the linear projection UUTxxj on the
basis matrix UU rather than vvj is chosen as the low-
dimensional representation for good classification perfor-
mance similar to Discriminant NMF [21].

Zhang et al. [102] also considered the local invariance
assumption but in a quite different way. Given that the
norm of the gradient of a mapping H from the low-
dimensional manifold to the original high-dimensional
space provides the measure of how far apart H maps
nearby points, a constrained gradient distance minimiza-
tion problem is formulated, whose goal is to find the map
that best preserves local topology. And then an alternating
gradient descent algorithm is devised for this topology
preserving NMF. Moreover, this optimization model is
tantamount to minimizing the square of total variation
norm between XX and UUV under the nonnegativity con-
straint, which preserves finer scale features compared with
SED function.

Isometirc NMF developed by Vasiloglou et al. [31] was
referred to Maximum Furthest Neighbor Unfolding
(MFNU) which preserves the local distance and tries to
maximize the distance between the furthest neighbors.
When the nearest and furthest neighbors are obtained by
kd-tree search, the optimization is then cast as a semide-
finite programming problem. The convex and nonconvex
formulations suitable for large-scale data sets are presented.

Another important local topological property is the
locally linear embedding assumption that the data point
generated as a linear combination of several neighboring
points on a specific manifold in the original space should be
reconstructed from its neighbors in a similar way or by
the same reconstruction coefficients in the reduced low-
dimensional subspace. Gu and Zhou [103] suggested the
neighborhood preserving NMF by exploiting this property,
and derived the modified multiplicative update rules
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accordingly. This is to combine NMF with Locally Linear
Embedding. Shen and Si [104] furthered this work by
modeling the locally linear relationship from single mani-
fold to multiple manifolds, which approximates the data
point by a linear combination of nearby samples only on the
same manifold. Technically speaking, these two algorithms
are different from each other in the determination of the
neighboring sample points. The latter adopts the sparsest
linear combination by ‘1 norm minimization to approx-
imate the target data point rather than the fixed k-nearest
neighborhood which is chosen in the former. This will be
preferable when data reside on multiple manifolds which
may overlap or intersect.

These constraints are in fact mutually complementary. In
practical usage, the sparseness constraint is often considered
as a necessity for NMF approaches. Discriminant Sparse
NMF [105], Manifold-respecting Discriminant NMF [106],
and Manifold Regularized Discriminative NMF [107] are
appropriate illustrations of the notion of integrating differ-
ent constraints, so as to achieve better decomposition quality
reflecting the multilateral characteristics of the problems.

5 STRUCTURED NMF ALGORITHMS

Structured NMF enforces other characteristics or structures
in the solution to NMF learning problem. It usually
modifies the regular factorization formulation directly
rather than introduces some additional constraints as
penalty terms in contrast to Constrained NMF. Formally,
it can be written as

XX � F ðUUV Þ: ð14Þ

Specifically, Structured NMF algorithms are divided into
three subclasses:

1. Weighed NMF,
2. Convolutive NMF, and
3. Nonnegative Matrix Trifactorization.

5.1 Weighted NMF

Weighed formulations are commonly modified versions of
learning algorithms, which can be utilized to emphasize the
relative importance of different components. By introdu-
cing the weight matrix WW , the weighted NMF model has the
following formula:

WW �XX �WW � ðUUV Þ: ð15Þ

Generally speaking, Weighted NMF can be viewed as a case
of weighted low-rank approximation (WLRA), which seeks
for a low-rank matrix that is the closest to the input matrix
according to predefined weights.

If the original data matrix is incomplete with some
entries missing or unobserved, it is supposed to predict the
missing ones when decomposition, which is often referred
to as low-rank matrix completion with noise, remarkably
employed in collaborative filtering like designing recom-
mendation systems. Such problem can be tackled by
assigning binary weights to the data matrix, which is to
set observed elements one and unknown elements zero, and
constructing the corresponding weight matrix WW .

Weighted NMF can be solved by introducing the weight
matrix in the standard multiplicative update rules, such as
the Mult-WNMF algorithm proposed by Mao and Saul

[108]. However, this simple trick makes the algorithms
converge slowly. An alternative suggested by Zhang et al. is
to employ the EM algorithm where missing entries are
replaced by the corresponding values in the current model
estimate at the E-step and the standard unweighted
multiplicative update rules are applied on the filled-in
matrix at the M-step [109]. Basically speaking, EM-WNMF
is superior to Mult-WNMF because of more accurate
estimation obtained from EM procedure, but it also suffers
from slow convergence. Moreover, the filled-in matrix at the
E-step, in general, is a dense matrix even if the original
matrix is very sparse, increasing the computational load
greatly. There is likelihood that the prediction is not
accurate enough [110].

