Monte Carlo Strategies In
Scientific Computing

Jun S. Liu
Department of Statistics
Harvard University

June 13, 2001

This is page i
Printer: Opaque this

This is page v
Printer: Opaque this

To my wife Wes

Preface

An early experiment that conceives the basic idea of Monte Carlo compu-
tation is known as “Buffon’s needle” (Ddorrie 1965), first stated by Georges
Louis Leclerc Comte de Buffon in 1777. In this well-known experiment, one
throws a needle of length [onto a flat surface with a grid of parallel lines
with spacing D (D > 1). It is easy to compute that, under ideal conditions,
the chance that the needle will intersect one of the lines is 2//7D. Thus, if
we let py be the proportion of “intersects” in N throws, we can have an
estimate of 7 as

o 2

= Ngnoo p]V—D’
which will “converge” to m as IV increases to infinity. Numerous investiga-
tors actually used this setting to estimate 7. The idea of simulating random
processes so as to help evaluate certain quantities of interest is now an es-
sential part of scientific computing.

A systematic use of the Monte Carlo method for real scientific prob-
lems appeared in the early days of electronic computing (1945-55) and
accompanied the development of the world’s first programmable “super”
computer, MANTAC (Mathematical Analyzer, Numerical Integrator and
Computer), at Los Alamos during World War II. In order to make a good
use of these fast computing machines, scientists (Stanislaw Ulam, John von
Neumann, Nicholas Metropolis, Enrico Fermi, etc.) invented a statistical
sampling-based method for solving numerical problems concerning random
neutron diffusion in fissile material in atomic bomb designs and for esti-
mating eigenvalues of the Schrédinger equation. The basic idea underlying

This is page vii
Printer: Opaque this

viii Preface

the method was first brought up by Ulam and deliberated between him
and von Neumann in a car when they drove together from Los Alamos to
Lamy. Allegedly, Nick Metropolis coined the name “Monte Carlo,” which
played an essential role in popularizing the method.

In the early 1950s, statistical physicists (N. Metropolis, A. Rosenbluth,
M. Rosenbluth, A. Teller, and E. Teller) introduced a Markov-chain-based
dynamic Monte Carlo method for the simulation of simple fluids. This
method was later extended to cover more and more complex physical
systems, including spin glass models, harmonic crystal, polymer models,
etc. In the 1980s, statisticians and computer scientists developed Monte-
Carlo-based methods for a wide variety of tasks such as combinatorial op-
timizations, nonparametric statistical inference (e.g., jackknife and boot-
strap), likelihood computation with missing observations, statistical ge-
netics analysis, Bayesian modeling and computations, and others. In the
1990s, the method began to play an important role in computational biol-
ogy and was used to solve problems in sequence motif identification and the
analysis of complex pedigree. Now, the list of application areas of Monte
Carlo methods includes biology (Leach 1996, Karplus and Petsko 1990,
Lawrence, Altschul, Boguski, Liu, Neuwald and Wootton 1993), chem-
istry (Alder and Wainwright 1959), computer science (Kirkpatrick, Gelatt
and Vecchi 1983), economics and finance (Gouriérourx and Monfort 1997);
engineering (Geman and Geman 1984), material science (Frenkel and Smit
1996), physics (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953,
Goodman and Sokal 1989, Marinari and Parisi 1992), statistics (Efron
1979, Gelfand and Smith 1990, Rubin 1987, Tanner and Wong 1987), and
many others. Among all Monte Carlo methods, Markov chain Monte Carlo
(MCMC) provides an enormous scope for dealing with very complicated
stochastic systems and has been the central pillar in the study of macro-
molecules and other physical systems. Recently, the MCMC methodology
has drawn much attention from statisticians because the method enables
them to entertain more sophisticated and realistic statistical models.

Being attracted by the extreme flexibility and power of the Monte Carlo
method, many researchers in different scientific areas have contributed to
its development. However, because a substantial amount of domain-specific
knowledge is required in order to understand problems in any of these fields,
communications among researchers in these fields are very limited. Many
efforts have been devoted to the reinvention of techniques that have been
developed in other fields. It is therefore desirable to develop a relatively gen-
eral framework in which scientists in every field — e.g., theoretical chemists,
statistical physicists, structural biologists, statisticians, econometricians,
and computer scientists — can compare their Monte Carlo techniques and
learn from each other. For a large number of scientists and engineers who
employ Monte Carlo simulation and related global optimization techniques
(such as simulated annealing) as an essential tool in their work, there is also
a need to keep up to date with recent advances in Monte Carlo method-

Preface ix

ologies and to understand the nature and connection of various proposed
methods. The aim of this book is to provide a self-contained, unified, and
up-to-date treatment of the Monte Carlo method.

This book is intended to serve three audiences: researchers specializing in
the study of Monte Carlo algorithms; scientists who are interested in using
advanced Monte Carlo techniques; and graduate students in statistics, com-
putational biology, and computer sciences who want to learn about Monte
Carlo computations. The prerequisites for understanding most of the meth-
ods described in this book are rather minimal: a one-semester course on
probability theory (Pitman 1993) and a one-semester course on theoretical
statistics (Rice 1994), both at the undergraduate level. However, it would
be more desirable if the reader has some background in a specific scien-
tific field such as artificial intelligence, computational biology, computer
vision, engineering, or Bayesian statistics in which heavy computations are
involved. This book is most suitable for a second-year graduate-level course
on Monte Carlo methods, with an emphasis on their relevance to scientific
and statistical research.

The author is most grateful to his mentor and friend Wing Hung Wong
for his many important suggestions, his overwhelming passion for Monte
Carlo and scientific problems, and his continuous encouragement. The au-
thor is also grateful to Persi Diaconis for teaching him many things includ-
ing Markov chain theory, group theory, and nonparametric Bayes methods,
to both Susan Holmes and Persi for numerous enlightening conversations
on Markov chain Monte Carlo and other related problems, to Donald B.
Rubin for insights on the missing data formulation and the Bayesian think-
ing, to Jonathan Goodman for helpful comments on multigrid Monte Carlo,
to Yingnian Wu and Songchun Zhu for their materials on pattern simula-
tions and thoughts on conditional sampling, to Faming Liang for his supply
of many examples and figures, and to Minghui Chen and David van Dyk
for helpful comments. Several former graduate students in the statistics
departments of Stanford and Harvard universities — Yuguo Chen, Lingyu
Chen, Chiara Sabatti, Tanya Logvinenko, Zhaohui Qin and Juni Zhang —
have contributed in many ways to the development of this book. Ms. Helen
Tombropoulos has provided editorial assistance to the author both for this
book and for many articles published earlier. Finally, the author is greatly
indebted to his wife Wei for her love and her continuous support of his
research activities these years. Part of the book was written when the au-
thor was on the faculty of the Statistics Department of Stanford University.
This work was also partially supported by the National Science Foundation
Grants DMS-9803649 and DMS-0094613.

Cambridge, Massachusetts Jun Liu
March 2001

x Preface

Contents

Preface

1 Introduction and Examples
1.1 The Need of Monte Carlo Techniques.
1.2 Scope and Outline of the Book
1.3 Computations in Statistical Physics
1.4 Molecular Structure Simulation
1.5 Bioinformatics: Finding Weak Repetitive Patterns
1.6 Nonlinear Dynamic System: Target Tracking
1.7 Hypothesis Testing for Astronomical Observations
1.8 Bayesian Inference of Multilevel Models
1.9 Monte Carlo and Missing Data Problems

2 Basic Principles: Rejection, Weighting, and Others
2.1 Generating Simple Random Variables
2.2 The Rejection Method
2.3 Variance Reduction Methods
2.4 Exact Methods for Chain-Structured Models
2.4.1 Dynamic programming
2.4.2 Exact simulation
2.5 Importance Sampling and Weighted Sample
251 Anexample 0.
2.5.2 Thebasicidea
2.5.3 The “rule of thumb” for importance sampling

23
23
24
26
28
29
30
31
31
33
34

This is page xi
Printer: Opaque this

xii

Contents

2.5.4 Concept of the weighted sample.
2.5.5 Marginalization in importance sampling
2.5.6 Example: Solving a linear system
2.5.7 Example: A Bayesian missing data problem
2.6 Advanced Importance Sampling Techniques
2.6.1 Adaptive importance sampling
2.6.2 Rejection and weighting
2.6.3 Sequential importance sampling
2.6.4 Rejection control in sequential importance sampling
2.7 Application of SIS in Population Genetics
2.8 Problems

Theory of Sequential Monte Carlo

3.1 Early Developments: Growing a Polymer
3.1.1 A simple model of polymer: Self-avoid walk
3.1.2 Growing a polymer on the square lattice
3.1.3 Limitations of the growth method

3.2 Sequential Imputation for Statistical Missing Data Problems

3.2.1 Likelihood computation
3.2.2 Bayesian computation 0oL L.
3.3 Nonlinear Filtering
3.4 A General Framework
3.4.1 The choice of the sampling distribution
3.4.2 Normalizing constant
3.4.3 Pruning, enrichment, and resampling
3.4.4 More about resampling
3.4.5 Partial rejection control
3.4.6 Marginalization, look-ahead, and delayed estimate .
3.5 Problems

Sequential Monte Carlo in Action
4.1 Some Biological Problems
4.1.1 Molecular Simulation
4.1.2 Inference in population genetics
4.1.3 Finding motif patterns in DNA sequences
4.2 Approximating Permanents
4.3 Counting 0-1 Tables with Fixed Margins
4.4 Bayesian Missing Data Problems
441 Murray’sdata. Lo oL
4.4.2 Nonparametric Bayes analysis of binomial data . . .
4.5 Problems in Signal Processing
4.5.1 Target tracking in clutter and mixture Kalman filter
4.5.2 Digital signal extraction in fading channels
46 Problems

60

Contents xiii

5 Metropolis Algorithm and Beyond 105
5.1 The Metropolis Algorithm 106
5.2 Mathematical Formulation and Hastings’s Generalization . 111
5.3 Why Does the Metropolis Algorithm Work? 112
5.4 Some Special Algorithms 114

5.4.1 Random-walk Metropolis 114
5.4.2 Metropolized independence sampler 115
5.4.3 Configurational bias Monte Carlo 116
5.5 Multipoint Metropolis Methods 117
5.5.1 Multiple independent proposals 118
5.5.2 Correlated multipoint proposals 120
5.6 Reversible Jumping Rule. 122
5.7 Dynamic Weighting 124
5.8 Output Analysis and Algorithm Efficiency 125
5.9 Problems 127

6 The Gibbs Sampler 129
6.1 Gibbs Sampling Algorithms 129
6.2 Ilustrative Examples 131
6.3 Some Special Samplers 133

6.3.1 Slicesampler, 133
6.3.2 Metropolized Gibbs sampler 133
6.3.3 Hit-and-run algorithm 134
6.4 Data Augmentation Algorithm 135
6.4.1 Bayesian missing data problem 135
6.4.2 The original DA algorithm 136
6.4.3 Connection with the Gibbs sampler 137
6.4.4 An example: Hierarchical Bayes model 138
6.5 Finding Repetitive Motifs in Biological Sequences 139
6.5.1 A Gibbs sampler for detecting subtle motifs 140
6.5.2 Alignment and classification 141
6.6 Covariance Structures of the Gibbs Sampler 143
6.6.1 Data Augmentation 143
6.6.2 Autocovariances for the random-scan Gibbs sampler 144
6.6.3 More efficient use of Monte Carlo samples 146
6.7 Collapsing and Grouping in a Gibbs Sampler 146
6.8 Problems 151

7 Cluster Algorithms for the Ising Model 153
7.1 Ising and Potts Model Revisit 153
7.2 The Swendsen-Wang Algorithm as Data Augmentation . . . 154
7.3 Convergence Analysis and Generalization 155
7.4 The Modification by Wolff 157
7.5 Further Generalization 157
7.6 Discussion Lo 158

xiv Contents

7.7 Problems

8 General Conditional Sampling

8.1 Partial Resampling
8.2 Case Studies for Partial Resampling
8.2.1 Gaussian random field model
8.2.2 Texturesynthesis
8.2.3 Inference with multivariate t-distribution

8.3 Transformation Group and Generalized Gibbs
8.4 Application: Parameter Expansion for Data Augmentation .
8.5 Some Examples in Bayesian Inference
8.5.1 Probitregression
8.5.2 Monte Carlo bridging for stochastic differential equa-

tion L

86 Problems

9 Molecular Dynamics and Hybrid Monte Carlo

9.1 Basics of Newtonian Mechanics

9.2 Molecular Dynamics Simulation

9.3 Hybrid Monte Carlo

9.4 Algorithms Related to HMC
9.4.1 Langevin-Eulermoves
9.4.2 Generalized hybrid Monte Carlo
9.4.3 Surrogate transition method

9.5 Multipoint Strategies for Hybrid Monte Carlo
9.5.1 Neal’s window method
9.5.2 Multipoint method

9.6 Application of HMC in Statistics
9.6.1 Indirect observation model
9.6.2 Estimation in the stochastic volatility model

10 Multilevel Sampling and Optimization Methods

10.1 Umbrella Sampling

10.2 Simulated Annealing L.

10.3 Simulated Tempering

10.4 Parallel Tempering L.

10.5 Generalized Ensemble Simulation
10.5.1 Multicanonical sampling
10.5.2 The 1/k-ensemble method
10.5.3 Comparison of algorithms

10.6 Tempering with Dynamic Weighting
10.6.1 Ising model simulation at sub-critical temperature
10.6.2 Neural network training

11 Population-Based Monte Carlo Methods

11.1
11.2
11.3

11.4
11.5

11.6

Contents

Adaptive Direction Sampling: Snooker Algorithm
Conjugate Gradient Monte Carlo
Evolutionary Monte Carlo
11.3.1 Evolutionary movements in binary-coded space . . .
11.3.2 Evolutionary movements in continuous space

Some Further Thoughts
Numerical Examples
11.5.1 Simulating from a bimodal distribution
11.5.2 Comparing algorithms for a multimodal example . .
11.5.3 Variable selection with binary-coded EMC
11.5.4 Bayesian neural network training
Problems

12 Markov Chains and Their Convergence

12.1

12.2

12.3
12.4
12.5

12.6

12.7

Basic Properties of a Markov Chain
12.1.1 Chapman-Kolmogorov equation
12.1.2 Convergence to stationarity
Coupling Method for Card Shuffling
12.2.1 Random-to-top shuffling
12.2.2 Riffle shuffling
Convergence Theorem for Finite-State Markov Chains . . .
Coupling Method for General Markov Chain.
Geometric Inequalities
12.5.1 Basicsetup
12.5.2 Poincaré inequality
12.5.3 Example: Simple random walk on a graph
12.5.4 Cheeger’s inequality
Functional Analysis for Markov Chains
12.6.1 Forward and backward operators
12.6.2 Convergence rate of Markov chains
12.6.3 Maximal correlation
Behavior of the Averages

13 Selected Theoretical Topics

13.1
13.2

13.3

13.4
13.5
13.6

MCMC Convergence and Convergence Diagnostics
Iterative Conditional Sampling
13.2.1 Data augmentation
13.2.2 Random-scan Gibbs sampler
Comparison of Metropolis-Type Algorithms
13.3.1 Peskun’sordering.
13.3.2 Comparing schemes using Peskun’s ordering
Eigenvalue Analysis for the Independence Sampler
Perfect Simulation 0oL
A Theory for Dynamic Weighting
13.6.1 Definitions

Xv

xvi Contents

13.6.2 Weight behavior under different scenarios

13.6.3 Estimation with weighted samples
13.6.4 A simulation study

A Basics in Probability and Statistics
A.1 Basic Probability Theory

A.1.1 Experiments, events, and probability
A.1.2 Univariate random variables and their properties . .

A.1.3 Multivariate random variable . . .
A.1.4 Convergence of random variables .
A2 Statistical Modeling and Inference
A.2.1 Parametric statistical modeling . .

A.2.2 Frequentist approach to statistical inference

A.2.3 Bayesian methodology

A.3 Bayes Procedure and Missing Data Formalism
A.3.1 The joint and posterior distributions

A.3.2 The missing data problem
A.4 The Expectation-Maximization Algorithm

References
Author Index

Subject Index

1

Introduction and Examples

1.1 The Need of Monte Carlo Techniques

An essential part of many scientific problems is the computation of integral

1=/Dg(X)dx,

where D is often a region in a high-dimensional space and g(x) is the target
function of interest. If we can draw independent and identically distributed
(ii.d.) random samples x(), ... x(™) uniformly from D (by a computer),
an approximation to I can be obtained as

A

= - {gcD) 4+ g™},

The law of large numbers states that the average of many independent
random variables with common mean and finite variances tends to stabilize
at their common mean (see the Appendix); that is,

lim I, = I, with probability 1.

m—r0o0
Its convergence rate can be assessed by the central limit theorem (CLT):
Vm(I, —I) = N(0,0%), in distribution,

where 02 = var{g(x)}. Hence, the “error term” of this Monte Carlo ap-

proximation is O(m~'/2), regardless of the dimensionality of x. This basic

This is page 1
Printer: Opaque this

2 1. Introduction and Examples

setting underlies the potential role of the Monte Carlo methodology in
science and statistics.

In the simplest case when D = [0,1] and I = fol g(z)dz, one can approx-
imate I by

L= = {g(b) + -+ g(bm)},

m
where b; = j/m. This method can be called the Riemann approxzimation.
When g is reasonably smooth, the Riemann approximation gives us an er-
ror rate of O(m 1), better than that of the Monte Carlo method. More
sophisticated methods such as Simpson’s rule and the Newton-Cotes rules
give better numerical approximations (Thisted 1988). However, a fatal de-
fect of these deterministic methods is that they do not scale well as the
dimensionality of D increases. For example, in a 10-dimensional space with
D =[0,1]'°, we will have to evaluate O(m!?) grid points in order to achieve
an accuracy of O(m™!) in the Riemann approximation of I. In contrast, the
naive Monte Carlo approach, which draws (), ... , ("™ uniformly from D,
has an error rate O(m~'/?) regardless of the dimensionality of D, at least
theoretically.

Although the “error rate” of a Monte Carlo integration scheme remains
the same in high-dimensional problems, two intrinsic difficulties arise: (a)
when the region D is large in high-dimensional space, the variance 2, which
measures how “uniform” the function ¢ is in region D, can be formidably
large; (b) one may not be able to produce uniform random samples in an
arbitrary region D. To overcome these difficulties, researchers often employ
the idea of importance sampling in which one generates random samples
xM .. x(™ from a nonuniform distribution 7(x) that puts more proba-
bility mass on “important” parts of the state space D. One can estimate
integral I as

which has a variance 02 = var,{g(x)/7(x)}. In the most fortunate case, we
may choose 7(x) « g(x) when g is non-negative and I is finite, which results
in an exact estimate of I. But in no known application of the Monte Carlo
method has this “luckiest situation” ever occurred. More realistically, we
may hope to find a good “candidate” m which will explore more in regions
where the value of ¢ is high. In such a situation, generating random draws
from 7 can be a challenging problem.

Demands for sampling from a nonuniform distribution 7 are also seen
from another set of problems in bioinformatics, computational chemistry,
physics, structural biology, statistics, etc. In these problems, the desired
probability distribution m(x) of a complex system, where x is often called a
configuration of the system, arises from basic laws in physics and statistical

1.2 Scope and Outline of the Book 3

inference. For example, in the study of a macromolecule, x may represent
the structure of a molecule in the form of three-dimensional coordinates
of all the atoms in the molecule. The target probability distribution is
defined by the Boltzmann distribution 7(x) = Z(T)e~*)/*T where k is
the Boltzmann constant, T is the system’s temperature, h(x) is the energy
function, and Z(T) is the partition function which is difficult to compute.
Scientists are often interested in certain “average characteristics” of the
system, many of which can be expressed mathematically as E,[g(x)] for
a suitable function g. In Bayesian statistical inference, x often represents
the joint configuration of missing data and parameter values and 7(x) is
usually the posterior distribution of these variables. One has to integrate
out nuisance parameters and the missing data so as to make a proper
inference on the parameter of interest and to make valid predictions for
future observations. These tasks can, once again, be expressed as computing
the expectation of a function of the configuration space.

Sometimes, an optimization problem can also be formulated as a Monte
Carlo sampling problem. Suppose we are interested in finding the mini-
mum of a target function, h(x), defined on a possibly complex configura-
tion space. The problem is equivalent to finding the maximum of another
function, ¢, (x) = e M¥)/T (as long as T > 0). In the case when g, (x) is
integrable for all 7" > 0, which is most common in practice, we can make
up a family of probability distributions:

7, (x) e M/ TS,

If we can sample from 7. (x) when T is sufficiently small, resulting random
draws will most likely be located in the vicinity of the global minimum of
h(x). This consideration is the basis of the well-known simulated annealing
algorithm (Kirkpatrick et al. 1983) and is also key to the tempering tech-
niques for designing more efficient Monte Carlo algorithms (Chapter 10).

1.2 Scope and Outline of the Book

A fundamental step in all Monte Carlo methods is to generate (pseudo-)
random samples from a probability distribution function 7 (x), often known
only up to a normalizing constant. The variable of interest x usually takes
value in R¥ | but occasionally can take value in other spaces such as a permu-
tation or transformation group (Diaconis 1988, Liu and Wu 1999). In most
applications, directly generating independent samples from the target dis-
tribution 7 is not feasible. It is often the case that either the generated sam-
ples have to be dependent or the distribution used to generate the samples
is different from 7, or both. The rejection method (von Neumann 1951), im-
portance sampling (Marshall 1956), and sampling-importance-resampling
(SIR) (Rubin 1987) are schemes that make use of samples generated from

4 1. Introduction and Examples

a trial distribution p(x), which differs from, but should be similar to, the
target distribution 7. The Metropolis algorithm (Metropolis et al. 1953)
which, together with Hastings’s (1970) generalizations, serves as the basic
building block of Markov chain Monte Carlo (MCMC), is the one that gen-
erates dependent samples from a Markov chain with 7 as its equilibrium
distribution. In other words, MCMC is essentially a Monte Carlo integra-
tion procedure in which the random samples are produced by evolving a
Markov chain.

Because of the great potential of Monte Carlo methodology, various tech-
niques have been developed by researchers in their respective fields. Re-
cent advances in Monte Carlo techniques include the cluster method, data
augmentation, parameter expansion, multicanonical sampling, multigrid
Monte Carlo (MGMC), umbrella sampling, density-scaling Monte Carlo,
simulated tempering, parallel tempering, hybrid Mont Carlo (HMC), mul-
tiple try Metropolis (MTM), sequential Monte Carlo, particle filtering, etc.
There is also a trend in moving toward a population-based approach. These
advances in one way or another were all motivated by the need to sam-
ple from very complex probability distributions for which the standard
Metropolis method tends to be trapped in a local “energy” well. Many of
these methods are related, and some are even identical. For example, the
configurational bias Monte Carlo (Siepmann and Frenkel 1992) is equivalent
to a sequential importance sampling combined with a Metropolized inde-
pendence sampler (Chapters 2 & 3); the exchange Monte Carlo (Hukushima
and Nemoto 1996) is reminiscent of parallel tempering (Geyer 1991); the
multiple-try Metropolis (Liu, Liang and Wong 2000) generalizes a method
described by Frenkel and Smit (1996); the parameter expansion (Liu and
Wu 1999) recently developed is a special case of the partial resampling
technique (Goodman and Sokal 1989); and the bootstrap filter and se-
quential imputation (Gordon, Salmond and Smith 1993, Kong, Liu and
Wong 1994) can be traced back to the “growth method” (Hammersley
and Morton 1954, Rosenbluth and Rosenbluth 1955). By providing a sys-
tematic account of these methods, this book focuses on the following as-
pects: understanding the properties and characteristics of these methods,
revealing their connections and differences, comparing their performances
and proposing generalizations, and demonstrating their use in scientific and
statistical problems.

The remaining part of this chapter presents motivating examples in sta-
tistical physics, molecular simulation, bioinformatics, dynamic system anal-
ysis, statistical hypothesis testing, Bayesian inference for hierarchical mod-
els, and other statistical missing data problems.

Chapter 2 covers basic Monte Carlo techniques including the inversion
method, rejection sampling, antithetic sampling, control variate method,
stratified sampling, importance sampling, and the exact sampling method
for chain-structured models. The last method is usually not covered by the
standard Monte Carlo books but is becoming increasingly important in

1.2 Scope and Outline of the Book 5

modern statistical analysis, artificial intelligence, and computational biol-
ogy. Special attention is given to methods related to importance sampling
(e.g., that for solving linear equations, for phylogenetic analysis, and for
Bayesian inference with missing data).

Chapter 3 explains in detail the origin and the theoretical framework of
sequential Monte Carlo. Started with the Monte Carlo treatment of a self-
avoid random walk by Morton, Hammersley, Rosenbluth, and Rosenbluth,
in the 1950s, this chapter shows the reader an important common structure
in seemingly unrelated problems, such as polymer simulation and Bayesian
missing data problems. A general methodology built upon sequential im-
portance sampling, resampling (or pruning and enrichment), and rejection
sampling is described to generalize the methods used in the polymer sim-
ulation and Bayesian missing data problems. Chapter 4 illustrates how
sequential Monte Carlo methods can be used in different problems such
as molecular simulation, population genetics, computational biology, non-
parametric Bayes analysis, approximating permanents, target tracking, and
digital communications.

The later chapters focus primarily on Markov chain based dynamic Monte
Carlo strategies. Chapter 5 introduces the basic building block of almost all
Markov chain Monte Carlo strategies — the Metropolis-Hastings transition
rule. A few recent generalizations of the rule, such as the multipoint rule,
the reversible jumping rule, and the dynamic weighting rule are described
so that the reader can be equipped with a full array of basic tools in de-
signing a MCMC sampler. The basic method for analyzing efficiency of a
MCMC algorithm is described at the end of this chapter.

Chapters 6-8 analyze and generalize another main class of Monte Carlo
Markov chains — those built upon iterative sampling from conditional dis-
tributions. A prominent special case is the Gibbs sampler, which is now a
standard tool for statistical computing. Data augmentation, which was orig-
inally designed for solving statistical missing data problems, is recasted as a
strategy for improving the ease of computation and the convergence speed
of a MCMC sampler. The cluster algorithm for the Ising model (Swendsen
and Wang 1987) is treated under this unified view. Another important gen-
eralization is the view of partial resampling (Goodman and Sokal 1989),
which can be used to conduct more global moves based on a transformation
group formulation (Liu and Sabatti 2000, Liu and Wu 1999). The analyti-
cal form of the required conditional distributions in this general setting, as
well as its applications in Gaussian random field, texture modeling, probit
regression, and stochastic differential equations, are given in Chapter 8.

Starting with the basic Newtonian mechanics, Chapter 9 introduces the
method of hybrid Monte Carlo (HMC), a means to construct Markov chain
moves by evolving Hamiltonian equations. This method reveals the close
connection between Monte Carlo and molecular dynamics algorithms, the
latter having been one of the most widely used tools in structural biology
and theoretical chemistry. A few strategies for improving the efficiency of an

6 1. Introduction and Examples

HMC or MC algorithm are discussed; these include the surrogate transition
method, the window method, and the multipoint method. We also want to
draw the reader’s attention to unconventional uses of HMC, especially its
application in statistical problems.

Chapters 10 and 11 discuss a few recent developments for efficient Monte
Carlo sampling. Incidentally, many of these new methods rely on the idea of
running multiple Monte Carlo Markov chains in parallel. Mechanisms that
enable communications among the multiple chains are incorporated into
the samplers so as to speed up their exploration of the configuration space.
These techniques can be grouped into three main classes: temperature-
based methods (simulated tempering, parallel tempering, and simulated
annealing), reweighting methods (umbrella sampling, multicanonical sam-
pling, and 1/k-ensemble method), and evolution-based methods (adap-
tive direction sampling, conjugate gradient Monte Carlo, and evolutionary
Monte Carlo). Some of these approaches can be combined so as to produce
a more efficient sampler. For many important scientific problems, these new
techniques are indispensable.

Chapter 12 provides a basic theory for the general Markov chain and a
few analytical techniques for studying its convergence rate. The basic the-
ory includes the Chapman-Kolmogorov equation and the geometric con-
vergence theorem for finite-state Markov chains. For advanced techniques,
we show how to use the coupling method, the Poincaré inequalities, and
Cheeger’s inequality to bound the second largest eigenvalue of the Markov
chain transition matrix and how to use the basic functional analysis tools
to get a qualitative understanding of the Markov chain’s convergence.

Chapter 13 selects a few theoretical topics in the analysis of Monte Carlo
Markov chain. The chapter starts with short discussion of the general con-
vergence issue in MCMC sampling and proceeds to an analysis of the covari-
ance structures of data augmentation and the random-scan Gibbs sampler,
showing that these structures can be used to gain insight into the design
of an efficient Gibbs sampler. Peskun’s theorem is described and used to
compare different Metropolis samplers. A complete eigenstructure analysis
for the Metropolized independence sampler is provided. One of the most
exciting recent advances in Markov chain theory, the so-called perfect sim-
ulation, is briefly described and the related literature mentioned. Finally,
a theoretical analysis of the dynamic weighting method is given.

In the Appendix, we outline the basics of the probability theory and
statistical inference procedures. The interested reader can also find there
a rather short description of the popular expectation-maximization (EM)
algorithm (Dempster, Laird and Rubin 1977) and a brief discussion of its

property.

1.3 Computations in Statistical Physics 7
1.3 Computations in Statistical Physics

Scientists are often interested in simulating from a Boltzmann distribution
(or Gibbs distribution) which is of the form

1
m(x) = Ee_U(x)/kT, (1.1)

where x is a particular configuration of a physical system, U(x) is its po-
tential energy, T is the temperature, and k is the Boltzmann constant.
The function Z = Z(T) is called the partition function (also called the
normalizing constant in non-physics literature).

The Ising model serves to model the behavior of a magnet and is per-
haps the best known and the most thoroughly researched model in statisti-
cal physics. The intuition behind the model is that the magnetism of a piece
of material is the collective contribution of dipole moments of many atomic
spins within the material. A simple 2-D Ising model places these atomic
spins on a N x N lattice space, £ = {(i,j),i=1,... ,N;j=1,... ,N}, as
shown in Figure 1.1.

FIGURE 1.1. A configuration of the Ising model on a 32 x 32 grid space, denoted
as L, with a temperature slightly higher than the critical temperature.

In the model, each site o € £ hosts a particle that has either a positive
or a negative spin. Abstractly, the state of each particle can be represented
by a random variable z, which is either +1 or —1. A configuration of the
whole system is then x = {z,,0 € L}, whose potential energy is defined as

U(X) =-J Z ToTo + Zhowoa (1'2)

where the symbol 0 ~ ¢’ means that they are a neighboring pair, J is
called the interaction strength, and h, the external magnetic field.

8 1. Introduction and Examples

Several important quantities regarding a physical system are often of
interest. First, the internal energy is defined as

(U) = Ex{U(x)}-

The notation on the left-hand side is frequently used by physicists to refer
to the “state average” of the potential energy, whereas the right-hand side
notation is employed mostly by mathematicians and statisticians and is
read as “the mathematical expectation of U(x) with respect to w.” They
are, of course, the same thing and are equal to the integral

I:/DU(x)ﬂ'(x)dx,

where D is the set of all possible configurations of x. Clearly, estimating (U)
based on random samples drawn uniformly from D is disastrous. A much
better estimate would have been resulted if we could simulate random draws
from the Boltzmann distribution m(x).
If we let § = 1/kT, an interesting relationship between the internal
energy and the partition function can be derived:
Olog Z
B
This implies that we can use Monte Carlo methods to estimate the tem-
perature derivative of the partition function, which can then be used to
estimate the partition function itself (up to a multiplicative constant). The
free energy of the system, defined as F' = —kT log Z, can also be estimated,
up to an additive constant. To date, problems related to the estimation of
partition functions of various probabilistic systems still present a significant
challenge to researchers in different fields (Meng and Wong 1996, Chen and

—(U).

Shao 1997).
The specific heat of the system is defined as
_o{u)y _ 1
C= 6—T = aner(x);

and the system’s entropy is
S={U)y-F)/T.

For the Ising model, one is also interested in the mean magnetization per

spin, defined as
1
(m) = En { e } !

which can, again, be estimated by Monte Carlo sample averages. Generally,
many physical quantities of interest correspond to taking expectations with
respect to the Boltzmann distribution and can be estimated by Monte Carlo
simulations.

S

ocES

1.4 Molecular Structure Simulation 9

1.4 Molecular Structure Simulation

Simple Liquids Model. In this model, the configuration space is a com-
pact subset in R®%*: x = {z;; i = 1,...,k}, where x; = (@1, iz, 2i3)7
represents the position vector of the ith particle. A simple energy function
is of the form

Ux)= > @z —z5) = Y &(ryy),

all 4,5 all 4,5

where

R OION

is called the Lennard-Jones pair potential. Its shape is depicted in Fig-
ure 1.2.

0.2

0.1

0.0

-0.1

-0.2

0 1 2 3 4 5

FIGURE 1.2. A plot of the Lennard-Jones function.

A more complicated model for macromolecules, which is widely used
in protein structural simulations (Creighton 1993), has a potential energy
function of the form

U(x) = Z (bond terms) + Z {@(TU) 4445 } 7

4megr;;
bonds i, 07ij

where the last term on the right-hand side represents electrostatic inter-
action between two atoms. In macromolecule simulations, one often uses
three bond terms that have the form
ki k;
bond terms = Z é(ll —lio)® + Z 5’(0, —0i0)° + Z v(w;),

bonds angles torsions

10 1. Introduction and Examples

where [; is the bond length, 6; is the bond angle', and w; is the torsion
angle?. The torsional term v(w) has the form

v(w) = %(1 + cos(nw — 7)). (1.3)

Also see Leach (1996) for more details. A water molecule is shown in Fig-
ure 1.3.

(a) (b)

7 Bond Angle

0.10nm Covalent Bond

FIGURE 1.3. (a) A water molecule generated by Rasmol, a molecular visual-
ization software (http://www.umass.edu/microbio/rasmol/). There are two co-
valent bonds in H,O, one between each hydrogen atom and the oxygen atom. (b)
A schematic plot of the interactions between two water molecules.

Figure 1.4 shows how a protein molecule interacts with the double-helix
structure of a DNA molecule at the atomic level. This interaction is impor-
tant for gene regulation. In this class of problems, one is often interested
in seeing the likely structures of a stable macromolecule and estimating
several basic physical quantities such as free energy and specific heat. In
protein folding problems, one is sometimes more interested in finding the
“minimal-energy” configuration of the system [i.e., finding the configura-
tion X that minimized U (x)].

1.5 Bioinformatics: Finding Weak Repetitive
Patterns

The linear biopolymers, DNA, RNA, and proteins, are the three central
molecular building blocks of life. DNA is an information storage molecule.

1The bond angle is defined as the angle between the lines connecting the nucleus of
one atom to the nuclei of two other atoms that are bonded to it.

2The torsion angle is the angle of rotation about the bond B-C in a series of bonded
atoms A-B-C-D needed to make all the four atoms be on the same plane (remember that
they are in a three-dimensional space). The positive sense is clockwise. If the torsion angle
is 1807, the four atoms lie in a planar zigzag (Z-shaped).

1.5 Bioinformatics: Finding Weak Repetitive Patterns 11

(a)

FIGURE 1.4. (a) A ball-and-stick plot of the interaction between a regulatory
protein in yeast, 3CRO, and the DNA segment to which it binds. (b) The same
structure as in (a), but expressed by a ribbon representation widely used in the
protein structure modeling community.

All of the hereditary information of an individual organism is contained in
its genome, which consists of sequences of the four DNA bases (nucleotides),
A, T, C, and G. RNA has a wide variety of roles, including a small but
important set of functions. Proteins, which are chains of 20 different amino
acid residues, are the action molecules of life, being responsible for nearly
all of the functions of all living beings and forming many of life’s structures.
All protein sequences are coded by segments of the genome called genes.
The universal genetic code is used to translate triplets of DN A bases, called
codons, to the 20-letter alphabet of proteins (Campbell 1999). For exam-
ple, codons “CCA” and “CCG” are both translated into the amino acid
“Proline” (abbreviated as Pro or P). How genetic information flows from
DNA to RNA and then to protein is regarded as the central paradigm of
molecular biology.

The human genome and many other genome sequencing projects have re-
sulted in rapidly growing and publicly available databases of DNA and pro-
tein sequences (e.g., http://www.ncbi.nlm.nih.gov). The data in these
databases are sequences of letters using d-letter (d = 4 for DNA or d = 20
for proteins) alphabets without punctuation or space characters. One of
the most interesting questions scientists are concerned with is how to get
any useful biological information from “looking” at these databases. This
task is often termed “data mining” for other types of data. The recent
announcement of the near-completion of the human genome makes this
interesting question more an urgent task for all interested scientists. How-
ever, “mining” a biopolymer database is noticeably different from mining
other types of databases because (i) many sophisticated structures have

12 1. Introduction and Examples

been built in well-organized biopolymer databases [one can take a look at
NCBT’s GeneBank (whose web address is hittp://www.ncbi.nlm.nih.gov) to
have a rough idea], (ii) there is an enormous amount of biological knowl-
edge, and (iii) fundamental laws in physics and chemistry can be applied.
Consequently, more sophisticated mathematical/statistical models are of-
ten critical in developing a “mining” strategy.

One important problem in analyzing biological sequence data is to find
patterns shared by multiple protein or DNA sequences. It is closely related
to the task of local sequence alignment. The fact that a common pattern ap-
pears in several otherwise dissimilar protein sequences often indicates that
these proteins may be functionally or structurally related. For example, in
Figure 1.4(b), one can see that a helical part of protein 3CRO is inside
the major groove of a DNA double-helix structure. This helical part of the
protein, often referred to as the heliz-turn-heliz motif, plays an important
role in the binding of 3CRO to a DNA segment and turns out to be a rather
conserved part in a large family of proteins responsible for gene regulation.
In another example, as shown in Figure 1.5, the helix in the light color is
the pattern shared by a number of dinucleotide binding proteins; this he-
lix segment is important in interacting with the ligand, dinucleotide. This
pattern was discovered by a stochastic search algorithm, the Gibbs motif
sampler (Liu, Neuwald and Lawrence 1995) to be described later.

FIGURE 1.5. A ribbon model of the trace of the backbone chain of a dinucleotide
binding protein, ADHE. The helical segment in light color (residues 195-220)
corresponds to the pattern common to a number of such proteins. The cofactor
(NAD) is represented by a stick-and-ball model.

Common patterns in DNA sequences also have important biological im-
plications. For example, the existence of a common short sequence motif

1.5 Bioinformatics: Finding Weak Repetitive Patterns 13

in the upstream untranslated DNA regions (5’ UTR) of a set of candi-
date genes may suggest that these genes are regulated in a similar fash-
ion. This motif pattern, whose occurrences are often very close to the
start of a gene (less than a few hundreds base pairs), may correspond to
the sites bound by a common regulatory protein, called the transcription
factor,® which regulates the expression level of these genes (Stormo and
Hartzell 1989, Lawrence and Reilly 1990, Lawrence et al. 1993, Liu 1994a).
These short patterns are often called binding motifs. In Figure 1.4(b), the
segment of DNA (double-helix structure) that are interacting with protein
3CRO is a binding site whose pattern is conserved among the 5 UTRs of
a number of related genes.

The above pattern discovery problem can be abstracted as follows: Given
a set of K sequences Ry, ..., Rk, we seek within each sequence mutually
similar segments of a specified width w. An analogy is that each R; is
a sentence and our task is to find some “word” (or words) that is most
“common” to all the sentences in consideration. If this word occurs in each
sequence exactly without any misspellings, one can find it without too much
difficulties. But in the biology world, there is seldom anything as good
as “exact” matches, implying that we have to describe both the common
pattern and the remaining parts of the sequences probabilistically. The
simplest statistical model is the block-motif model as depicted in Figure 1.6:

Motif
Sequence k EE——
a - Wwidth=w

FIGURE 1.6. A schematic plot of the block-motif model used for our pattern
finding.