To enhance the convergence rate of Weighted NMF,
Kim and Choi recommended two approaches [110]. One is
to apply ANLS instead of the multiplicative update rules
and utilize Projected Newton method to solve the NLS
subproblems, which is tantamount to the improvement of
the previous Mult-WNMF algorithm. The other highlight is
to use the generalized EM model interweaving E-step and
partial M-step coined GEM-WNMF. The basic gist involves
two aspects. First, ANLS is switched to optimize the
problems at the M-step. Second, the partial M-step is
chosen, in which iterations are stopped when obtaining
substantial improvement instead of determining optimal
solutions, on the basis of the fact that estimation for
missing entries is not accurate at earlier iterations and thus
solving M-step exactly is not desirable. This corresponds to
the modification of EM-WNMF, which reduces the
computational complexity as well as promoting the
prediction accuracy.

In addition, although the Weighted NMF algorithms
mentioned above are proposed based on the special case of
handling incomplete data matrix, they are indeed applic-
able in the general Weighted NMF models.

5.2 Convolutive NMF

The notion of Convolutive NMF mainly comes from the

application of source separation. Conventional Basic NMF

can be regarded as a kind of instantaneous decomposition,

where each object is described by its spectrum, the basis

matrix UU , and corresponding activation in time, the

coefficient matrix VV . To incorporate the time domain

information, in other words, the potential dependency

between the neighboring column vectors of the input data

matrix XX, it is necessary to take into account the time-

varying characteristic of the spectrum. Typically, the

temporal relationship between multiple observations over

nearby intervals of time is described using a convolutive

generative model. Hence, Basic NMF is further extended

to Convolutive NMF form, the summation of products of a

sequence of successive basis matrices UUt and correspond-

ing coefficient matrices VV
t!

, where UUt varies across time,

while VV
t!

satisfies the relationship of right shift and zero

padding which can be simplified to a coefficient matrix

prototype VV . Formally, it can be described as
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XX �
XT�1

t¼0

UUt V
t!
; ð16Þ

where VV
0!
¼ VV . This amounts to denoting the input data

matrix as the convolution of the basis matrix and the
coefficient matrix. Hence, Convolutive NMF can be decom-
posed into a series of Basic NMF problems from the
computational perspective. To some extent Convolutive
NMF is a case of overcomplete representation.

Smaragdis [111], [112] initiated the above Convolutive
NMF model, and cast it as the solutions to the basis matrix
sequence UUt and the coefficient primary matrix VV . Both
GKLD [111], [112] and SED [22] objective functions can be
employed. By comparison, the SED objective function
decreases the computational complexity while possessing
better separable performance. As for the solution, the
multiplicative update rules are generalized to the case of
multiple factor matrices. Nevertheless the simple general-
ization might not converge.

Similar to Sparse NMF, the NSC sparseness constraint
[87] was incorporated in the Convolutive NMF model by
O’Grady and Pearlmutter [113] with respect to the separ-
ability attributable to sparsity. VV is updated as the standard
multiplicative rules, while UUt is updated according to the
traditional additive gradient descent method, due to the
absence of an appropriate adaptive step size like the one in
the standard algorithm. Furthermore, the convergence of
the algorithm was not guaranteed.

An analogous and complementary framework called

Sparse Shift-Invariant NMF (ssiNMF) was suggested by

Potluru et al. [114] to learn possibly overcomplete shift-

invariant features by extending the original basis matrix UU 2
IRM�L
�0 to GG 2M�ðM�LÞ�0 formed by the circular shift of the

feature vectors. While the coefficient matrix VV in the previous

Convolutive NMF model owns the property of right shift and

zero padding, the basis matrix UU here becomes the set of the

basis vectors and their circular shift counterparts, which is

helpful to describe the shifted data, such as the uncalibrated

image data. Besides, the NSC sparseness constraint [87] is

combined with SED as the objective function.
In a sense conventional NMF belongs to frequency

domain analysis, whereas Convolutive NMF is a branch
of time-frequency domain analysis. With the convolutive
model, the temporal continuity of the signals, whose
frequencies vary with time in particular, can be expressed
more effectively in the time-frequency domain. However,
the scope of application of this generalization form is
limited only in audio data analysis. Moreover, the simple
modification of the multiplicative update rules adopted by
most Convolutive NMF model might not converge.