In this model, the letter at the ith position within the “motif” (pattern)
is assumed to be drawn independently from a multinomial distribution with
parameter 6;,i = 1,... ,w; letters elsewhere follow a common background
multinomial model with parameter 8y, where 6; is a probability vector
of length d, the size of the letter alphabet (d = 4 for DNA and d = 20
for protein). In other words, the residues (or base pairs) we see outside
the motif pattern are treated as i.i.d. observations from the multinomial
distribution with parameter @g; a residue observed at position 7 within the
motif pattern is generated from probability vector 8;. [It is possible to use a
more sophisticated background model to improve the algorithm’s efficiency,
see Liu, Brutlag and Liu (1995) and McCue et al. (2001).] What makes
this problem difficult is that we do not know the location of the “word”

3 A transcription factor is a protein which binds to certain site of a DNA molecule to
either enhance or repress the gene expression.

14 1. Introduction and Examples

(pattern) in each sequence. Based on this simple statistical model and the
Gibbs sampling principle, Liu (1994a) and Lawrence et al. (1993) derived
the following simple, yet effective, Monte Carlo algorithm (Chapter 6).

In what they called the site sampler, the motif locations (sites) are ini-

tialized at random; that is, position a,(co) (for k =1,...,K) is a randomly
chosen position of the kth sequence. For t = 1,... ,m, the algorithm iter-

ates the following steps:

e Select a sequence, say the kth sequence, either deterministically or at
random.

e Draw a new motif location a, according to the predictive distribution
t t t ¢
P(ak|ag),...,a,(czl,ascll,...,ag()) (1.4)

and update the current motif location ag) to agH) = ay.

e Let a§t+1) = ag.t) for j # k.

Although there are many choices of the predictive distribution function
used for updating the alignment [e.g., one can let P(ay | ...) be pro-
portional to certain fitness measure of the segment indexed by aj to the
current multinomial profile resulting from the ag-t), Jj # kJ], those that make
the foregoing iteration consistent have to be the ones derived from a com-
plete Bayesian statistical model. More detailed derivations will be given in
Chapter 6.

1.6 Nonlinear Dynamic System: Target Tracking

Dynamic modeling is widely used in areas such as computer vision, eco-
nomical data analysis, feedback control systems, mobile communication,
radar or sonar surveillance systems, etc. An important problem in such a
dynamical system is the on-line (instantaneously in real time) processing
of information (such as estimation and prediction) regarding the system
characteristics. These tasks are generally termed “filtering” in engineering
and statistical literature. A main challenge to researchers in these fields is
to find efficient filtering algorithms.

Target tracking in a clutter environment as shown in Figure 1.7 is a
typical example of dynamic modeling. To facilitate tracking, one often uses
a linear Gaussian state-space model [also called dynamic linear model by
West and Harrison (1989)] to describe the movement of the target object.
A typical 2-D tracking model is as follows.

1.6 Nonlinear Dynamic System: Target Tracking 15

40

30

20

10

—10F

—20k

sl : o - 7

- L ‘ . L .
-10 0 10 20 30 40 50

FIGURE 1.7. A simulation of the target tracking problem in a 2-D space. The dots
connected by the line represent the signals (y;) generated by the true positions of
the target; the dots elsewhere represent the nearby confusing objects (simulated
from a Poisson point process with rate 8%).

State Equation:
(Ut,1 > _ (’Ut1,1)+(€t,1 >’

Vt,2 Vt—1,2 €t,2

s — — 1

t,1 , = St—1,1 + Vt—1,1 + = €t,1 ,

St,2 St—1,2 Vg—1,2 2\ €2
where s; = (st,l,st,z)T is the object’s position vector at time ¢ and v; =
(Ut71,vt,2)T is its current velocity vector. The state equation innovation
€ = (et,l,et,z)T is distributed as A(0,02I). This model says that the
speed (vector) of the object evolves like a Gaussian random walk and the

position of the object follows the change of its speed. We assume, however,
that a noisy version of the object’s true position (y,1,yz,2)” is observable.

Observation Equation:

(yt,1)=<5t,1)+(€t,1)7
Yt,2 5¢,2 €t,2

where the observation noise e; = (e¢,1, et,z)T follows N (0,071).
.- T T .
By writing z; = (8¢,1,8¢,2,0t,1,v,2) and y¢ = (Y4,1,Y¢,2) , We can rewrite
the foregoing system more briefly as

2y = Gri_1+ €, € NN(O,UgA);
Yt Hzxy+ e, e NN(O,O’;I),

16 1. Introduction and Examples

where
1010 Lo Lo 1 0o\"
0101 0o L o ! 0 1
— — 4 2 o

G=l 001 0| 4= L0 10 cand H=| o
0001 0 ; 01 00

Mathematically, the tracking task is accomplished by on-line estimation
of the object’s position, (s¢,1,¢,2), based on all information available until
time ¢. If the y; are always observable at time ¢ (i.e., there is no clutter),
this estimation task can be achieved rather efficiently via the Kalman filter
(Kalman 1960) because of the linear Gaussian structures being employed.

If we consider a clutter environment, however, then at time ¢ we ob-
serve instead a clutter of points, 2 = {z¢1,..., 2k, }, in & 2-D detection
region with area A in which the number of false signals follow a spatial
Poisson process with rate A. The set z; includes the true measurement
Y = (ye,1,y1,2)7 with probability pg. Other 2’s are treated as uniform
within the detection range. This model for tracking in clutter is no longer
a linear Gaussian system. To date, there has not been a universally effec-
tive algorithm for dealing with nonlinear and non-Gaussian systems. De-
pending on the features of individual problems, some generalizations of the
Kalman filter can be effective. A few well-known generalizations are the ex-
tended Kalman filters (Gelb 1974), the Gaussian sum filters (Anderson and
Moore 1979), and the iterated extended Kalman filters (Jazwinski 1970).
Most of these methods are based on local linear approximations of the
nonlinear system. More recently, researchers are attracted to a new class of
filtering methods based on the sequential Monte Carlo approach. In Sec-
tion 4.5.1, we will show that the method based on sequential Monte Carlo
performs very well for the target tracking problem.

1.7 Hypothesis Testing for Astronomical
Observations

Efron and Petrosian (1999) described an interesting problem in astronomy.
Figure 1.8 shows us a set of doubly truncated astronomical data in which
log-luminosities y; (or the boundary point of its truncation interval) is
plotted against redshifts z; for n = 210 quasars. In other words, due to
experimental constraint, we are able to observe y; when it is within a known
interval R; depending on z;, otherwise we only know that y; is outside of the
interval R;. Two questions are of interest: (a) Are the y; independent of the
z;? (b) Assuming independence, can we estimate the marginal distribution
of the yz?
The real data actually consist of independently collected quadruplets

(Zi7mi7ai7bi)7 7/:]., , M,

1.7 Hypothesis Testing for Astronomical Observations 17

o2

Log luminosity

0

05 10 15 2.0 25 30
Redshift z
FIGURE 1.8. Doubly truncated data from an astronomical study of Efron and
Petrosian (1999). Points represent (redshift, log-luminosity) for 210 quasars. Lu-
minosity subject to upper and lower truncation is indicated by “—” in the figure.

where a; and b; are lower and upper truncation limits on m;, respectively,
and m; is the apparent magnitude of the ith quasar. Quasars with apparent
magnitude above b; were too dim to produce usable redshift observations.
The lower limit a; was used to avoid confusion with nonquasar stellar ob-
jects. In the dataset, a; = 16.08 for all ¢, and b; is between 18.494 and
18.934. Since further quasars appear dimmer (and have larger values of
m;), one needs to use Hubble’s law, which states that distance is propor-
tional to redshift, to transform m; into a luminosity measurement that
should be independent of distance. The plotted y; is thus derived as

. 1
yi = 19.894 — 2.303’2”—5 +2log(Z; — V/Z) — 5 log(Zs),

where Z; = 1+ z; [more details are given in Efron and Petrosian (1999)].

To answer question (a), a simple permutation test was considered by
Efron and Petrosian (1999). In other words, if we could observe the y;
without truncation, then under the null hypothesis that the y; and z; are
independent, the permuted y; should “look” the same as the old y;. Thus, if
we permute the y; many times and compute the test statistic, say T = t(y*),
repeatedly, where y*=(y¥,... ,y%) is a permutation of the original y’s, we
can obtain the “null distribution” of T': that is, if the independence hypoth-
esis were true, we would expect T to behave like what we see in the repeated
permutations. Because of truncations, however, the y* is observable only
if all the y; € R; (i.e., satisfying the double truncation requirement).

Let)Y be the set of all permutations that satisfy the truncation require-
ment. Then to compute the p-values for the statistical test, we need to

18 1. Introduction and Examples

be able to generate permutations of (y1,...,y,) uniformly in Y. In order
to achieve this sampling with a reasonable amount of computing time, one
needs to employ the Metropolis algorithm (Chapter 5). Briefly, to obtain an
approximately uniform sample from the set of all allowable permutations
Y, we can start with the identity permutation o(i) =4, i = 1,... ,n. At
each iteration step, we do the following:

e Randomly pick a pair of elements, ¢ and j, say, and propose a new
permutation ¢’ which differs from ¢ only by transposing o (i) and

a(j)-

o If the new permutation resulting from the transposition is still in),
then we accept the new configuration; otherwise, we stay put.

The validity of this algorithm can be understood in part by the Markov
invariance property explained in Chapter 5. Diaconis, Graham and Holmes
(2001) showed that the space) is “connected” by the foregoing Markov
moves. Thus, the equilibrium state of the algorithm follows the target
distribution (i.e., uniform in)). In other words, if we carry out a large
number (m=1,000,000, say) of iterations of the above steps, the latter
mgo (me=900,000, say) correlated permutations may be regarded as being
drawn uniformly from). These samples can be used to estimate the null
distribution of T'. An importance sampling approach can also be applied
to achieve the same goal.

1.8 Bayesian Inference of Multilevel Models

A basic regression model used for the prediction of a student’s first-year
average (FYA) from the Law School Aptitude Test (LSAT) score and un-
dergraduate grade point average (UGPA) is

FYA o LSAT + (?) x UGPA.

However, the important question for each law school is how to choose its
own multiplier of UGPA in this equation (Rubin 1980). In the past, a
number of law schools simply chose 200 as the multiplier. But due to recent
“grade inflation,” some recommended smaller multipliers such as 130. Many
law schools favored estimating the multiplier empirically, using recent data
from attending students. Because different law schools may have a different
education effect on its students, we do not expect that the multipliers used
by different schools to be the same. On the other hand, one may also feel
that all law schools have certain common characteristics and the multiplier
used in one school should provide information for other schools to determine
their own.

1.9 Monte Carlo and Missing Data Problems 19

The dataset in Rubin (1980) consisted of records from 82 law schools. A
standard linear regression was carried out for each school to obtain an initial
estimate of the multiplier, L;. Then Rubin (1980) proceeded by assuming
that ¥; = arctan(L;/200) follows a Gaussian distribution with mean 6; and
variance s?, where s? is estimated from the ith law school’s past record. A
hierarchical structure is further imposed on the 6;:

b: " N, 0).
The é, estimated from this model can be used to calculate the multiplier
[i.e., L; = 200tan(#;)] for the ith school in its FYA prediction.
A more general form of the model Rubin used can be stated as follows:

Vilo: RN filwil 6), (1.5)
6; "K' GO | N, (1.6)
for i = 1,..., k. This model is often referred to as a “hierarchical model.”

Of interest in this model are the estimation of all the unknown parameters,
0; and A, and the quantification of uncertainties in these estimates. A hier-
archical Bayes model is completed by giving a prior distribution fo(u,o?)
to the hyper-parameter \.

With notation @ = (64, ... ,0s2), we can write down the joint distribution
of the data and the parameters in Rubin’s study:

82
p(Y,0,1,0%) = fo(u,0) [] $(¥i; 63, 5:)$(0i; 1, 0),

i=1

where ¢(z; i, o) is the density function for N(u, 0?). By the Bayes theorem,
we derive the posterior distribution of all the unknown variables:

Y,0,u,0%)
0’ , 2 :p(s Uy [y
(0, p,07))

The Bayes estimator of 8; is its posterior mean:

xp(¥,0,p,0°%).

6= B(6: 1Y) = [7(6,1,0")d8;_ydudo?

where @[_; is all but the ith component of 6. This quantity is not an-
alytically available. Its numerical approximation needs high-dimensional
integration and can be most effectively solved by Monte Carlo techniques
(Gelfand and Smith 1990).

1.9 Monte Carlo and Missing Data Problems

A central theme of statistics is to infer unobserved parameters from ob-
served data. Let 6 be the parameter vector of interest. In a parametric

20 1. Introduction and Examples

inference problem, the observed vector y is regarded as the realized value
of a random vector whose distribution is f(y | 8), known up to a finite-
dimensional parameter 8. Two of the most popular approaches for inferring
0 are the mazimum likelihood estimation (MLE) method and the Bayes
method. In the MLE, the unknown parameter @ is estimated by the 0 that
maximizes f(y | @), which is also called the likelihood. Computationally,
this becomes an optimization problem. In the Bayesian methods, one relies
on the posterior distribution of 8, p(@ | y), to make inferential statement,
which can be formulated as a high-dimensional integration problem. (See
Section A.2 of the Appendix for more details.)

Many statistical problems do not naturally suggest “nice” models en-
abling simple analytical solutions to the posterior calculation. However, a
tractable structure can often be obtained if some auxiliary parts are aug-
mented to the system. In the field of statistics, these auxiliary components
can often be viewed as “missing data” (Tanner and Wong 1987). For exam-
ple, the hierarchical model discussed in the previous section can be treated
as a “missing data problem” in which the individual effects 8; are viewed
as missing data. In a state-space model (Sections 1.6, 3.3, and 4.5), the
unobserved state variable z; can be viewed as missing data. In the motif
alignment problem of biological sequence analysis (Section 1.5), the pattern
location ay, in each sequence can be treated as missing data.

A Bayesian missing data problem can be formulated as follows: Suppose
the “complete-data” model f(y | 8) has a nice clean form from which we
can obtain the analytical form of the posterior distribution. However, only
part of y, denoted as yo,bs, is observed, and the remaining part, Ymis, is
missing. Let y = (Yobs, Ymis). LThe joint posterior distribution of ymis and
0 is

”T(eaymis) X f(Ymis;yobs | 0)f0(0), (17)

and, marginally, the observed-data posterior is

D(8 | Yobs) = 7(8) = / (6, Yonis)Y i

If we can draw Monte Carlo samples (0(1),yr(n1i)s), ., (e, yfn”fs)) from the

joint posterior distribution m, then the histogram based on 0(1), cen ,0(m)
can serve as an approximation to the observed-data posterior distribution
(8 | Yobs). Furthermore, if we are interested in estimation some posterior
expectation of 8, say E{h(0) | yobs}, we can estimate it by

h= % [h (0“)) +---+h(0<m))] .

Note that the form of 7 in (1.7) is no different, at least in principle, from
that in (1.1). Hence, statisticians and physicists are indeed facing a similar
computational problem.

1.9 Monte Carlo and Missing Data Problems 21

To a broader scientific audience, the concept of “missing data” is perhaps
a little odd, for many scientists may not believe that they have any missing
data. In the most general and abstract form, the “missing data” can refer to
any augmented component of the probabilistic system under consideration
and the inclusion of this component often results in a simpler structure
and easier computation (there are more examples to demonstrate this need
in the later chapters). However, this component needs to be marginalized
(integrated) out in the final inference. Indeed, it is the scientist’s desire to
marginalize part or whole of a probabilistic system under investigation that
has been the main impetus to the development of Monte Carlo techniques
(Gilks, Richardson and Spiegelhalter 1998).

22 1. Introduction and Examples

This is page 23
Printer: Opaque this

2

Basic Principles: Rejection, Weighting,
and Others

2.1 Generating Simple Random Variables

To generate random variables that follow a general probability distribution
function 7, we need first to generate random variables uniformly distributed
in [0,1]. These random variables are often called random numbers for sim-
plicity. However, this “simple-sounding” task is not easily achievable on a
computer. But even if it were possible, it might not be desirable to use au-
thentic random numbers because of the need to debug computer programs.
In debugging a program, we often have to repeat the same computation
many times; this require us to reproduce the same sequence of random
numbers repeatedly. What becomes an accepted alternative in the commu-
nity of scientific computing is to generate pseudo-random numbers. More
formally, we can define a uniform pseudo-random number generator as an
algorithm which, starting from an initial value ug (i.e., the seed), produces a
sequence (u;) = (D(ug)) of values in [0,1]. For all n, the values (u1, ... ,uy)
should reproduce the behavior of an i.i.d. sample (V1,...,V,) of uniform
random variables. A few very good pseudo-random number generators are
available; we refer the reader to Marsaglia and Zaman (1993) and Knuth
(1997) for further reference. Consequently, we assume from now on that
uniform random variables can be satisfactorily produced on the computer.
The following simple lemma enables us to produce nonuniform random
variables. Its proof is left as an exercise for the reader.

24 2. Basic Principles: Rejection, Weighting, and Others

Lemma 2.1.1 Suppose U ~ Uniform[0,1] and F is a one-dimensional
cumulative distribution function (cdf). Then, X = F~Y(U) has the distri-
bution F. Here we define F~1(u) = inf{x; F(z) > u}.

This lemma suggests to us an explicit way (i.e., the inversion method)
of generating a one-dimensional random variable when its cdf is available.
However, because many distributions (e.g., Gaussian) do not have a closed-
form cdf, it is often difficult to directly apply the above inversion procedure.
For distributions with nice mathematical properties, special methods are
often available for drawing random samples from them. For example, a fast
way of generating standard Gaussian random variables is to use the prop-
erty that a standard bivariate Gaussian random vector (X,Y) (with zero
mean and identity covariance matrix) can be generated by first uniformly
choosing an angle in R? (two-dimensional Euclidean space) and then gener-
ating the square distance from an Exponential distribution (Devroye 1986).
A Beta random variable can be constructed as the ratio X;/(X; + X3),
where X; and X> are independent Gamma random variables. For math-
ematically less convenient distributions, von Neumann (1951) proposed a
very general algorithm, the rejection method, which can — at least in prin-
ciple — be applied to draw from any probability distribution with a density
function given up to a normalizing constant, regardless of dimensions.

2.2 The Rejection Method

Suppose I(x) = ¢r(x) is computable, where 7 is a probability distribution
function or density function and ¢ is unknown. If we can find a sampling
distribution g(x) and “covering constant” M so that the envelope property
[i.e., Mg(x) > I(x)] is satisfied for all x, then we can apply the following
procedure.

Rejection sampling [von Neumann (1951)]:

(a) Draw a sample x from g() and compute the ratio

)
"7 My(x)

(< 1).

(b) Flip a coin with success probability r;

e if the head turns up, we accept and return the x;
e otherwise, we reject the x and go back to (a).
The accepted sample follows the target distribution 7.

To show that the foregoing procedure is correct, we let I be the indicator
function so that I = 1 if the sample X drawn from g() is accepted, and

2.2 The Rejection Method 25

I =0, otherwise. Then, we observe that

PI=1)= /P(I — 1| X = x)g(x)dx / em() | xyax = -.

Hence,

_ cm(x)

px| 1=1) = 775

9(x)/P(I =1) = n(x).

Because the expected number of “operations” for obtaining one accepted
sample is M, The key to a successful application of the algorithm is to find
a good trial distribution g(x) which gives rise to a small M. It is usually
very difficult to apply the simple rejection method for a high-dimensional
Monte Carlo simulation problem.

Example: Truncated Gaussian distribution. Suppose we want to draw ran-
dom samples from 7(z) o< ¢(z)I{;>c}, where ¢(x) is the standard normal
density and I is the indicator function. A simple strategy can be applied
when ¢ < 0: We continue to generate random samples from a standard
Gaussian distribution until a sample satisfying X > c¢ is obtained. In the
worst case, the efficiency of this method is 50%.

For ¢ > 0, especially when c is large, the above strategy is very inefficient.
we can use the rejection method with an exponential distribution as the
envelope function. Suppose the density of this exponential distribution has
the form Age~2°%. We want to find the smallest constant b such that

¢z +)

< —Aoz > 0.
1_(1)(0)_1))\06 s V.Z'_O

The optimal choice of b is

_ exp{ (A2 — 2Xoc)/2}
V2ro(1 - @(c))

The acceptance rate for using the posited exponential distribution as the
envelope function is then 1/b. To achieve the minimum rejection rate, we
further find that the best choice for Ag is

Xo = (c+ Ve +4)/2.

With this choice of ¢ and b, we can implement the rejection method. The
rejection rate for this scheme decreases as ¢ increases, and this rate becomes
very small for moderate to large c¢. For example, for ¢ =0, 1, and 2, the
rejection rates are 0.24, 0.12, and 0.07, respectively.

26 2. Basic Principles: Rejection, Weighting, and Others
2.3 Variance Reduction Methods

Here we briefly describe a few techniques commonly used for variance re-
duction in Monte Carlo computations. More detailed descriptions can be
found in standard Monte Carlo books (Hammersley and Handscomb 1964,
Rubinstein 1981).

Stratified Sampling. It is a powerful and commonly used technique
in population survey and is also very useful in Monte Carlo computations.
Mathematically, this method can be viewed as a special importance sam-
pling method with its trial density g(z) constructed as a piecewise constant
function. Suppose we are interested in estimating [+ f(@)dz. If possible,
we want to break the region X into the union of k£ disjoint subregions,
Dy, ..., Dy, so that within each subregion, the function f(z) is relatively
“homogeneous” (e.g., close to being a constant). Then, we can spend m;
random samples, X 1) .. X(&mi) in the subregion D;, and approximate
the subregional integral [p, [/ (@)dz by

fio = —[FXED) oo fXEm)]

i
The overall integral p can be approximated by
o=y -+ i,

whose variance is easily calculated as

2 2
. o2 o2,

a. = . _m
var (i) my my’

where o7 is the variation of f(z) in region D;. In contrast, if we use all

of the m = my + - - - + my, samples to do a plain uniform sampling in the
region X, the variance of the estimate would be ¢2/n, with o2 being the
overall variation of f(z) in X.

Clearly, if we fail to have relatively homogeneous f(z) in each region D;
(in other words, if o7 is not much different from o2), stratified sampling
actually makes the computation less accurate than a plain Monte Carlo.
The moral is this: There is no free lunch, and one needs to think carefully
before adopting any advanced techniques.

Control Variates Method. In this method, one uses a control variate
C, which is correlated with the sample X, to produce a better estimate.
Suppose the estimation of u = E(X) is of interest and uc = E(C) is
known. Then, we can construct Monte Carlo samples of the form

X() =X +bC - pc),
which have the same mean as X, but a new variance

var{ X (b)} = var(X) — 2bcov(X, C) + b?var(C).

2.3 Variance Reduction Methods 27

If the computation of cov(X,C) and var(C) is easy, then we can let b =
cov(X,C)/var(C), in which case

var{X (b)} = (1 — pXc)var(X) < var(X).

Another situation is when we know only that E(C) is equal to u. Then,
we can form X (b) = bX + (1—-b)C. It is easy to show that if C' is correlated
with X, we can always choose a proper b so that X (b) has a smaller variance
than X. Extensions to more than one control variate are also useful in
Monte Carlo computations, but are omitted in this book.

Antithetic Variates Method. This method is due to Hammersley and
Morton (1956), where they describe a way of producing negatively corre-
lated samples. Suppose U is the random number used in the production
of a sample X that follows a distribution with cdf F [i.e., X = F~1(U)
according to Lemma2.1.1]. Then, X' = F~1(1-U) also follows distribution
F. More generally, if g is a monotonic function, then

{g(u1) — g(u2) Hg(1 —u1) — g(1 —u2)} <0

for any wu,us € [0,1]. For two independent uniform random variables Uy
and U, (in fact, it is only required that the two are i.i.d. a with symmetric
density in [0,1]), we have

E[{g(U1) — g(U2)Hg(1 = U1) — g(1 = U2)}] = cov(X, X') <0,

where X = g(U) and X' = g(1 — U). Thus, var[(X + X')/2] < var(X)/2,
implying that using the pair X and X’ is better than using two independent
Monte Carlo draws for estimating E(X).

Rao-Blackwellization. This method reflects a basic principle (or rule
of thumb) in Monte Carlo computation: One should carry out analytical
computation as much as possible. The problem can be formulated as fol-
lows: Suppose we have drawn independent samples x(, ..., x(™) from the
target distribution 7(x) and are interested in evaluating I = E h(x). A
straightforward estimator is

I= % {h(x(l)) +--+ h(x(m))} .

Suppose, in addition, that x can be decomposed into two parts (x1,z2) and
that the conditional expectation E[h(x) | z2] can be carried out analyti-
cally. An alternative estimator of I is

I= % {E[h(x) | 2] + - + Elh(x) | 2™ } :

28 2. Basic Principles: Rejection, Weighting, and Others

Clearly, both I and I are unbiased! because of the simple fact that
Exh(x) = Ex[E{h(x) | 22}].

If the computational effort for obtaining the two estimates are the same,
then I should be preferred because

var{h(x)} = var{E[h(x) | 2]} + E{var[h(x) | 2]},
which implies that

var{h(x)} _ var{E[h(x) | z2]} 7

var(I) = = var(I).

m m

In statistics, I is often called the “histogram estimator” or the empiri-
cal estimator and I the “mixture estimator.” Statisticians find that by
conditioning an inferior estimator on the value of sufficient statistics, one
can obtain the optimal estimator. This procedure is often referred to as
Rao-Blackwellization (Bickel and Doksum 2000). Some other uses of Rao-
Blackwellization in Monte Carlo estimations can be found in Casella and
Robert (1996) More discussions on this issue can be found in Section 2.5.5
and Chapter 6.

2.4 Exact Methods for Chain-Structured Models

An important probability distribution used in many applications has the
following form:

d
m(X) o exp {— Z h,-(:z:,-_l,az,-)} , (2.1)

i=1
where x = (xg,%1,... ,24). This type of model can be seen as having a
“Markovian structure” because the conditional distribution 7(z; | x[—3),
where x[_;; = (@1,... ,Zi 1,Zit1,--. ,Z4q), depends only on the two neigh-

boring variables z; ; and z;41; that is,
(@i | X[_q) < exp{—h(zi_1,7;) — h(Ts, 2it1)} -

The unobserved state variables in a state-space model (Section 1.6) can
clearly be represented in this form, which can also be depicted by the
following graph:

1 An estimator f is called an unbiased estimator of y if E,fi = u. In words, this means
that the average behavior of /i is “on target.”

2.4 Exact Methods for Chain-Structured Models 29

Zo T T Td—1 Zq

[@ @ @ @ @
When xg, ... ,24 are discrete random variables taking values in a finite
set S = {s1,..., Sk}, this structure is often referred to as the hidden Markov

model (HMM) and we can do many things with it. First, the “dynamic
programming” (DP) method (Bellman 1957) can be used to find the global
maximum of 7(x) and its maximizer X with O(dk?) operations. Second,
an algorithm of the same order as the DP exists for finding the marginal
distribution of each z; and drawing “exact” random samples from 7 (x).
Clearly, these exact algorithms are only practical when %, the number of
distinctive values that z; can take, is not too large.

2.4.1 Dynamic programming

Suppose each z; in x only takes values in set S = {s1,... , st }. Maximizing
the distribution 7(x) in (2.1) is equivalent to minimizing its exponent

H(X) = h1($07$1) +---+ hd(xd_l,xd).
A recursive procedure can be carried out:

e Define

my(x) =£1€ir§h1(si,m), for © =s51,...,8k-

e Recursively compute the function

my(x) = meiré{mt_l(si) + hi(si,x)}, for = =s1,...,s8k.

e The optimal value H(x) is attained by minges mq(s).

It is not difficult to see that the minimum of m;(x) is equal to the
minimum of hy (zg, z1). By induction, one can easily argue that

Iglelgmt(a:) = mo,?}ges[hl(xo’wl) + o+ h(z—1,)]

Thus, the above procedure indeed minimizes the target function H(x).
To find out which x gives rise to the global minimum of H(x), we can
trace backward as follows:

e Let &4 be the minimizer of mgy(x); that is,

Zq = arg minmg(s;).
8; €S

Break ties arbitrarily.

30 2. Basic Principles: Rejection, Weighting, and Others
e Fort=d—-1,d—2,...,1, welet

Iy = arg rr;in{mt(si) + hiya(si, Teg1) }-
8§ €

Break ties arbitrarily.

Configuration X = (%1,... ,4%4) obtained by this method is the minimizer
of H(x).

2.4.2 Ezact simulation

The first step for simulating from w(x) in (2.1) is to draw x4 from its
marginal distribution. This requires us to marginalize z1,... ,z4_1 in the
joint distribution 7(x). After we have drawn x4, we can work our way
backward recursively; that is, sampling z4_1 from m(zq_1|z4); £4—2 from
m(xq_2|T4—1); and so on. The principle behind the marginalization step is
based on the observation that the overall summation can be decomposed
into recursive steps; that is,

Z=>Y exp{-H(x)} =) [- [Z {z e‘hl(wo’“)}e—hz(%h)]] :

Z1

More precisely, the following recursions similar to those in DP can be car-
ried out by a computer:

o Define Vl(x) = Zzoes e*h1(zo,z)_

e Compute recursively for t = 2,... ,d:
Vi(z) = > Vica(y)e Mo, (2.2)
yeS

Then, the partition function is Z =)" ¢ Vi(z) and the marginal distri-
bution of z4 is w(zq) = Va(zq)/Z. To simulate x from m, we can do the
following;:

e Draw z4 from S with probability Vy(z4)/Z;

e Fort=d-1,d-2,...,1, we draw z; from distribution
W(x)e_ht+1(wawt+l)
pe(z) = “hesi(Y-
5o Vilg)e Freen
The random sample x = (z1,...,24) obtained in this way follows the

distribution 7(x).

2.5 Importance Sampling and Weighted Sample 31

As an example, we can use the forward-recursion formula (2.2) to com-
pute the partition function for a one-dimensional Ising model

7(x) = Z exp{B(zoxy + -+ g 124)},
where z; takes value in § = {—1,1}. First, we have
Vi) =eP?+e P2 =ef 4P,
which is a constant. Applying the recursion, we easily obtain that
Vite) = (e + &)’

and Z = 2(e #+eP)9. Details for an exact simulation from this distribution
are left to the reader.

An important feature of the target distribution 7(x) treated in this sec-
tion is that it can be written as

e - e}

ceC

where C is the set of some subsets of {1,...,d} and x¢ = (z;, i € C). In
Lauritzen and Spiegelhalter (1988), each subset C in C is called a “clique.”
Any two subsets C; and Cs are said to “connected” if they share at least
one common component. Any probability distribution that possesses this
dependency structure is termed a graphical model. Our model in this section
can be seen as a special graphical model in which the set of cliques is
C = {C1,-..,C4}, where C; = {i — 1,i}. When C forms a “tree” and
each clique does not have too many vertices (components), one can derive
efficient algorithms for optimization and exact simulation similar to the
algorithms described in this section (Lauritzen and Spiegelhalter 1988).
There does not seem to be a common name for this sampling method. Some
people call it the peeling algorithm because this method was first developed
for a genetic linkage problem (Cannings, Thompson and Skolnick 1978).
Some others refer it as the forward-summation-backward-sampling method,
a rather awkward name. We prefer to use the name propagation method for
the reason that both the forward and the backward steps can be thought
of as propagating information along the chain graph.

2.5 Importance Sampling and Weighted Sample

2.5.1 An example

Suppose we wish to evaluate the quantity

6 = / h(z)m(z)dz = E[h(X)],
x

32 2. Basic Principles: Rejection, Weighting, and Others

where the support of the random variable X is denoted as X and h(z) > 0.
In standard numerical methods, we discretize the domain X by regular
grids, evaluate h(x)w(z) on each of the grid points, and then use the Rie-
mann sum as an approximation. Consider the target function given by
Figure 2.1(a):

Flz,y) = 0.56790(:1:—0.5)2—45(y+0.1)4 + 6745(z+0.4)2760(y70.5)27
where (z,y) € [-1,1] x[-1, 1]. More than two-thirds of computing time are
wasted on evaluating those grid points on which the function is virtually

zero. It is easy to imagine that the situation deteriorates very rapidly as
the dimension of space X’ increases.

08 1

z

0 02 04 08

FIGURE 2.1. (a) The target function whose integral is of interest. (b) A possible
trial distribution g(z,y) for applying importance sampling.

By taking m random samples, (z(),y™M),... (™), y(™) uniformly in
[-1,1] x [-1,1], we implemented a vanilla Monte Carlo algorithm to esti-
mate the integral u = [[f(z,y)dzdy. Because the density for the sampling
distribution is a constant, 1/4, in the region, the estimate of the integral
was produced as

ﬂ:%{f<1>+_..+f<m)},

where f() = f(z() y®). With m=2,500, we obtained i= 0.1307, with a
standard deviation 0.009, which was estimated by

std(@) = | = > -
n(n —1)

i=1

Clearly, this vanilla Monte Carlo algorithm suffers a similar problem as
its deterministic counterpart: It wastes a lot of effort in evaluating random
samples located in regions where the function value is almost zero. Although
the theoretical convergence rate is m~1/2 for essentially all Monte Carlo
methods, it is the constant in front of this rate that makes a huge difference
in a real problem.

2.5 Importance Sampling and Weighted Sample 33

2.5.2 The basic idea

The importance sampling idea (Marshall 1956) suggests that one should fo-
cus on the region(s) of “importance” so as to save computational resources.
Although it may not seem so important in the toy example shown earlier,
the idea of biasing toward “importance” regions of the sample space be-
comes essential for Monte Carlo computation with high-dimensional mod-
els such as those in statistical physics, molecular simulation, and Bayesian
statistics. In high-dimensional problems, the region in which the target
function is meaningfully nonzero compared with the whole space X is just
like a needle compared with a haystack. Vanilla Monte Carlo schemes (e.g.,
sampling uniformly from a regular region) are bound to fail in these prob-
lems.
Suppose one is interested in evaluating

p=E{h(x)} = /h(x)w(x)dx.

The following procedure is a simple form of the importance sampling algo-
rithm:

(a) Draw x1, ... x(™) from a trial distribution g(-).
(b) Calculate the importance weight

w9 = 7(x9)/g(xD), forj=1,...,m.

(c) Approximate p by

wq _|_ s _|_ W :

i= (2.3)

Thus, in order to make the estimation error small, one wants to choose g(x)
as “close” in shape to w(x)h(x) as possible. A major advantage of using
(2.3) instead of the unbiased estimate,

= % {w<1>h(x<1>) rox w<m>h(x(m>)} 7 (2.4)
is that in using the former, we need only to know the ratio 7(x)/g(x) up
to a multiplicative constant; whereas in the latter, the ratio needs to be
known exactly. Additionally, although inducing a small bias, (2.3) often has
a smaller mean squared error than the unbiased one ji.

Another scenario for resorting to importance sampling is when we want
to generate i.i.d. random samples from 7 but doing so directly is infeasi-
ble. In this case, we may generate random samples from a different, but
similar, trivial distribution g(), and then correct the bias by using the im-
portance sampling procedure. Similar to the rejection method, a successful

34 2. Basic Principles: Rejection, Weighting, and Others

application of importance sampling in this case requires that the sampling
distribution g is reasonably close to 7; in particular, that g has a longer
tail than 7. Note that finding a good trial distribution g can be a major —
and sometimes impossible — undertaking in high-dimensional problems.

Alternatively, we can opt for correlated samples produced by running
a Markov chain whose stationary distribution is . This methodology is
referred to as Markov chain Monte Carlo (MCMC) throughout the book. A
very general recipe for designing a proper Markov chain was first proposed
by Metropolis et al. (1953) and has been subject to active research in the
past few decades. We will discuss this class of methods in the latter part
of this book (Chapters 5-11).

Let us illustrate the importance sampling method with the toy example
shown in Figure 2.1. After a visual examination of function f(z,y), we
decided to use a distribution g(z,y), which is of the form

9(z,y) o 0_56—90(w—0.5)2—10(y+0.1)2 + e—45(m+0.4)2—60(y—0.5)27
with (z,y) € [-1,1] x [-1,1]. This is a truncated mixture of Gaussian
distributions:

1 1
| (o) (&)l (755) (5 %))
—0.1 0 = 0.5 0 1

We can sample from this mixture distribution by a two-step procedure: (a)
a biased coin (with probability 0.464 of showing heads) is first tossed; (b) if
the head turns up, we draw a random vector from the first Gaussian distri-
bution, otherwise, we draw from the second Gaussian distribution. The inte-
gral can then be estimated by averaging the ratios w(z,y) = f(z,y)/9(z,v),
with w = 0 when (z,y) falls out of the region X. With m=2500, our esti-
mate of u is 0.1259, with a standard error 0.0005.

2.5.8 The “rule of thumb” for importance sampling

Importance sampling suggests estimating u = E.{h(x)} by first generating
independent samples x(M), ... ,x(™ from an easy-to-sample trial distribu-
tion, g(), and then correcting the bias by incorporating the importance
weight w') oc w(x())/g(x()) in estimation using either (2.3) or 2.4. By
properly choosing g(-), one can reduce the variance of the estimate substan-
tially. A good candidate for g(-) is one that is close to the shape of h(x)mw(x).
Therefore, the importance sampling method can be super-efficient; that is,
the resulting variance of i can be smaller than that obtained using inde-
pendent samples from w. The method is generalized to the case of, say,
evaluating E;{h(x)} when sampling from 7(-) directly is difficult but gen-
erating from g¢(-) and computing the importance ratio w(x) = m(x)/g(x)
(up to a multiplicative constant) are easy. The efficiency of such a method
is then difficult to measure. A useful “rule of thumb” is to use the effective

2.5 Importance Sampling and Weighted Sample 35

sample size (ESS) to measure how different the trial distribution is from
the target distribution. Suppose m independent samples are generated from
g(x); then, the ESS of this method is defined as

m

ESS(m) = I]

Since the target distribution 7 is known only up to a normalizing con-
stant in many problems, the variance of the normalized weight needs to be
estimated by the coefficient of variation of the unnormalized weight:

D U) —)

(m— a2

v (w) = (2.5)
where @ is the sample average of the w(/). The ESS measure of efficiency
can be partially justified by the delta method as follows (Kong et al. 1994,
Liu 1996a).

Note that E,{w(x)} = 1; hence, both (2.3) and (2.4) are proper esti-
mates of p. In particular, the two estimates are related to each other in the
following form:

o 1 E;”Zl h(x@))w(x()) _ i
P TETLee0) W
Let Z = h(x)w(x), W = w(x), and let Z and W be the corresponding
sample averages. As we have mentioned in Section 2.5.2, there are two
advantages for choosing /i over Z for estimation: The importance sampling
ratios need only to be evaluated up to an unknown constant; and j may
have smaller mean squared error than i = Z. By the delta method, we see
that

(2.6)

By(i) ~ Bg{Z[1-=(W 1)+ (W —1)*+---]}
covy(W,2Z) pvar,W
a m L

The variance of i can be explored by using the standard delta method for
ratio statistics:

varg(fi) = %[/fvarg(W) + vary(Z) — 2ucovy (W, Z)]. (2.7

In contrast, E, (1) = p and vary (i) = vary(Z)/m. Hence, the mean squared
error (MSE) of fi is

MSE(f1) = E, (i — p)* = vary(Z)/m,
and that for f is
MSE(i4) = [Ey(it) — p]* + vary(f2)
= %MSE(,&) + %[,uzvarg(W) — 2pcov, (W, 2)] + O(m~?)