5.3 NMTF

NMTF extends conventional NMF to the product of three
factor matrices, i.e., XX � UUSV [96]. Unconstrained 3-factor
NMTF makes no sense since it can be merged into
unconstrained 2-factor NMF; however, when constrained,
3-factor NMTF provides additional degrees of freedom,
thus endowing NMF with new features.

Taking into account that the biorthogonality both on UU
and VV in Orthogonal NMF is very restrictive which will
lead to a rather poor low-rank matrix approximation, an
extra factor SS is introduced [96] to absorb the different

scales of UU and VV such that the low-rank matrix representa-
tion remains accurate while satisfying the orthogonality
constraint. Hence, the rows and columns of XX can be
clustered simultaneously, which is quite useful in text
analysis and clustering. In fact this is identical to the
previous work of Nonsmooth NMF (NSNMF) [115], where
the incorporation of a very smooth factor SS makes UU and VV
quite sparse, and thus reconciles the contradiction between
approximation and sparseness.

Convex NMF [67] and LPBNMF [69] mentioned pre-
viously can also be considered as extending NMF to
trifactorization; however, their goals are different from the
above models in essence. Besides, NMTF can be somewhat
viewed as a special case of more general formulation of
multilayer NMF [85].

6 GENERALIZED NMF ALGORITHMS

Generalized NMF might be considered as extensions of
NMF in a broad sense. In contrast to introducing some
additional constraints as penalty terms in Constrained NMF,
Generalized NMF has extended the decomposition model
itself in depth a little bit similar to Structured NMF. It
breaches the intrinsic nonnegativity constraint to some
extent, or changes the data types, or alters the factorization
pattern, and so on. This is the latest emerging field with
several preliminary results compared with Basic, Con-
strained, and Structured NMF. Here, Generalized NMF
algorithms are summarized into four subclasses for the
present:

1. Semi-NMF,
2. Nonnegative Tensor Factorization,
3. Nonnegative Matrix-set factorization, and
4. Kernel NMF,

where (1) breaches the nonnegativity constraint, (2) and (3)
popularize the data type into high dimensionality, and (4)
alters the factorization pattern into nonlinear formulation.
The details will be discussed in the following sections.

6.1 Semi-NMF

Conventional NMF restricts every element in data matrix XX
to be nonnegative. When XX is unconstrained, which may
have mixed signs, Ding et al. [67] suggested an extended
version referred to as Semi-NMF which remains some
kernel concepts of NMF, where VV is still restricted to be
nonnegative while placing no restriction on the signs of UU .

This form of generalization makes sense in that the
candidate data in practical applications are not always
nonnegative, so the latent features or principal components
might also have some negative elements reflecting the phase
information. This indeed has the physical interpretation as
NMF. However, the nonsubtractive combinations are still
effective.

Under such conditions, the analogous status ofUU and VV in
Basic NMF are undermined. Ding et al. employed an
alternating iteration approach to solve the optimization
problem, where the positive and negative parts are separated
from the mixed-sign matrix. VV is updated using multi-
plicative rules while holding UU fixed, and then the analytical
local optimal solution for UU is obtained with VV fixed. The
convergence was also proved. Further more, Semi-NMF
applies equally to the foregoing Convex NMF model [67].

1348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 6, JUNE 2013



6.2 NTF

Conventional methods preprocess multiway data by arran-
ging them into a matrix, which might lose the original
multiway structure of the data. By contrast, a natural
generalization of matrix factorization is tensor factorization.
And NMF is a particular case of nonnegative n-dimensional
tensor factorization (n-NTF) when n ¼ 2. In fact Welling
and Weber [116] first put forward the concept of Positive
Tensor Factorization (PTF) not long after the recommenda-
tion of NMF. Compared with other formulations of GNMF,
NTF has attracted widely attention recently.

This kind of generalization is indeed not trivial since NTF
possesses many new properties varying from NMF [117],
[118]. First, the data to be processed in NMF are vectors in
essence. However, in some applications the original data
may not be vectors, and the vectorization might result in
some undesirable problems. For instance, the vectorization
of image data, which is two dimensional, will lose the local
spatial and structural information. Second, one of the core
concerns in NMF is the uniqueness issue, and to remedy the
ill-posedness some strong constraints have to be imposed.
Nevertheless, tensor factorization will be unique under only
some weak conditions. Besides, the uniqueness of the
solution will be enhanced as the tensor order increases.