36 2. Basic Principles: Rejection, Weighting, and Others

Without loss of generality, we let g > 0. Then, MSE(ji) is smaller in com-
parison with MSE(1) when u? — 2ucovy(W, Z) < 0 (i.e., when W and Z
are strongly correlated).

Denoting H = h(x), we observe that Z = WH, p = E,(WH), and

covg(W,Z) = Ex(HW) — p = covga(W, H) + pE(W) — p.
Similarly

vary(Z) = E (WH?) - p?
~ E.(W)E2(H) + var, (H)E; (W) + 2ucov. (W, H) — u?,

where the approximation is made based on the delta method involving the
first two moments of W and H. It is easy to show that the remainder term
in the above approximation is

E:[{W - Ex(W)}(H - p)’], (2.8)
which is not necessarily small. By reformulating (2.7), we find that

vary(fi) = vary (H){1 + var,(W)}/m.

Roughly speaking, if y were estimated by i = 23”21 h(y))/m where the
y@) are i.i.d. draws from =, then the efficiency of /i relative to g is

v hy)) 1
varg{h(x)w(x)} 1+ varg{fw(x)}

This can be interpreted as that the m weighted samples is worth of m /{1 +
varg[w(x)]} i.i.d. samples drawn from the target distribution. Obviously,
the “rule of thumb” approximation can be substantially off if the remain-
der term (2.8) is large. The advantage of the “rule” is that it does not
involve h(x), which makes it particularly useful as a measure of the rel-
ative efficiency of the method when many different h’s are of potential
interest.

2.5.4 Concept of the weighted sample

The concept of a properly weighted sample is a useful generalization to
the foregoing importance sampling procedure. Suppose we are interested
in Monte Carlo estimation of y = E;h(x) for some arbitrary function
h. The importance sampling principle suggests that the random sample
xW, ..., x(™ used to estimate p need not be drawn from 7 — they can be
drawn from almost any distribution provided that a proper set of weights
are associated with the sample and the weights are not too skewed.

2.5 Importance Sampling and Weighted Sample 37

Definition 2.5.1 A set of weighted random samples {(x(j),w(j))};-”:1 is
called proper with respect to w if for any square integrable function h(-),

Elh(xW)wD] = cE h(x), for j=1,...,m,

where ¢ is a normalizing constant common to all the m samples.

With this set of weighted samples, we can estimate p as
1 m
Ho= — E ((9 b (x(9)
n= Wj:le h(x"), (2.9)

where W = 2211 w¥ . Mathematically, this says that the joint distribution
g(w, x) for both the weight and the sample satisfies the relationship: For
any square integrable h(-), E{h(x)w}/E,(w) = E {h(x)}. This equality
also implies that

Ey(w | %)

oty 900 =7, (210)

where g(x) is the marginal distribution of x under g(x,w). Thus, a nec-
essary and sufficient condition for x to be properly weighted by w with
respect to 7 is (2.10).

The whole point of this generalization is to emphasize that there are
many possible choices of the weighting function w for any given x. In the
context of importance sampling, the importance weight w is a deterministic
function of the corresponding sample x [i.e., w = w(x)/g(x)]. Thus, in this
case the joint distribution of (w,x) is a degenerate one. It is also possible
that conditional on x, the weight variable w has a proper distribution
and this flexibility can be useful for combining importance sampling with
MCMC algorithms (more details in later chapters).

2.5.5 Marginalization in importance sampling

As we explained in Section 2.3, the method of Rao-Blackwellization is useful
for improving estimation in a vanilla Monte Carlo scheme. Here, we show
that the same technique takes the form of marginalization in importance
sampling and is useful for reducing the variance of the importance weight.

Theorem 2.5.1 Let f(z1,22) and g(z1,22) be two probability densities,
where the support of f is a subset of the support of g. Then,

f(Z1,2)) var f1(Z1)
varg{ }Z g{gl(Zl)

9(Z1,Z>)
where fi(z1) = [f(2z1,22)dz2 and g1(z1) = [g(2z1,22)dz> are marginal
densities. The variances are taken with respect to g.

}J

38 2. Basic Principles: Rejection, Weighting, and Others

Proof: Tt is easy to see that

fi(z) f(z1,2)
B /91(

g1(z1) Zl)gz\l(z2|z1)92|1(z2|z1)dz2
{ 2.2 Z, = Zl}.

9(21,2,)
{1228 {5 [12223]} o 420)

We can also obtain an explicit expression of the variance reduction:

f(Zl,Zz)} {fl(Zl)} { [f(ZlaZﬂ ‘]}
vary, § ——5——=— ¢ — var =FE,qvary, | —5——F-< | Z ,
g{g(Zl,Zz) 1 91(Zy) VT 9(21,2,) | 7
which, in the Analysis of Variance (ANOVA) terminology, is the average
“within-group” variation with the group indexed by Z;. ¢

The moral of the theorem is, again, that in Monte Carlo computations,
one is encouraged to do as much analytical work as possible. Bringing
down dimensionality is almost surely a good practice, although some ex-
amples exist in which one actually wants to increase the dimension of the
space to improve the efficiency of the Monte Carlo algorithms (Section 7).
This theorem was used in MacEachern, Clyde and Liu (1999) to justify a
new importance sampling algorithm for a nonparametric Bayesian inference
problem.

Another place to use Rao-Blackwellization is in estimation. For example,
if the sample x) can be decomposed as (¢, 2 and if E[h(x) | 22]
is available in closed-form, then an often more efficient estimator of u =
E;h(x) is

‘:(

Z D B [h(x) | 2], W:Zw(j)’
=1 j=1

whose asymptotic unbiasedness is easily shown. However, it is no longer
as trivial as in Section 2.3 to prove its optimality — it in fact can not be
proved that the new estimator fi is always better than the plain estimator
n (2.3).

2.5.6 Example: Solving a linear system

It has been noted that many deterministic systems can be solved by Monte
Carlo methods (Hammersley and Handscomb 1964, Ripley 1987). Such
systems include the boundary problems of partial differential equations,

2.5 Importance Sampling and Weighted Sample 39

general high-dimensional linear equations, and other fixed-point problems.
We here follow the general formulation in Section 4 of Griffiths and Tavare
(1994). Suppose a system can be written in a recursive form as

0) = 3 r(x¥)a(y) + Y r(x,2)q(z), forxeB, (2.11)

yeEA zEB

where ¢(x) is known for x € A and is unknown for x € B (this happens
in solving a difference equation with a given boundary condition). By re-
peatedly substituting the unknown ¢(z) in the right-hand side of (2.11) by
relationship (2.11), we have

q(x) doreey)ay) + Y D ry)r(yn, y)a(y)

YEA yi€EBycA

+ 30 YD Yy y)r(ys, v)ay) + -

y1€EBy2€EBycA

D42 D Dy ye) (e y)aly) ¢ - (212)

k=0 \ y1€B yrEBy€cA

Il

Suppose we can construct a Markov transition function A(x,y) that sat-
isfies the following conditions: (a) A(x,y) > 0 whenever r(x,y) > 0 and
(b) the chain visits .4 with probability 1 starting from any x € B. Then,
for any given x¢ € B, we can simulate this Markov chain (some basics of
Markov chain theory is given in Chapter 12) with xo as its initial state (i.e.
Xy = %¢) and run the chain until it hits A for the first time. With this
construction, expression (2.12) can be rewritten probabilistically as

(X1, Xk)
q(XO) { H A Xk 1;Xk)
where 7 is the first time the chain visits A (the hitting time). Thus, g(x)

can be estimated as follows. We run m independent Markov chains with
the transition function A(-,-) and the starting value x¢ until hitting A.

Let these chains be X 5"), X (T?, where 7; is the hitting time of the jth
chain; then,

m Tj (4) ©))
R 1 r(X , X))
= Zq(%)) H Izj)l IZj)
= AKX x)y

However, this method is usually inferior to its deterministic counterpart
except for a few special cases (Ripley 1987). For example, this Monte Carlo
approach might be attractive when one is only interested in estimating a
few values of g(x). We will discuss in Section 4.1.2 and Chapter 3 several

40 2. Basic Principles: Rejection, Weighting, and Others

techniques (e.g., resampling, rejection control, etc.) for improving efficien-
cies of the importance sampling method [see also Liu and Chen (1998)].
A proper implementation of these new techniques might lead to a Monte
Carlo method that is more appealing than the corresponding deterministic
approach (Chen and Liu 2000b).

2.5.7 FEzxample: A Bayesian missing data problem

In statistics, it is often the case that part of the data is missing which
renders the standard likelihood computation difficult (see the Appendix).
The current example is constructed by Murray (1977) in the discussion of
Dempster et al. (1977). Table 1 contains 12 observations assumed to be
drawn from a bivariate normal distribution with known mean vector (0,0)
and unknown covariance matrix.

1 1 -1 -1 2 2 -2 =2 x % x %
1 -1 1 -1 x x x x 2 2 =2 =2

TABLE 2.1. An artificial dataset of bivariate Gaussian observations with missing
parts (Murray, 1977). The symbol * indicates that the value is missing.

Let p denote the correlation coefficient and let o; and o2 denote the

marginal variances. The complete data are y1, ... ,y12, where yy=(ys.1, Yt,2)
for t =1,...,12. So the y; o are missing for ¢ = 5,...,8, whereas y; 1 are
missing for thet =9, ... ,12. We are interested in the posterior distribution

of p given the incomplete data. Note that the information on o1 and o9
provided by the eight incomplete observations cannot be ignored in drawing
likelihood-based inference about p.

For simplicity, the covariance matrix of the bivariate normal is assigned
the Jeffreys’ noninformative prior distribution (Box and Tiao 1973)

d+1

() « |T|" 5, (2.13)

where d is the dimensionality and is equal to 2 in this example. The pos-
terior distribution of ¥ given ¢ i.i.d. observed complete data yi,... ,y; is

t4d+1

1
p(2|y17,yt)0<|2|_ 2 exp{—§ tI‘[ES]}7

where S = (s45)2x2 is the uncorrected sum of squares matrix (i.e., s;; =
Eizl Ys,i¥s,j). This distribution is called the inverse Wishart distribution.
Box and Tiao (1973) and Gelman, Carlin, Stern and Rubin (1995) give
more details on the standard Bayes inference with multivariate Gaussian
observations. An introduction on the general Bayesian inference can be
found in the Appendix.

2.5 Importance Sampling and Weighted Sample 41

By letting Z=%"1, we see that Z follows a Wishart(t, S) distribution:

t—d—1
2

p(Z|complete data) o« 272 exp {—% tr[Z - S]} . (2.14)

See Johnson and Kotz (1972) for a detailed derivation. In this distribution,
n is often referred as its degree of freedom and S its scale matrix (required to
be positive definite). Sampling from this Wishart distribution when ¢ > d+
1 can be accomplished as follows: Simulate ¢ independent samples €1, ... , €&
from a d-dimensional multivariate Gaussian distribution, N(0,.S), and then
let Z = 22:1 eiel . Suppose S is decomposed as S = CCT, a more efficient
algorithm proposed by Odell and Feiveson (1966) is as follows:

(a) Simulate independent random samples V; ~ x%(t — j), j =1,... ,d.
(b) Simulate independent random variables N;; ~ N(0,1), for i < j <d.

(c) Construct a symmetric matrix B = (b;;j)axq as follows:

biu = Vi, by = NijvVi;

j—1
bij = Vi+Y N5, j=2,....d
i=1

i—1
bij Nij\/Vi+ZNkiNkj, i<j<d
k=1
(d) Then, Z = CBCT follows the Wishart(t,S) distribution in (2.14).

Now let us go back to the original problem of making inference on p
with incomplete data. In this case, we can write down the joint posterior
distribution of ¥ and missing data Ymis = (¥5,2,- -+ ,¥8,2,Y9,15- -+ ,Y12,1) aS

p(EaYmis | YObs) o8 p(Ymis;Yobs | E)p(z)
1
o« (27 exp {—itr[E_l -S(ymis)]} ,

where S(ymis) emphasizes that its value depends on the value of ymis.
Thus, the posterior distribution of ¥ can be derived from the above joint
distribution with yn;s integrated out. An importance sampling algorithm
for achieving this goal can be implemented as follows:

e Sample ¥ from some trial distribution g¢(X),

® Draw Ymis from p(ymis | Yobs, %)-

It should be noted that given X, the predictive distribution of yms is simply
the Gaussian distribution. For example,

[Y5,2 | T, Yobs) = [Us,2 | ,ys5,1] ~ N(pte,02)

42 2. Basic Principles: Rejection, Weighting, and Others

where 1. = pys.14/011/022 and 02 = (1 — p*)o11. Thus, the key question is
how to draw X. A simple idea is to draw ¥ from its posterior distribution
conditional only on the first four complete observations:

90(2) o |E|77/2 exp{—tr[S ' S,4]/2},

where Sy refers to the sum of the square matrix computed from the first four
observations. With gg so chosen, the estimated coefficient of variation of
the importance weights is 2.25 with 5000 Monte Carlo samples. Of course,
other choices of ¥ are also possible.

For a comparison, we obtained the analytical form of the observed-data
posterior distribution of p up to a normalizing constant:

(1~)]
(125~)]

Figure 2.2 displays the Monte Carlo estimates of the density versus the
true posterior density of p.

(a) (b)

p(p | data in Table 2.1) o

04 06 08 10

00 02 04 06 08 10

0.0 0.2

170 G5 00 o5 1o -10 05 0o 0’5 To

FIGURE 2.2. Importance sampling estimate of the posterior density of the cor-
relation coefficient p (with 5000 iterations) for a bivariate Gaussian model with
Murray’s (1977) data. (a) the usual estimate with m=>5000 overlaid by the “true”
density; (b) the estimate resulting from Rao-Blackwellization with m=1000 (cour-
tesy of Mr. Yuguo Chen).

2.6 Advanced Importance Sampling Techniques

2.6.1 Adaptive importance sampling

It is often a good idea to “learn” about the target distribution of interest
along with Monte Carlo sampling. A simple way of achieving this is to
start with a trial density, say go(Xx) = to(X; o, X0), Where t, represents
a t-distribution with « degrees of freedom. With weighted Monte Carlo
samples, one can estimate the mean and covariance matrix, denoted as p;
and ¥, respectively, of the target distribution. Then, a new trial density

2.6 Advanced Importance Sampling Techniques 43

can be constructed as g1(x) = tqo(X,p1,X1) (Oh and Berger 1992). This
procedure can be iterated until a certain measure of discrepancy between
the trial distribution and the target distribution, such as the coefficient of
variation of the importance weights, does not improve any more.

Another way of doing an adaptation (Oh and Berger 1993) is to assume
a parametric form for the new trial density g;(x) [e.g., suppose it is of the
form g(x; A)]. Then, we try to find the optimal choice of A, defined as the one
that minimizes, say, the estimated coefficient of variation of the importance
weights, based on the current sample. Let w(x; A) = 7(x)/g1(x). We note
that

m (x)
vary, (w) = | —————go(x)dx — 1.
)= [S G
Suppose we have drawn x™) ... x("™) from the trial distribution go(x).

The coefficient of variation of m(x)/g1(x) can be approximated as

where H(\) = 37", HO)(X)/m and
m* (x9)) _ {r(x9))/go(x9))}*
91 (x)go(x10)) g(x\);A)/go(x7)) *

When 7(x) can only be evaluated up to a normalizing constant, we need
to use the estimate

H(j)()\) —

AR
wg

a*(\) = -1,
where Wy is the sample average of the un-normalized importance ratio

7(x9)/go(x)). Then, we can implement a Newton-Raphson method to
find the optimal \. Of particular interest is that for A = (e, u, ¥),

9(x;A) = ego(x) + (1 — €)t, (x; p, X);

that is, the “improved version” is the mixture of the previous trial distri-
bution gg with a new parametric component.

The reader should be cautious in using these adaptive methods since they
are typically unstable. Perhaps a less greedy but more robust approach is to
minimize a more robust distance measure between the trial and the target
densities (e.g., the Hellinger or the Kullback-Leibler distance).

2.6.2 Rejection and weighting

When implementing the rejection method, one needs to find a trial density
g() and an envelope constant M such that 7(x) < Mg(x) for all x. Its

44 2. Basic Principles: Rejection, Weighting, and Others

efficiency is determined as 1/M; that is, on the average, M random samples
have to be generated in order to produce an accepted one. Thus, finding a
good M is crucial, but is nontrivial. Suppose one uses a reasonable M but is
unsure whether the envelope inequality holds in the entire support of 7 (-);
one can, in fact, accept those x’s that lie in the region {x : 7(x) > Mg(x)},
and adjust the bias by giving these samples appropriate weights. In this
way, we may achieve faster computation and better efficiency.

When applying importance sampling, one often produces random sam-
ples with very small importance weights because of a less than ideal trial
density. Suppose we are interested in estimating E,[h(x)], but the evalu-
ation of h(x) is expensive. In this case, we would like to evaluate as few
samples as possible but without losing much information or creating a bias.
The following simple technique for combining rejection and importance
weighting can be used.

Suppose we have drawn samples x(, ... x(™) from g(x). Let w) =
7(x9))/g(x()). We can conduct the the following operation for any given
threshold value ¢ > 0:

Rejection Control (RC)
e For j =1,...,m, accept x¥) with probability

, (9)
7 = min {1, w_} .
c

o If the jth sample x(7) is accepted, its weight is updated to w*?) =
qew? /7)) where

g = /min {1, @} g(x)dx.

Constant ¢, is maintained only for conceptual clarity instead of computa-
tional need in estimating a expectation with respect to 7. This is because
qc, the same for all the accepted samples, is not needed for the evaluation
of the ratio estimate in (2.3). But in cases where one is interested in esti-
mating the normalizing constant of the target distribution (also called the
partition function), one may need a good estimate of ¢..

The above RC scheme can be viewed as a technique for adjusting the
trial density g in light of current importance weights. The new trial density
g*(x) resulting from this adjustment is expected to be closer to the target
function m(x). In fact, it can be seen that

g (x) = q;l min{g(x), 7(x)/c}. (2.15)

Because of the relationship

o= [mintax), w0}z = £ min {1, 20 L ax

C

2.6 Advanced Importance Sampling Techniques 45

the normalizing constant g. can be unbiasedly estimated from the sample
as

. 1 & . w®
Pe = E;mln{l,T} .

After applying rejection control, we will typically have fewer than N sam-
ples. More samples can be drawn from either g(z) or ¢g*(z) (via rejection
control) to make up for the rejected samples. The usefulness of the method
in sequential importance sampling as shown by Liu, Chen and Wong (1998)
will be discussed in the next chapter. Theoretically, one can show the fol-
lowing:

Theorem 2.6.1 The rejection control method indeed reduces the x? dis-
tance between the target distribution and the modified trial distribution; that
18,

var(x)/g" (x)] < var,[r(x)/g(x)]. (2.16)

Proof: With w(x) = 7(x)/g(x), the rejection probability g. in (2.15) can
be expressed as

qe = /min {g(x), @} dx = %Eg[min{w(x), c}. (2.17)
On the other hand, we have
r (%) = (x) X = m(x) m(x)dx
v {51 = [T = | st

= /qcmax{w(x),c}w(x)dx (2.18)
=GB fmax{w(), hu(x)]. (219

Now we show that for any wy > 0,ws > 0,

h(wr, we) = [min{ws, ¢} — min{w,, ¢}][wr max{ws,c} — wr max{ws,c}] > 0.
There are three scenarios for value ¢: (i) min(w,ws) > ¢, then h(wy,ws) =
0; (i) ¢ > max(wy,ws), then h(wy,ws) = c(wy — w2)? > 0; and (iii) ¢ is
between w; and ws, in which case we assume without loss of generality
that wy < ¢ < we, then

h(wy,ws) = (¢ — wi) (w3 — cw;) > 0.

Hence, the two random variables min{w(x), ¢} and w(x) max{w(x),c} are
positively correlated. Together with the fact that

min{w(x), ¢} max{w(x), c} = cw(x),

46 2. Basic Principles: Rejection, Weighting, and Others

and formulas (2.17) and (2.19), we have

c [1 + var,, { M H = E,[min{w(x), c}]E,[max{w(x), c}w(x)]

9* (%)
< Eymin{w(x), ¢} max{w(x), c}w(x)]
= cE,w’(x)]=c [1+varg {%H .

Hence, we have proved the result (2.16). &

2.6.3 Sequential importance sampling

It is nontrivial to design a good trial distribution for doing importance
sampling in high-dimensional problems. One of the most useful strategies
in these problems is to build up the trial density sequentially. Suppose
we can decompose x as X = (Z1,...,&q) where each of the z; may be
multidimensional. Then, our trial density can be constructed as

g9(x) = g1(®1)ga(w2 | 1) -+~ ga(®a | T1,--- ,Ta—1), (2.20)

by which we hope to obtain some guidance from the target density while
building up the trial density. Corresponding to the decomposition of x, we
can rewrite the target density as

m(x) = w(x)m(x2 | 1) - 7(Tq | Z1y--- , Ta—1) (2.21)
and the importance weight as

(@) (@ | z) w1 (@a | Ty Tao1)
w(X) - gl(wl)g2($2 | .’L‘l) . "gd(xd | xq, ... 7$d71). (222)

Equation (2.22) suggests a recursive way of computing and monitoring the
importance weight; that is, by denoting x; = (z1,...,;) (thus, x4 = x),
we have

’/T(.Z’t | thl)

wt(Xt) - wtil(xpl)gt(xt | Xt—l).

At the end, wq is equal to w(x) in (2.22). Potential advantages of this recur-
sion and (2.21) are the following: (a) We can stop generating further com-
ponents of x if the partial weight derived from the sequentially generated
partial sample is too small and (b) we can take advantage of 7(z; | x¢—1)
in designing g¢(x; | x¢—1). In other words, the marginal distribution 7 (x;)
can be used to guide the generation of x.

Although the above “idea” sounds interesting, the trouble is that the
decomposition of 7 as in (2.21) and that of w as in (2.22) are impractical

2.6 Advanced Importance Sampling Techniques 47

at alll The reason is that in order to get (2.21), one needs to have the
marginal distribution

m(x¢) = /77(3:1,... ,xq)dTeyy - - - dag,

whose computation involves integrating out components x¢y1,...,Zq in
m(x) and is as difficult as — or even more difficult than — the original
problem.

In order to carry out the sequential sampling idea, we need to introduce
another layer of complexity. Suppose we can find a sequence of “auxiliary
distributions,” my (1), m2(x2), ... , m4(X), so that m(x;) is a reasonable ap-
proximation to the marginal distribution 7(x;), for t = 1,... ,d — 1 and
mq = 7. We want to emphasize that the m, are only required to be known
up to a normalizing constant and they only serve as “guides” to our con-
struction of the whole sample x = (z1, ... ,z4). The sequential importance
sampling (SIS) method can then be defined as the following recursive pro-
cedure (for t = 2,...,d).

SIS Step:
(A) Draw Xy=x; from g¢(x¢|x:—1), and let x; = (X¢—1,Z¢).
(B) Compute

- i (X1)
= mp—1(X¢—1)9¢ (x4 | xt_l)’ (2.23)

and let w; = wy_qug.

In the SIS step, we call u; an “incremental weight.” It is easy to show
that x; is properly weighted by w; with respect to 7; provided that x;_1 is
properly weighted by w;_; with respect to m;_;. Thus, the whole sample x
obtained in this sequential fashion is properly weighted by the final impor-
tance weight, wg, with respect to the target density m(x). One reason for
the sequential buildup of the trial density is that it breaks a difficult task
into manageable pieces. The SIS framework is particularly attractive, as
it can use the sequence of “auxiliary distributions” my,m2,... ,m4 to help
construct more efficient trial distribution:

e We can build g; in light of 7;. For example, one can choose (if possible)
gt(we | Xp—1) = m (24 | Xp-1)-
Then, the incremental weight becomes

Ut = Wt(xt)/ﬂ't—l(xt—l)-

48 2. Basic Principles: Rejection, Weighting, and Others

e When we observe that wy is getting too small, we can choose to reject
the sample halfway and restart again. In this way, we avoid wasting
time on generating samples that are doomed to have little effect in
the final estimation. However, as an outright rejection incurs bias,
the rejection control technique described in Section 2.6.2 can be used
to correct such bias (Section 2.6.4)

In configurational bias Monte Carlo (Siepmann and Frenkel 1992), the SIS
is used as a proposal (independent) transition in a Metropolis-Hastings
algorithm (see Section 5.4.3).

The most important unanswered question in the SIS framework is how
to find a reasonable set of “auxiliary distributions.” This issue will be il-
lustrated through several practical examples in Chapters 3 and 4. For ex-
ample, in a nonlinear filtering problem, the “auxiliary distributions” often
correspond to the “current” posterior distributions of the true signals.

2.6.4 Rejection control in sequential importance sampling

Although the rejection control method (Section 2.6.2) was described in a
“static” form, it can be applied dynamically to improve an SIS scheme.
Suppose a sequence of “check points,” 0 < t; < t2 < --- < tx <d, and a
sequence of threshold values ¢y, ... , ¢, are given in advance. The following
procedure can be implemented:

1. At each check point t;, start RC(t)) as described in Section 2.6.2
with the threshold value ¢ = ¢;. If the partial sample (z1,...,zy;)
has a weight w;,;, then we accept this partial sample with proba-
bility min{1,wy,/c;} and, if accepted, replace its weight by w;‘j =
max{wy;,c;}.

2. For each rejected partial sample, restart from the beginning again and
let it pass through all the check points at t1,... ,t;, with threshold
values ci,... ,cj, respectively. If rejected in any middle check point,
start again.

Note that after the first rejection control at stage t1, the sampling distri-
bution g; (x;) for X is no longer the same as the one described in (2.20).
It is shown by Liu, Chen and Wong (1998) that for any time ¢, partial
sample x; resulting from the above procedure is properly weighted with
respect to m; by their modified weights w;. To retain a proper estimate of
the normalizing constant for 7, one has to estimate p., the probability of
acceptance, and adjust the weight to p.w;. Since this method requires that
each rejected sample be restarted from stage 0, it tends to be impractical
when the number of components d is large. An interesting way to combine
the RC operation with resampling is described in Section 3.4.5.

2.7 Application of SIS in Population Genetics 49
2.7 Application of SIS in Population Genetics

Evolutionary theory holds that stochastic mutational events may alter the
genome of an individual and that these changes may be passed to its
progeny. Thus, comparing homologous DNA regions (segments) of a ran-
dom sample of individuals taken from a certain population can shed light on
the evolutionary process of this population. This comparison can also yield
important information for locating genes that are responsible for genetic
diseases. Recent advances in the biotechnology revolution have provided a
wealth of DNA sequence data for which meaningful studies on the evolution
process can be made and biologically verified.

Following Griffiths and Tavare (1994) and Stephens and Donnelly (2000),
we consider the simplest demographic model focusing on populations of
constant size N which evolve in non-overlapping generations. Each indi-
vidual in a population is a sufficiently small chromosomal region in which
no recombination is allowed (in reality, recombination can happen with
a very small probability). Thus, each chromosomal segment seen in the
dataset can be treated as a descendent of a single parental segment in the
previous generation — and it is sufficient to consider the haploid model
(i-e., each “individual” only has one parent). Each segment has a genetic
type and the set of all possible types is denoted as E. If a parental segment
is of type a € E, then its progeny is of type a € E with probability 1 —
and of type 3 € E with probability uP,s. Thus, u can be seen as the muta-
tion rate per chromosome per generation. The mutation transition matrix
P = (P,p) is assumed to have a unique stationary distribution.

Suppose we observe a random sample from the current population as-
sumed to be at stationarity. The ancestral relationships among the individ-
uals in the sample — when being traced back to their most recent common
ancestor (MRCA) — can be described by a tree. Figure 2.3 shows a ge-
nealogical tree for an example when the segment has only two genetic types,
Cand T (i.e., E = {C,T}), and the sample consists of five observations.

Stephens and Donnelly (2000) used H = (H_m,... , H_1,Hp) to denote
the whole ancestral history (unobserved) of the observed individuals at
the present time, where k is the first time when all the individuals in the
sample coalesce (i.e., the first time they have a common ancestor). Each
H_; is an unordered list of genetic types of the ancestors ¢ generations ago.
Thus, the history H has a one-to-one correspondence with the tree topology
(evolution time is not reflected in #). Note that only Hy is observable. For
any given H that is compatible with Hy, however, we can compute the
likelihood function py(H) as

po(H) < po(H_r)pg(H_1 | H—g) -+ -po(Ho | H_1)pe(stop | Ho).

Here, pg(H_) = mo(H_}), with mo being the stationary distribution of P.
The coalescence theory (Griffiths and Tavare 1994, Stephens and Donnelly

50 2. Basic Principles: Rejection, Weighting, and Others

C
|
= 20
¢ C->T -
e C->T F 10
C->T
r T] ->C i
j = 00
T C T T T

FIGURE 2.3. Illustration of a genealogical tree. The set of five observed individ-
uals at the current time is {7, C,T,T,T} (the bottom of the tree). The plotted
tree illustrates a possible route for these five individuals to descend from a com-
mon ancestor of type C. Ancestral lineages are jointed by horizontal lines (and
are said to coalesce) when they share a common ancestor. The dots represent
mutations and the horizontal dotted lines indicate the times at which events (co-
alescence and mutations) occur. The history H = (H_y, H_(4_1),... , H-1, Ho)
in this case is ({C}, {C,C}, {C,T}, {C,C,T}, {C,T,T}, {T,T,T}, {T,T,T,T},
{C,T,1,T}, {C,T,T,T,T}). Reproduced from Stephens and Donnelly (2000).

2000) tells us that

n 0 .
fmpaﬁ linZHi_l—a‘l"ﬂ
po(Hi | Hi—1) = T;_anﬁii—kﬁ it H;=H; 1+«
0 otherwise,
fori = —(k—1),...,0 and the process is stopped just before a new genetic
type is produced:
n n—1

Here, n is the sample size at generation H;_; and n, is the number of
chromosomes of type a in the sample. The notation H; = H; 1+« indicates
that the new generation H; is obtained from H; ; by a split of a line of
type «, and the notation H; = H; ; —a+ 8 means that H; is obtained from
H;_; by a mutation from a type a to a type 8. The parameter § = 2N p/v,
with N being the population size (assumed to be constant throughout the
history) and v? being the variance of the number of progeny of a random
chromosome.

To infer the value of 6, one can use the MLE method (see the Appendix
for more descriptions), which requires us to compute for each given 6 the

2.8 Problems 51

likelihood value

po(Ho) = > po(H).

H:compatible with Hy

This computation cannot be solved analytically and we have to resort to
some approximation methods — Monte Carlo appears to be a natural
choice. In a naive Monte Carlo, one may randomly choose the generation
number k£ and then simulate forward from H_, which only has a single in-
dividual, to Hy. However, except for trivial dataset, such simulated history
H has little chance to be compatible with the observed Hy. An alternative
strategy is to simulate H backward starting from Hj and then use weight
to correct bias. In a sequential importance sampling strategy (equivalent to
the method of Griffiths and Tavare (1994)), we can simulate H_1, H o, ...
from a trial distribution built up sequentially by reversing the forward sam-
pling probability at a fixed 6g; that is, for t =1,... , k, we have

Poo (H_t11|H_4)
Yall mr, Poo (H-t1|H" ;) ’

gi(H ¢|H 441) =

and the final trial distribution
gH) =gi1(H 1 | Ho) - gx(H | H pq1).

In other words, each g; is the “local” posterior distribution of H_;, under
a uniform prior, conditional on H_;41. By simulating from g¢() multiple
copies of the history, (9, j = 1,... ,m, we can approximate the likelihood
function as

P (’H(J)

Z ’H(J)
In this approach, the choice of 8y can influence the final result. We tested
this importance sampling method on a small test dataset in Stephens
and Donnelly (2000), {8, 11, 11, 11, 11, 12, 12, 12, 12, 13}, with E =
{0,1,...,19} and a simple random walk mutation transition on E. Fig-
ure 2.4 shows the likelihood curve of 6 estimated from m=1,000,000 Monte
Carlo samples and 6y = 10. Stephens and Donnelly (2000) recently pro-
posed a new SIS construction of the trial distribution and is significantly
better than the simple construction described in this section. We will dis-

cuss a resampling method in Section 4.1.2 that can improve both algo-
rithms.

2.8 Problems

1. Evaluate integral fol sin?(1/z)dz by both a deterministic method and
a Monte Carlo method. Comment on relative advantages and disad-
vantages.

52 2. Basic Principles: Rejection, Weighting, and Others

Likelihood
0.00002 0.00003 0.00004

0.00001

0.0

5 10 15 20
theta

FIGURE 2.4. The estimation of the likelihood function for a dataset in Stephens
and Donnelly (2000), with 6y = 10 and m=1,000,000 iterations.

2. Prove that the rejection method does produce random variables that
follow the target distribution 7. Show that the expected acceptance
rate is 1/¢, where c is the “envelope constant.”

3. Implement an adaptive importance sampling algorithm to evaluate
mean and variance of a density

m(x) < N(x;0,214) + 2N (x;3e, I,) + 1.5N (x; —3e, Dy),

where e = (1,1,1,1), I, = diag(1,1,1,1), and D, = diag(2,1,1,.5).
A possible procedure is as follows:

e Start with a trial density go = ¢,(0,2);
e Recursively, we build
gr(x) = (1 — €)gr—1(x) + ety (1,),

in which one chooses (€, 1, X) to minimize the variation of coef-
ficient of the importance weights.

4. Describe the process of simulating from a Wishart distribution and
prove that the proposed method is correct.

5. Formulate the method described in Section 2.5.6 for the continuous
state space and use it to solve a differential equation.

This is page 53
Printer: Opaque this

3
Theory of Sequential Monte Carlo

In the previous chapter, we introduced the basic framework of sequential
importance sampling (SIS), in which one builds up the trial sampling dis-
tribution sequentially and computes the importance weights recursively.
More precisely, we first decompose the random variable x into a number of
components, X = (£1,... ,24), and then build up the trial distribution as

9(x) = g1(z1)g2(z2 | 21) -+ - ga(Ta | T2, -+, Ta—1), (3.1)

where the g; are chosen by the investigator so as to make the joint sam-
pling distribution of x as close to the target distribution, 7(x), as possible.
A technical implication of decomposition (3.1) is that the simulation is car-
ried out sequentially on a computer: The first component x; is drawn first,
and then z- is drawn conditional on z;, and so on. When this recursion
is repeated independently for m times, we obtain m i.i.d. random samples
xM ... x(™ from the trial distribution g(x), which can then be used to
estimate integrals related to the target distribution 7. A mathematically,
but not computationally, equivalent view of this process is to start m inde-
pendent sequential sampling processes in parallel. More precisely, at stage
1, we generate m i.i.d. samples {mgl), ... ,mgm)} from g1; at stage 2, we gen-
erate a:gj) from go(- | xgj)) for j =1,...,m, and so on. The ideas described
in this chapter will be most easily understood under this view of parallel
operation.

The importance weight of the sample simulated from g(x) can be evalu-
ated either at the end when all the parts of x are in place, or recursively

54 3. Theory of Sequential Monte Carlo

as
(1,0 X
Wt = We—1 t(L ’ t) ,t:].,...,d,
gt(xt | Llyeoo ,.’L’t,1)7rt,1(.’ll'1, . ,.Z'tfl)
in which the sequence of distributions 71,... , 74 are referred to as a se-
quence of auziliary distributions. A necessary condition for these distribu-
tions is that mgq(z1,... ,24) = m(21,... ,24). The m can be thought of as

an approximation to the marginal distribution

(1, .. ,T¢) :/W(X)dwt-i-l"'dfl&'d

of the partial sample x; = (z1,... ,T¢)-

If we have a good sequence of auxiliary distributions (i.e., those m;’s
that track the marginal distributions of 7), we would be able to judge the
“quality” of a partially generated sample. Based on such a judgment, we
can consider stopping before finishing the generation of the whole sample x.
For example, after seeing wy = 0 for the first two generated components,
we would certainly want to stop simulating further along the line. Simi-
larly, a very small weight of wy, at stage k& would suggest to us a possible
early stop. To avoid introducing bias, the rejection control procedure de-
scribed in Section 2.6.2 should be used (Liu, Chen and Wong 1998). Since
early stopping will decrease the total number of samples being produced
at the end, one would like to make up these lost samples by repeating the
same sampling procedure from the beginning. We show in the later part of
this chapter that a surprisingly powerful strategy for making up those lost
samples due to early stopping is by resampling from the currently available
“good” partial samples.

A good sequence of auxiliary distributions {m;} can also help us choose
good trial densities. As will be shown in Section 3.4, a convenient choice of
gt 18

gt(ze | 1, ..o ymp—1) = (Tt | 1, ..o, Te—1).

We will show in this and the next chapters that in many simulation and
optimization problems, especially for those models of dynamic nature, the
auxiliary distribution sequence 71,72, ... and the sequential sampling dis-
tributions g, g2, ... often emerge naturally.

The SIS-based Monte Carlo methods have been invented independently
in at least three main research areas. The first invention dated back to the
1950s and was motivated by the problems of simulating macromolecules
(Hammersley and Morton 1954, Rosenbluth and Rosenbluth 1955). The
other two incidences are more recent: one was motivated by statistical
missing data problems (Kong et al. 1994, Liu and Chen 1995), and the
other motivated by nonlinear filtering problems in radar tracking (Gordon
et al. 1993). In the remaining part of this chapter, we will trace these

3.1 Early Developments: Growing a Polymer 55

independent developments, summarize and abstract special techniques in
each of the areas, and describe a general sequential Monte Carlo framework
which can be used as a basis to contemplate newer techniques.

3.1 Early Developments: Growing a Polymer

The sequential Monte Carlo methodology can be traced back to Ham-
mersley and Morton (1954) and Rosenbluth and Rosenbluth (1955) who
invented a method to estimate the average squared extension of a self-
avoiding random walk of length NV on a lattice space. Since its inception,
the Rosenbluth’s method has received attentions from structural simula-
tion and minimization community and various modifications have been
proposed (Grassberger 1997, Siepmann and Frenkel 1992).

3.1.1 A simple model of polymer: Self-avoid walk

Simulation of chain polymers is perhaps one of the first serious scientific
endeavors with the help of electronic computers. Although the history goes
back to the 1950s, the problem of simulating a long chain of biopolymer
still presents a major challenge to the scientific community because of both
its difficult nature and its extreme importance in biology and chemistry
(Kremer and Binder 1988, Grassberger 1997).

The self-avoiding random walk (SAW) in a two- or three-dimensional
lattice space is often used as a simple model for chain polymers such as
polyester and polyethylene. For the sake of a concise description of the
basic method, we content ourselves with the two-dimensional lattice model.
In such a model, the realization of a chain polymer of length N is fully
characterized by the positions of all of its molecules, x = (x1,... ,2Zn),
where z; is a point in the 2-D lattice space [i.e., z; = (a,b), where a and
b are integers]. The distance between z; and z;4; has to be exactly 1,
and z;y+1 # xx for all £ < 4. The line connecting x; and z;4; is called a
(covalent) bond. Figure 3.1 shows two realizations of a simple random walk
on a 2-D lattice space, of which the first one is a self-avoiding walk (i.e.,
the chain does not cross itself), whereas the second one is not. It is not
difficult to understand why it is appealing to use the trace of an SAW to
imitate a chain polymer — they do look similar.

The force interaction between a pair of nonadjacent monomers (with no
covalent bonds) in a macromolecule is usually very weak when they are
certain distance apart and their mutual repulsion becomes huge once they
are closer than a distance limit. A good approximation to this type of
polymers is the hard-shell model. An even simpler one is the lattice model.
A possible Boltzmann distribution for the chain polymer modeled by an
SAW is the uniform distribution. More formally, the target distribution of

56 3. Theory of Sequential Monte Carlo

(a) Self-avoid walk (b) Self-crossing

FIGURE 3.1. Two simple random walks on the square lattice. The first one is a
self-avoiding walk, and the second one is not.

interest in this case is

1

7T(X) = Z_N,

where the space of x is the set of all SAWs of length N and Zy is the
normalizing constant, which is just the total number of different SAWs
with N atoms. Of interest to scientists is to understand certain descriptive
statistics regarding such SAWs. For example, one may be interested in
El|lzn — z1]|? (i-e., the mean squared extension of the chain).