There are generally two types of NTF model—NTD [119]
and more restricted NPARAFAC [117], whose main
difference lies in the core factor tensor. As for the solution,
there are some feasible approaches. For example, NTF can
be restated as regular NMF by matricizing the array [116],
[119]. Or the alternating iteration method can be utilized
directly on the outer product definition of tensors [117],
[118], [23]. Similarly, SED, GKLD and other forms of
divergence can also be used as the objective functions
[23], [120], [121]. And some specific update models can
adopt the existing conclusions in NMF. For thorough
understanding one may refer to [9], [122]. What must be
scrutinized here is that the convergence of these algorithms
is not guaranteed by the simple generation from matrix to
tensor forms in itself.

What’s more, the concepts in Constrained NMF can also
be incorporated in NTF, such as sparse NTF [123], [124],
[125], discriminant NTF [126], NTF on manifold [127], and
the like.

6.3 NMSF

Li and Zhang [128] proposed the generalization formulation
referred to as Nonnegative Matrix-Set Factorization, with
respect to the fact that the corresponding learning problem
will become a notorious small sample problem if vectorizing
the original matrix-type, like image, data, leading to
unsatisfactory approximation, poor generalization, and high
computational load. NMSF is implemented directly on the
matrix set, whose candidates to be processed are the set of
sample matrices. Each sample matrix is decomposed into the
product of K factor matrices, where the public K � 1 factor
matrices represent the learned features which generalize the
feature matrix in NMF to a feature matrix set, and the
remaining factor matrix varying from individual sample
matrix describes the activation patterns which generalizes
the coefficient vector in NMF to a coefficient matrix. As such,
Li and Zhang established Bilinear Form-based NMSF
algorithm (BFBNMSF) [129] to solve the optimization
problem. NMSF has so far not been fathomed fully.

NTF and NMSF have developed a generalized nonne-
gative factorization framework, upon which the previous

Basic, Constrained, and Structured NMF algorithms are
able to be extended appropriately. Besides, NMSF only
concentrates on the 3D situation, where it is more flexible
and thorough than nonnegative 3D tensor factorization,
while NTF involves much broader cases.

6.4 Kernel NMF

Essentially, NMF and its variants mentioned above are
linear models, which are unable to extract nonlinear
structures and relationships hidden in the data. This
restricts the scope of application of NMF. To overcome
these limitations, a nature extension is to apply kernel-
based methods by mapping input data into an implicit
feature space using nonlinear functions, just as kernel PCA,
kernel LDA, and kernel ICA. Besides, it is potential in
processing data with negative values by using some specific
kernel functions and allowing high-order dependencies
between basis vectors [130], [131].

Given a nonlinear mapping � : IRM ! <; xx7!�ðxxÞ, which
maps the input data space IRM into the feature space <, the
original data matrix is transformed into XX ! YY ¼ �ðXXÞ ¼
½�ðxx1Þ; �ðxx2Þ; . . . ; �ðxxNÞ�. Kernel NMF seeks to find factor
matrices ZZ ¼ ½�ðuu1Þ; �ðuu2Þ; . . . ; �ðuuLÞ� and VV , such that
YY � ZZV , where uu1; uu2; . . . ; uuL are basis vectors in the
original space. To avoid expressing explicitly the nonlinear
mapping, SED is chosen as the object function

DKF ðYY UUVk Þ ¼ 1

2
YY � ZZVk k2

F

¼ 1

2
trðYY TYY Þ � trðYY TZZV Þ þ 1

2
trðVV TZZTZZV Þ:

ð17Þ

Using kernel function kðx; yÞ ¼ h�ðxÞ; �ðyÞi, where ; h i
denotes the inner product and kernel matrices KKxx, KKuu ,
and KKxu , where Kxx

ij ¼ �ðxiÞ; �ðxjÞ
� �

, Kuu
ij ¼ �ðuiÞ; �ðujÞ

� �
,

and Kxu
ij ¼ �ðxiÞ; �ðujÞ

� �
, (17) can be written as

DKF ðYY UUVk Þ

¼ 1

2
trðKKxxÞ � trðKKxuVV Þ þ 1

2
trðVV TKKuuVV Þ:

ð18Þ

Thus, the model depends only on the kernel matrices.
Buciu et al. proposed the above kernel NMF model in

polynomial feature space, and adopted modified multi-
plicative rules as the update algorithm [131]. This is only
applicable for polynomial kernels. By resorting to the PG
method, it is generalized to any kernel function [132].
However, the nonnegativity of bases in kernel feature space
is not warranted by these two methods. To handle this, a
Mercer kernel is constructed to preserve the nonnegativity
on both bases and coefficients in kernel feature space [133].

An alternative direction is to choose an appropriate NMF
model first, and then implement the kernel generation. In
the case of kernel convex NMF �ðXXÞ � �ðXXÞGGV [67], the
corresponding cost function is

�ðXXÞ � �ðXXÞGGVk k2
F

¼ trðKKÞ � 2trðKKGV Þ þ trðVV TGGTKKGV Þ;
ð19Þ

which only depends on the kernel matrix KK ¼ �T ðXÞ�ðXÞ.
The solution to this problem is much easier than the
previous one that directly obtains basis vectors, and thereby
reduces the computational consumption [132]. It will also
incorporate the merit of convex NMF and enhance the
sparsity. Besides, SVM Discriminant NMF [19] is advisable.
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However, the current kernel NMF results are just
preliminary with objective function dependent, so a
systematic construction and evaluation framework for
kernel NMF needs developing in the future.

7 CONCLUSION

In short, as a multivariate data analysis and dimensionality
reduction technique, NMF enhances compression and
interpretability due to its parts-based and sparse represen-
tation from the nonnegativity or purely additive constraint.
It outperforms classic low-rank approximation approaches
such as PCA in some cases, and makes the post-processing
much easier.

Although there have been some notable results on NMF,
they are far to be perfect with lots of open questions
remained to be solved. Here, we just list a few possibilities
as follows:

1. Statistical underpinning. Although NMF can be
interpreted as the maximum likelihood algorithm
in different residual distribution, a solid statistical
underpinning has not been developed adequately by
now, which is an essential yet neglected, to some
extent, issue.

2. Complete NMF. Compared with its approximate
counterpart, there are currently not abundant theo-
retical results about complete NMF from the matrix
factorization perspective, such as nonnegative rank
and complexity. It is indeed hard; anyhow, it will
provide some worthy suggestions for approximate
NMF. Points (1) and (2) can be viewed as two
complementary directions from statistical and alge-
braic standpoints, respectively.

3. Posedness or uniqueness. Many problems in NMF can
be traced back to the ill-posedness of NMF. There
have been some discussions, but this has not been
resolved satisfactorily. What Constrained NMF has
done is to reduce the degrees of freedom and
enhance the uniqueness of the solution by imposing
various additional constraints. In another viewpoint,
this reflects the relationship and difference between
optimizing the objective functions and identifying
the true feature structures. Some concerns from the
geometric perspective providing heuristic attempt
might be able to solve this problem to some extent by
combining the objective function optimization with
the intuitive traceability.

4. Formulations. The formulation of a problem directly
determines the solution to it. The majority of NMF
and its variants are based on the SED objective
function, which basically sets the keynote of the
whole NMF framework. It claims attention that the
notion of optimizing the objective functions is not
obviously and necessarily equivalent to that of
identifying the underlying actual components of the
data set, which is the ultimate destination of NMF. So
how to select and evaluate different objective func-
tions, and even try to formulate new paradigms of
NMF, need further consideration. The discussion in
Section 3.4, although discrete, might show a possible
way.

5. Global optimal solution. Most existing algorithms only
obtain the local optimal solutions, so some global
optimization techniques can be introduced. This is
highly pertinent to the problems discussed in (3)
and (4).

6. Determination of the number L of the basis vectors.
There has been no systematic mechanism for the
choice of L, which brings inconvenience for practical
applications. Bounds for the nonnegative rank or
incorporating some manifold learning techniques
could help select L.

7. Initialization. Proper seeding mechanism of factor
matrices both accelerates the convergence and
enhances solution quality, since NMF is sensitive
to the initial values.

8. Pragmatic issue. In order to make possible the
practical usage of NMF on large-scale data set, more
efficient, highly scalable, more effectively incremen-
tal NMF algorithms need further studying.

9. Generalized NMF. Reasonable variations on NMF will
extend the applicable range of NMF methods.
Compared with the other three, Generalized NMF
is the most premature area. There is a lot of work
worthy to be done. Besides, the corresponding basic,
constrained, and structured models as well as
algorithms can be constructed upon the generalized
framework similarly.

Finally, the research in NMF has led to some modifica-
tions on canonical decomposition methods, such as non-
negative PCA [134] and nonnegative ICA [135]. This
illustrates that we can either incorporate other constraints
into NMF model, or introduce the nonnegativity constraint
in the existing decomposition framework. In one word, they
are the explorations for the same issue from different
perspectives.
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