The most naive way of simulating a SAW is to start a random walk at
(0,0), and at each step 4, the walker, for that he is not allowed to fall back
to where it came from at step i — 1, chooses with equal probability one of
the three allowed neighboring positions to go. If that position has already
been visited earlier, the walker has to go back to (0,0) and start a new
chain again. Otherwise, the walker keeps going until the presumed length
N is reached. This simulation procedure is apparently inefficient: The rate
(number of successes over the number of starts) of obtaining a successful
SAW of given length N decreases exponentially as a function of N. For
the two-dimensional lattice, this rate is roughly oy = Zn /(4 x 3N¥~1). For
N = 20, this rate is approximately osg ~ 21.6%, and for N = 48, this
number is as low as 0.79% (Lyklema and Kremer 1986)

3.1.2 Growing a polymer on the square lattice

To overcome the obvious attrition problem of the simple random walk
method, Hammersley and Morton (1954) and Rosenbluth and Rosenbluth
(1955) introduced essentially identical methods, one termed “inversely re-
stricted sampling” and the other “biased sampling.” Perhaps because of
the names coined, the method is much more well known nowadays as the
“Rosenbluth method” in the molecular simulation community. In order to
be fair to both sets of authors, in this book we call their method the growth
method since the approach can be intuitively seen as “growing” a poly-

3.1 Early Developments: Growing a Polymer 57

mer one monomer a time. This method is essentially a one-step-look-ahead
strategy and is a special sequential importance sampler.

Without loss of generality, we assume that the simulated SAW is always
started at position (0, 0) and pays its first visit to position (1, 0); that is, we
let z1 = (0,0) and x5 = (1,0). Suppose at stage t, the random walker has
made t — 1 moves with no violation of the self-avoidance constraint and is
located at position 2 = (4, 5). Then, in order to place 441, the walker first
examines all the neighbors of z; [i.e., (i £1,5) and (i,j £ 1)]. If all of the
neighbors have been visited before, the walk is terminated and the whole
trace is given a weight 0, otherwise the walker selects one of the available
positions (not visited before) with equal probability and places his (t+ 1)st
step. Mathematically, this scheme is equivalent to drawing the position of
Z¢+1 conditional on the current configuration of (z1,...,x¢), according to
the probability distribution

P[mt-i-l = (ilajl) | Tiy.-- 7mt] =
e
where (i',j') is one of the unoccupied neighbors of z; and n; is the total
number of such unoccupied neighbors. Clearly, this scheme is much more
efficient than the simple random walk method. A self-avoiding walk with
N =150 produced by this method is shown in Figure 3.2

A Self-Avoiding Walk of Length N=150

FIGURE 3.2. A SAW with 150 atoms on a 2-D lattice space, obtained by the
growth method.

It is easy to check, however, that the SAWs produced by this “growth”
method is not uniformly distributed (it tends to bias in favor of more
“compact” configurations). For example, the probability of generating a

chain as in Figure 3.3(a) by the growth method 1 x + x £ x %, whereas

3 3

58 3. Theory of Sequential Monte Carlo

the probability of chain in Figure 3.3(b) is 7 X & x 3 x 5. To correct for
(a) (b)
o<——o
*— [@ L 4 @ {]

FIGURE 3.3. Two different configurations for SAW with N = 5 nodes. (a) and
(b) have different sampling probabilities according to the Rosenbluth method.

the bias introduced by this more efficient sampling scheme, Hammersley,
Morton, and the Rosenbluths noticed that a successfully produced SAW in
this way needs to be assigned a weight computed as

w(X) =n1 XnNg X+ XNN_1.

Because the target distribution is m(x) o 1 and the sampling distribution
of xis (ny X -+- X ny_1)~ !, the correctness of this weight assignment can
be easily verified from the importance sampling principle.

Now, we would like to entertain the above procedure by the sequential im-
portance sampling (SIS) framework introduced in Section 2.6.3. Clearly, the
sampling distribution g¢(x; | x¢—1) in the growth method is equal to 1/n;_1
when ny;_; > 0 and z; occupies one of z;_1’s available neighbors, and is
equal to 0 when n;_1 = 0. Here, n;_1 is the number of available neighbors
of z;_1. The sequence of auxiliary distributions, m¢(x¢),t =1,... ,N — 1,
is just the sequence of uniform distributions of SAWs with ¢ nodes (or t —1
steps); that is, m(x;) = Z, * for all SAWs with ¢ nodes, where Z; is the
total number of such SAWs. It is easy to see that under 7, the marginal
distribution of the partial sample x; 1 = (%1,... ,7;_1) is

Ne—1

7Tt(Xt—1) = Z ﬂ—t(xt—laxt) = .

- Zy
all possible z,

Thus, the conditional distribution m¢(x; | x¢—1) = 1/ng_1, which is exactly
the same as our sampling distribution g. Thus, in this example, the se-
quence of auxiliary distributions, 7, t = 1,... , suggests to us a particular
choice of g;. This view of the growth method also suggests some possible
improvements. For example, if we use another auxiliary sequence of dis-
tribution 7}, which is the marginal distribution of x; under the uniform
distribution of (x¢, Z¢41):

N 1
Ty (x¢) = Z Zomt X Ny,

Tt41

where n; is the number of available neighbors of z;, we can again let g; be
75 (z¢ | X¢—1). Then, the implied SIS procedure is equivalent to a two-step-
look-ahead approach.

3.1 Early Developments: Growing a Polymer 59

As suggested in the SIS framework, the importance weight can be com-
puted recursively as w1 = wyn. Finally, we obtain the overall weight of

the chain as
N

’U)N:H 1

iy gt(xt | Lly--- ;-Z'tfl))

Because our target distribution is w(x) = 1/Zy, the weight just computed
satisfies the simple relationship

wyZy = m(x)/p(x).

Hence, ZyE,(wn) = 1, which gives us a means to estimate the partition
function (normalizing constant):

ZN = 11_]]:/'17 (32)

where wy is the sample average of the weights obtained by repeating the
biased sampling procedure multiple (m, say) times.

The Rosenbluths were initially interested in functional relationship be-
tween the mean squared extension, (R) = E.(R3%), and the chain’s length
N. From the Monte Carlo simulations, they estimated a law for E,(R3/)
as E.(R%) ~ aN", with ¥ = 1.45 and a = 0.917. It was later shown that,
asymptotically, v = 1.5 for the square lattice (Nienhuis 1982). Another
quantity of interest is the partition function, Zx (i.e., the total number of
possible configurations of SAWs with N nodes). By using the estimator
n (3.2), the Rosenbluths guessed that Zny = cg’f, with der =~ 2.66 and
¢ = 2.14. Tt was later proven that the correct asymptotic law (as N — o0)
for the partition function should be Zy ~ qng =1 in which v is equal
to 43/32 and ge is about 2.6385, for the two-dimensional square lattice
(Kremer and Binder 1988, Nienhuis 1982).

3.1.3 Limitations of the growth method

A serious limitation of the growth method appears when one tries to sim-
ulate very large polymers, say with N = 250. First, the attrition problem
persists and, second, Kong et al. (1994) argue that the weight process wy
after normalization is a martingale, thus having its variance stochastically
increasing. So far, the most effective means to overcome this limitation is
the pruning and enrichment approach used in structural simulations (Wall
and Erpenbeck 1959, Grassberger 1997) and, equivalently, the resampling
method invented by statisticians (Gordon et al. 1993, Liu and Chen 1995).

Liu, Chen and Wong (1998) introduced a rejection control method for
improving the sequential sampling method (Section 2.6.4), of which we
will describe a further twist — the partial rejection control, to improve
simulation. In Section 3.4, we describe the general SIS methodology as an

60 3. Theory of Sequential Monte Carlo

extension of the growth method of Hammersley, Morton, and the Rosen-
bluths and present, in a rather abstract form, a few strategies for improving
the method. Then, in Chapter 4, we will illustrate in details how the gen-
eral methodology can be applied to solve various interesting computational
problems.

3.2 Sequential Imputation for Statistical Missing
Data Problems

In a missing data problem (Section 1.9), we partition y as (Yobs, Ymis)
where only yobs is observed and yn;s is called the missing data. Further-
more, we assume that y ~ f(y | 0), where f() has a nice analytical
form. Thus, both the complete-data likelihood L(6 | y) [which can be any
function that is proportional to f(y | 8)] and the complete-data poste-
rior distribution p(f | y) are simple to compute. The central problem in
this section is the computation of the observed-data likelihood, L(6 | yobs),
and the observed-data posterior distribution, p(6 | yobs). This computation
involves integrating out the missing data from L(€ | Yobs, Ymis)-

Suppose Yobs and ymis can each be further decomposed into n corre-
sponding components so that

def
y = ('yla ce :yn) = (yobs,laymis,la ce ayobs,n;ymis,n) = (YObSaYmis);

where y: = (Yobs,t> Ymis,t) for t = 1,... ,n. In many applications, the y; are
independent and identically distributed given 8, but that is not a necessary
assumption. For example, the unobserved state variables of a state-space
model (or the hidden states of a hidden Markov model), which follow a
Markov chain model, can be regarded as missing data in the sequential
imputation framework. Sometimes, the missing pattern can be different for
different ¢’s. Indeed, an observation at ¢ can be complete so that y: = Yobs,¢-

3.2.1 Likelihood computation

In order to estimate 6 by the MLE method, the least (but not the last)
we have to do is the evaluation of the likelihood function of the observed
data, which can be derived by marginalizing the missing data from the
complete-data likelihood function:

L(O | Yobs) = f (yobs |) = / F(Fobs, Yonis | 0)dyumis.

This integral, however, is often difficult to compute analytically. Suppose
(1) (m)

misr - - » Ymis from a trial distribution g(). Then, we

we can draw sample y

3.2 Sequential Imputation for Statistical Missing Data Problems 61

can estimate L(6 | yobs) by

(1) (m)

L0 yo) = {—f Oroba: Vs 16) .. SOobo: Vs) ")} 33)
m 9(Vrmis) 9(Ynis)

as in a typical importance sampling (Section 2.5). Note that once the ygi)s

are produced, the formula (3.3) can be applied to estimate L for many

different 6’s. The question is, however, what would be a proper g(-)? If

only one 8, say 6y, is in consideration, in the ideal situation, we would like

to draw yx(fli)s from f(¥mis | Yobs; o), in which case the importance ratio is

f(yobs;Ymis | 00)
f(Ymis | Yobs; 00)

= f(YObs | 60) = L(HO | yObS)J

implying that we can estimate L exactly with one random sample. However,
sampling from f(¥mis | Yobs,fo) is perhaps more difficult than estimating
L(6o | yobs) in most applications. A naive choice of g() may be f(¥mis | 6o)
(which makes no use of the observed information). But this trial function
often differs too much from the ideal one and will result in very variable
importance weights. For an easy presentation, we use in the latter part of
this section the following notations:

Yobs,t = (yobs,la cee 7y0bs,t)a
Ymis,t = (ymis,ly R ;ymis,t);
Yyt = (YObs,t; Ymis,t)-

Kong et al. (1994) propose the following sequential imputation method to
produce Monte Carlo samples of ynis and associate with them appropriate
importance weights:

A. Draw ymis (which is the same as ymis,n by our notations) from

g(}’mis) = f(ymis,l | yobs,laa) X f(ymis,Z | yobs,laymis,layobs,270)
X=X f(ymis,n | YObs,mYmis,n—l;e)-

This step can be realized recursively by drawing ymis,+ from the pre-
dictive distribution

f(ymis,t | Yobs,t» Ymis,t—l)-
B. Compute the weight of yn;s recursively as

w(}’mis) = f(yobs,l | 6)f(yobs,2 | Y1, 0) T f(yobs,n | YTL7179)'

Here, f(- | -) and f(-) are the conditional and marginal distributions
derived from the posited model.

62 3. Theory of Sequential Monte Carlo

By a careful examination, we see that the sampling distribution for yms
satisfies

/ 9(Ymis)W(Ymis)Y mis = f(Yobs | 0)-

Thus, we can estimate the likelihood value L(€ | yobs) by

1 1 m
= — {wlh) +-+ o)}

g

If one is also interested in the likelihood value at a different point 6’ which
is not too distant from 6, one can reweight the above Monte Carlo samples
(instead of generating a new set) according to (3.3) so as to get a proper
estimate.

In practice, the implementation of the sequential imputation method
requires one to compute analytically the predictive distribution

J (Yobs,t | Yobs,t—1, Ymis,t—1,0)

and to sample from f(Ymis,t | Yobs,t—1,Ymis,t—1,Yobs,t). This requirement is
rather mild because we have a complete freedom in choosing a decompo-
sition y = (y1,---,yn) to make the required computation feasible. Kong,
Cox, Frigge and Irwin (1993) implemented such a procedure to compute
likelihood function for a difficult linkage analysis problem. We have also
applied this approach successfully to a wide variety of problems ranging
from signal processing to bioinformatics (see Chapter 4).

If we relate the distribution f(Ymis,k | Yobs,k;8) tO Tk(Ymis,x) as in Sec-
tion 2.6.3, we immediately see that sequential imputation is essentially an
equivalent form of the sequential importance sampler described in Sec-
tion 2.6.3.

3.2.2 Bayesian computation

Let us now take a Bayesian approach to the missing data problem just
stated. Suppose a prior distribution f(6) is imposed on the unknown pa-
rameter 6. In applications, this prior distribution can either be a summary
of experts’ opinions, or a summary of prior experimental results, or a rather
diffused generic distribution [some guidance on the choice of prior distribu-
tions can be found in Gelman, Carlin, Stern and Rubin (1995)]. With this
Bayesian model, the joint distribution of the parameter and the data can
be written as

f(‘g:}’mis; YObs) = f(}’obS7ymis | H)f(H),

where f(8) is called the prior distribution of the parameter. Therefore, if of
interest is only the posterior distribution of 8, f(6 | yobs), one would need

3.2 Sequential Imputation for Statistical Missing Data Problems 63

to carry out the computation

f f(H, Y mis» YObs)deis
f(ela Ymis, YObs)doldeis ’

f(a | YObs) = f
which can also be rewritten as

f(0 | YObs) = /f(0|)’obs; Ymis)f(Ymis | YObs)deis-

In other words, if a random sample yfii)s, . ,yfms) can be generated from

the distribution f(ymis | Yobs), One can approximate the above posterior as

1

(0 | YObs = R Z 0 | yobSJynu)s)

(i-e., a mixture of complete-data posterior distributions). Since generating
from f(¥mis | Yobs) is typically difficult, we can implement the sequential
imputation procedure.

We start by drawing ymis,1 from f(Ymis,1|¥obs,1) and computing wy =
f(Yobs,1)- Note that

f(ymis,l | yobs,l) X f(yobs,laymiS,l | e)f(e)de'

This integration can be done analytically for a class of statistical models
(i-e., exponential families with conjugate priors). For ¢ = 2,...,n, the
following are done sequentially:

A. Draw ymis,: from the conditional distribution

f (ymis,t |YObs,t > ¥Ymis,t—1) .

Notice that each ymis,¢ is drawn conditional on the previously imputed
missing components Ymis,t—1 = (Ymis, 15 - - - » Ymis,t—1)-

B. Compute the predictive probabilities f(Yobs,t|Yobs,t—1, Ymis,t—1) and

Wi = We—1 f (Yobs,t[Yobs,t—1> Ymis,t—1)- (3.4)
Finally, we let
n
W(Ymis) = Wn = f(Yobs,1) H F(Yobs,1 | Yobs,t—1, Ymis,t—1)-
=2

Note that steps A and B are usually done simultaneously. Both steps A
and B are required to be computationally simple, which is often the case
if the complete-data predictive distributions f(y:|y:—1) are simple. This is

64 3. Theory of Sequential Monte Carlo

the key to the feasibility of sequential imputation. When integrating out 6
analytically is not feasible, one can treat 8 as an additional missing data,
Ymis,0, and use the same sequential imputation method.

Suppose steps A and B are done repeatedly and independently m times,
which results in a multiple imputation of the missing data, yf;i)s, e yr(;?s) ,
and their respective weights w), ... ,w{™). Then, we can estimate the

posterior distribution f(| yobs) by the weighted mixture

1 = (i ;
S w6 yobs, L)), (3.5)
j=1

S|

where W = 3. w(). Again, the disadvantage of this method is that when
the sample size n increases, the importance weights become very skewed.
Kong et al. (1994) showed that the normalized weight w,, is a martingale
sequence (with respect to n). Thus, the variance of w,, increases stochasti-
cally as n increases.

The similarity between the Bayesian missing data problem and the sim-
ulation of the SAW is transparent: mathematically, the ith missing com-
ponent, Ymis,i, plays the same role as the position of the ith monomer, z;.

3.3 Nonlinear Filtering

The state-space model is a very popular dynamic system and has two major
parts: (1) the observation equation, often written as y; ~ fi(- | 2, ¢), and
(2) the state equation, which can be represented by a Markov process as
x¢ ~ q¢(- | £4—1,0). Putting the two together, we have

(state equation): xp ~ q(- | T4-1,0), (3.6)
(observation equation): ye ~ fi(- | 2, @).)
The y; are observations and the z; are referred to as the (unobserved)
state variables. This model is sometimes termed as the hidden Markov
model (HMM) in many applications (most significantly in speech recogni-
tion and computational biology). Such a model can be represented graph-
ically as in Figure 3.4. In practice, the z’s can be the transmitted dig-
ital signals in wireless communication (Liu and Chen 1995), the actual
words in speech recognition (Rabiner 1989), the target’s position and ve-
locity detected from a radar (Gordon et al. 1993, Gordon, Salmond and
Ewing 1995, Avitzour 1995), the underlying volatility in an economical
time series (Pitt and Shephard 1999), the structural types in the protein
secondary structure prediction problem (Schmidler, Liu and Brutlag 2000),
and many others.

3.3 Nonlinear Filtering 65

N » Vet b/
Xo X X s X1 X Xir1

FIGURE 3.4. A graphical representation of the state-space model, also called the
hidden Markov model (HMM).

A main challenge to researchers is to find efficient methods for on-line
estimation and prediction (filtering) of the state variables (i.e., z;) or other
parameters when the signal y; comes in sequentially. For the simplicity of
our presentation, we assume in this section that the system’s parameters
(i.e., ¢ and 6) are all known and are omitted from the model description.
Ideas on estimating model parameters together with the state variables can
be found in Liu and Chen (1995), Gordon et al. (1995), and Liu and West
(2000).

With known system parameters, the optimal (in terms of the mean
squared errors) on-line estimate of z; is then the Bayes solution (West
and Harrison 1989)

~

& = Bz |y1,---9t)
_ S S oIl s | 22)as(@s | #am1)]das - dey
e ”in:l [f(ys | ®s)as(s | ®s—1)] dzy - - - day

Hence, of interest at any time ¢ is the “current” posterior distribution of
x4, which can be theoretically derived recursively as

m(@e) = Pz | y1,---,90) (3.7)
o8 /Qt(mt | fEt—l)ft(yt | $t)7ft—1($t—1)d$t—1,

where m;_1(x¢1) = p(ze-1 | Y1,--- ,yt—1) is the “current” posterior distri-
bution of z;_1.

When both f; and ¢; are linear Gaussian conditional distributions in
(3.6), the resulting model is called the linear state-space model, or the dy-
namic linear model, which has long been an active subject of research in au-
tomatic control, economics, engineering, and statistics (Harvey 1990, West
and Harrison 1989). In this case, the posterior computation can be done
analytically via recursion (3.8) because all the “current” posterior distribu-
tions are Gaussian. The resulting algorithm is the basis of the celebrated
Kalman filter (Kalman 1960). When the z; only takes on a finite, say K,
possible values [e.g., binary signals in digital communication or nucleotides
(with four different kinds) in DNA sequence analysis], such a state-space
model is also referred to as the hidden Markov model (HMM). Its utility
in many areas such as digital communication, speech recognition, protein

66 3. Theory of Sequential Monte Carlo

sequence alignment, ion-channel analysis, etc. has been extensively studied.
Optimal on-line estimation of x; can also be achieved via a recursive algo-
rithm very similar to exact simulation and dynamic programming method
described in Section 2.4.

Other than the two situations just described, exact computation of the
optimal on-line estimation of z; is generally impossible, in that the integra-
tions needed to evaluate (3.8) and its normalizing constant quickly becomes
infeasible as t increases.

A very general and simple method, named the bootstrap filter (and also
called particle filter), for on-line estimation in a state-space model was
proposed by Gordon et al. (1993), which makes use of the idea of sampling-
importance-resampling (SIR) (Rubin 1987).

Suppose at time ¢ that we have a random sample {xl(tl), . ,mgm)} of the
state variable which follow approximately the current posterior distribution
me(xe) = Pz | y1,.-.,yt) (e.g., those spikes on the leftmost line in Fig-
ure 3.5). Gordon et al. (1993) suggested the following updating procedure
when y;41 is observed:

(a) Draw mgfl) from the state equation g¢(z¢1 | mgj)), ji=1,...,m.

(b) Weight each draw by w) oc fi(yeq1 | mgfl))

(c) Resample from {;vgill), . ,:Ugff)} with probability proportional to
w'%) to produce a random sample {:cgi)l, .. ,x%ff} for time ¢ + 1.

It is easy to show that if the x§’”) follow the “current” posterior dis-
tribution m¢(z;) and if m is large enough, then the new random sample

{x§1+’1, . ,ngf} follows the updated posterior distribution m¢41(2¢41) ap-
proximately.

The connection between this problem and the statistical missing data
problem analyzed in Section 3.2 is obvious: The state variable z; can be
treated as missing data and imputed sequentially. Under the SIS framework,
we see that the “current” target distribution 7 (-) satisfies the recursion

me(Xe) o fe(ye | Te)qe (e | Te—1)mi—1(X—1). (3.8)

A special feature of the state-space model is that the state variable z;
possess a Markovian structure. This feature makes it possible for one to
consider only the marginal posterior distribution, (), instead of the
joint distribution 7 (x;), and it is essential for the bootstrap filter to be
applicable. In fact, if one shifts the step index ¢ for the missing data ymis,t
forward by one unit (i.e., treating Ymis,t—1 as Ymis,t), then the sequential
imputation method with stepwise resampling gives rise to the same algo-
rithm. The advantage of the bootstrap filter is its simplicity, whereas the
drawbacks of the method are two: (a) It did not use the current available

67

A discrete A discrete
representation representation
{e.g., Monte Carlo) {Monte Carlo)
of of P(x;|y;)
8ol%)
Resampling?
¥;
Plx | py)
time 1

FIGURE 3.5. A graphical illustration of the bootstrap/particle filter. At time
0, one has a discrete representation of the current distribution. One propagates
to time 1 by first sampling those xY”) ’s from the state equation (equivalent to
sampling from its prior distribution) and then correcting this sampling by an

importance reweighting and resampling.

information y;41 in the sampling step; (b) its excessive use of resampling
may decrease its efficiency.

Those models discussed in Sections 2.7, 3.1, and 3.2 and dealt with by
the general SIS methodology do not share the special structure enjoyed
by the state-space model (i.e., the z;’s are not Markovian). However, the
generic SIS formulation forces one to think deeper into the general issues
of efficiency improvement for importance sampling. For example, one may
want to construct trial sampling distributions that are more efficient than
the one used in the bootstrap filter and may think of applying techniques
such as marginalization and rejection controls (Sections 3.4.6 and 2.6.2).
Liu and Chen (1995, 1998) also discuss the role of resampling in a generic
SIS framework.

3.4 A General Framework

The connection of the methods described in the previous three sections
can be briefly summarized as follows. The growth method is a special ap-
plication of the general SIS methodology described in Section 2.6.3. The
sequential imputation method of Kong et al. (1994) is an equivalent form of
the SIS under the statistical missing data setting. The bootstrap filter uses
an SIS construction but has an additional resampling step inserted before
each sequential sampling step. In this section, we show that the modifi-
cations to the growth method made by Wall and Erpenbeck (1959) and

68 3. Theory of Sequential Monte Carlo

Grassberger (1997) is practically equivalent to an SIS with resampling (Liu
and Chen 1995).

In summarizing the common features of the problems treated in the
previous sections, we first define a probabilistic dynamic system. In the
SIS framework, this system serves as a “guiding” (auxiliary) sequence of
distributions.

Definition 3.4.1 We call a sequence of probability distributions mwe(x¢),
indexed by discrete time t = 0,1,2,..., a probabilistic dynamic system
(PDS). The state variable x; can either increases its dimensionality as t
increases [i.e., Xep1 = (Xg, Te11)[, or stay as it is (i.e., Xpp1 = X¢).

Here, w() always refers to the target distribution of the dynamic system
and p() is a generic symbol for probability distributions.

For the SAW simulation problem in Section 3.1, the PDS is defined as
me(Xe) = Zt_1 on the set of all self-avoiding walks with ¢ notes, where Z; is
the total number of such configurations. In words, 7; is the uniform distri-
bution on the set of all SAWs of ¢ — 1 steps. In the literature of molecular
simulation, one is often interested in more complex structures [e.g., protein
structures, see Leach (1996)] in which the m; is taken as the Boltzmann dis-
tribution of the form exp(—U;/kpT)/Z. Here, Uy is the interacting energy
generated by the monomers of the chain polymer (with ¢ monomers), T is
the absolute temperature, and kg is the Boltzmann constant.

The state-space model example (Section 3.3) also fits very well into our
PDS framework in that we can define 7;(x;) as the posterior distribution
p(Xt | ¥¢,%0). With this PDS, the estimation of z; can be thought of as
evaluating statistical (Monte Carlo) average of a random variable under
distribution 7;. The methodology developed in this section will be generally
called sequential Monte Carlo.

It is natural to think of the PDS as a sequence of posterior distributions
conditional on the information “up to time t” for a system with random
variables x1,2,.... In other words, the final probability distribution is
“built up” sequentially as more and more structural details (i.e., infor-
mation) are incorporated. In the traditional Bayesian analysis (Gelman,
Carlin, Stern and Rubin 1995), the dimensionality of the random vector
(i.e., x¢) involved in the system does not vary when new information comes
in; whereas in our PDS, the “configuration” space changes along with t.
Once a proper PDS is employed, this PDS can further help us choose good
sampling distributions g¢(z¢ | x¢—1)-

It is helpful to recall how the growth method is used to simulate a SAW.
At step t, a monomer is added to the existing partial chain (x;—1) accord-
ing to a distribution that makes use of the information generated from a
forward-looking step. This is equivalent to using the sequence of distribu-
tions, {m(x¢),t =1,2,...}, as the PDS, where 7 is the uniform distribu-
tion on all SAWs with ¢ nodes, and letting g¢(x; | x¢—1) = w2t | X¢—1).

3.4 A General Framework 69

There is no reason why we cannot use information generated by more
forward-looking steps. But as the one-step-forward-looking strategy re-
quires us to check three neighboring positions of z;, a k-step-forward-
looking method generally requires us to check ~3* positions and this com-
putation quickly becomes impractical. The next section discusses in detail
some issues in choosing the sampling distribution.

3.4.1 The choice of the sampling distribution

The choice of the sampling distribution g; is directly related to the efficiency
of the SIS. In many problems, a good choice of g; in light of the sequence
of auxiliary distributions {m;} is

gt (2 | X¢_1) = m (24 | Xi-1), (3.9)
with the incremental weight

uy = me(Xe-1) (3.10)

Tt—1 (Xt—l) ’

Note that u; in (3.10) does not depend on the value of z; and this feature
is important to several issues discussed later. The reason that drawing x;
from 7(z; | x¢—1) is more desirable than from a more or less arbitrary
function is clear from rewriting the incremental weight (3.10) as

_ me(Xe—1) we(@e | X—1)
7Tt—1(Xt—1) gt(ﬂft | Xt—l)

Intuitively, the second ratio is needed to correct the discrepancy between
9t(x¢ | x¢—1) and 7 (x4 | x¢—1) when they are different.

Other choices of g; can also be desirable. For example, one may also
consider a two-step-forward sampling distribution

g (e | Xp—1) ox /7Tt+1(£l?t+1,xt)dﬂft+1-

In the polymer simulation, this corresponds to a two-step look-ahead strat-
egy (Section 3.1.2). In the content of polymer simulation, this idea was also
proposed by Meirovitch (1982).

Another strategy is to “coarsen” the dynamic systems; that is, one can
group, say, (Tpt41,--- > ZTpe+1)) together as a new “mega”-state z} in the
system. Then, the SIS method can be applied to draw a block of b x’s at a
time. This method is also proven useful in simulating long polymer chains
(Wall, Rubin and Isaacson 1957).

70 3. Theory of Sequential Monte Carlo

3.4.2 Normalizing constant

In many scientific problems, computing the normalizing constant (i.e., the
partition function) of an unnormalized probability distribution function is
of critical importance. Examples in physics and chemistry are abundant.
Sometimes, even mathematicians and statisticians are interested in such
problems, one of which is to count the total number Z of distinctive tables
that contain only 0’s and 1’s and have the fixed row sums rq,... 7, and
column sums cy,...,c,. For example, there are twenty-seven 0-1 tables
with the row sums 2, 2, 2, 3 and the column sums 3, 2, 3, 1. One such table
is given in Table 3.1. This problem can be formulated as one of estimating

== =0
- O = O
== O
SO O =

TABLE 3.1. A typical 0-1 table with given respective column sums: 3, 2, 3, 1 and
row sums: 2, 2, 2, 3.

the normalizing constant Z in that the uniform distribution on space of
all such tables is of the form 1/Z. Problems such as evaluating likelihood
(Section 3.2.1) and computing the Bayes factor (Kong et al. 1994, Meng
and Wong 1996) also belong to this class.

The SIS approach can be an effective means for estimating the nor-
malizing constant. Suppose the target probability distribution is 7(x). An
auxiliary PDS is found to be II = {m(x;), t =1,... ,N} (with 7y = 7),
and each of its member’s density function, 7, is known up to a normalizing
constant. In other words, we can write down the unnormalized distribution
function, ¢;(x;) = Zyms(x¢), for everyone in the PDS. In statistics, Z; often
corresponds to the Bayes factor or the likelihood function evaluated at a
given parameter value.

Suppose we implement an SIS scheme with the sequential sampling sys-
tem {gi(z; | x¢—1), t = 1,...,N}. Then, the incremental importance
weight u; is computed as

uy = Qt(Xt) _ ZtWt(Xt)
Qt—l(xt—1)9t($t | Xt—l) Zt—lﬂ't—l(xt—l)gt(xt | Xt—l)'

The final weight takes the form

o= Tlw- o
t=1 Zl gl(ml)gN(-Z'N |XN_1)

Thus, the sample average of wy gives us an unbiased estimate of E(wy) =
ZnN [Z1, the ratio of two normalizing constants. In many cases, 7y is a very

3.4 A General Framework 71

simple system in which Z; can be easily obtained either analytically or
numerically. Then, we can obtain a rather accurate estimate of Zy. Based
on this procedure, Chen (2001) designed an SIS algorithm to approximately
count the total number of 0-1 tables with given marginal sums (more in
Section 4.3).

In recent years, many techniques have been developed to improve the SIS-
based methods for nonlinear filtering problems. But the estimation problem
for the normalizing constants has been mostly neglected. We note, however,
that expression (3.11) is broadly useful for estimating the normalizing con-
stant with the following improvement methods.

3.4.8 Pruning, enrichment, and resampling

When the system grows, the variance of the importance weights w; in-
creases. Thus, after a certain number of steps, many of the weights become
very small and a few very large. One of the earliest methods for improving
the SIS procedure in polymer simulations, called the enrichment method,
was proposed in Wall and Erpenbeck (1959). Their work, according to Kre-
mer and Binder (1988), led to “one of the very first intriguing successes of
Monte Carlo methods.” Briefly, Wall and Erpenbeck suggested splitting
those successfully simulated partial SAW chains into, say, r chains, each
assigned 1/r of the original weight, and then continuing them in r indepen-
dent ways. More precisely, once we have successfully simulated by the SIS
method a chain up to step t, say, x; with weight w;, we can make r; copies of
it and assign each a weight w;/r;. Then, all the copies will be continued as
if they were independently built up from scratch. An undesirable, and also
unavoidable, feature of this enhancement is that the resulting full-length
chains are no longer statistically independent.

Because choosing r; can be a difficult task in general, Grassberger (1997)
introduces some learning strategy for chain splitting and pruning. Instead of
slitting each chain x; indiscriminately, he suggested using a step-dependent
upper cutoff value Cy and a lower cutoff value ¢;. Then, if the weight w; is
greater than Cy, the chain x; is split into r copies, each with weight wy/r,
whereas if w; < ¢, one flips a fair coin to decide whether to keep it. If it is
kept, its weight w; is doubled to 2w;. He named the algorithm “PERM” for
Prune-Enriched Rosenbluth Method. However, choosing the cutoff values ¢;
and Cy can also be tricky.

Independently, a resampling strategy (to be described in the next sec-
tion) for improving SIS has been developed in the statistics and engineer-
ing community (Gordon et al. 1993, Liu and Chen 1995). Liu and Chen
(1995) introduced a monitored resampling procedure for the general SIS
and applied the method to a blind deconvolution problem. Their method
produces the same enrichment and pruning effects on the SIS samples as
that of Grassberger (1997) and is arguably more flexible than the PERM. In
treating the state-space models, Gordon et al. (1993) also used a resampling

72 3. Theory of Sequential Monte Carlo

strategy. In fact, a resampling step is enforced at every time step ¢ of their
bootstrap filter. The success of this method, however, relies heavily on the
Markovian structure among the state variable x1, x2, . . . ; that is, given the
realization of z, the next variable, z;11, is statistically independent of all
the previous states, x;_1. Thus, resampling from set {xgj_)l, j=1,...,m}is
equivalent to resampling from {x§’_)1, j=1,...,m}, the set of the “current
state.” Otherwise, frequent resampling will rapidly impoverish diversity of

the partial samples produced earlier.

3.4.4 More about resampling

Suppose at step t we have a collection of m partial samples of length ¢,
Sy = {xgj), j =1,...,m}, which are properly weighted by the collection
of weights W, = {w,gj),j = 1,...m} with respect to the PDS ;. Each of
these partial samples, xgj), will also be called a stream. Instead of carrying
the weight ng) as the system evolves, it is also legitimate, and sometimes
advantageous, to insert the following resampling step between SIS recur-
sions (Liu and Chen 1998), and such a procedure is referred to as the SIS
with resampling. The following two schemes are just two of many possible

choices to achieve the resampling goal.
Simple Random Resampling

1. Sample a new set of streams (i.e., partial samples), denoted as S,
from S; according to the weights w!?.

2. Assign equal weights, W;/m, to the streams in S}, where W; = wgl) +
(m)
Tt + wt .

Residual Resampling:

1 Retain k; = [mw{™] copies of x| where w{* = w{® /W,, and
‘7:17 ,m. Let mrzm—kl—---—km_

2" Obtain m, ii.d. draws from S; with probabilities proportional to

(+3) _

muw; kj,j=1,...,m.

3" Reset all the weights to Wy /m.

Note that one can still use the average of the final weights to estimate
the ratio Z,/Z; of two normalizing constants (see Section 3.4.2) even after
several resampling steps have been incurred. This is the primary reason
why we set the weights of all the streams to their current average after each
resampling step. It is easily shown that the residual sampling dominates
the simple random sampling in having smaller Monte Carlo variance and
favorable computation time, and it does not seem to have disadvantages

3.4 A General Framework 73

in other aspects. Some new resampling method has recently been proposed
by Doucet, Godsill and Andrieu (2000).

As one can clearly see here, the residual resampling scheme is very much
similar to the enrichment and pruning (PERM) method of Grassberger
(Wall and Erpenbeck 1959, Grassberger 1997). Both the PERM algorithm
and the resampling scheme construct a proper set of importance samples
which can be used to estimate any quantity of interest with respect to .
(the target distribution). In particular, PERM will be proper as long as
the cutoff values ¢; and C; are prescribed in advance; and resampling will
cause no conceptual problem as long as the decision of resampling does
not depend on the configurations. PERM has more flexibility in dealing
with the weights, whereas the resampling method is more disciplined and
requires less tuning. A prominent advantage of the resampling method over
PERM is that the choice of cutoff values for splitting the streams is au-
tomatically and implicitly achieved by the cross-stream comparison of the
weights. More precisely, in residual resampling, we split a stream into k
more copies precisely because its weight is k times better than the average
weight. This feature makes the resampling method very generally applica-
ble and powerful. As we will show in the next section, resampling can be
used, to a great advantage, in applications ranging from target tracking to
population genetics and to biological sequence analysis.

Instead of using the w; in resampling, we can also implement the follow-
ing more general resampling strategy.

e For j'=1,... m:
@

— Draw igjl) independently from the current sample { x;”’, j =
1,...,m} according to the probability vector (a),... a(™);
suppose we obtain that %/) = x{).

— A new weight w,ﬁ")= w§j) /a®) is assigned to this sample.

e Return the new representation S; = {5{5] I), j'=1,...,m} and W, =
@Y, ' =1,... ,m}.

The new set S; thus formed is also properly weighted by Wy (approxi-
mately) with respect to 7 (Rubin 1987). Because the role of resampling is
to prune away “bad” samples and to split good ones, we should choose a{?)
as a monotone function of ng). Having an additional flexibility in choos-
ing the sampling weights a() is rather intriguing and can be potentially
very useful. For example, the a¥) can be chosen to reflect certain “future
trend” (Pitt and Shephard 1999) or be chosen to balance between the need
of diversity (i.e., having multiple distinct samples) and the need of focus
(i.e., giving more presence to those samples with large weights). A generic
choice is

o = [wi]°, (3.12)

74 3. Theory of Sequential Monte Carlo

where 0 < a < 1 can vary according to the coefficient of variation of the ws.
Professor W.H. Wong suggested choosing a = 1/2, which seems to work
well in several examples.

The bootstrap filter and its variations (Gordon et al. 1993, Kitagawa 1996,
Pitt and Shephard 1999, Berzuini, Best, Gilks and Larizza 1997) can be seen
as SIS with special choices of g; and with resampling at every step. Since
resampling at every step is neither necessary nor efficient, it is desirable to
prescribe a schedule for the resampling step to take place. In the state-space
models, frequent resampling does not produce much detrimental effect be-
cause of the Markov structure of the unobserved state variables. However,
resampling too often gives very bad results in a general PDS, where no sim-
ple Markovian structure is present. These systems include the SAW model
for polymer studies (Kremer and Binder 1988), the demographic tree model
in population genetics (Stephens and Donnelly 2000, Chen and Liu 2000a),
the model for wireless signal detection in flat-fading channels (Chen and
Liu 2000a, Chen, Wang and Liu 2000), and many Bayesian missing data
problems.

The resampling schedule (i.e., when to resample) can be either determin-
istic or dynamic. When the schedule is dynamic, some small bias may be
introduced. However, our experience showed that this bias did not produce
any adverse effect. With a deterministic schedule, we conduct resampling

at time tg, 2%, . . ., where g is given in advance and it may be tuned to suit
for the particular problem of interest. In a dynamic schedule, a sequence
of thresholds, ¢, cs,.. ., are given in advance. We monitor the coefficient

of variation of the weights cv? and invoke the resampling step when event
cvf > ¢; occurs. A typical sequence of ¢; can be ¢; = a+bt*. We summarize
the resampling scheme in the following pseudo-code:

1. Check the weight distribution by performing one of the following two
methods at time ¢:

e Dynamic: go to step 2 if the coefficient of variation of the weight
is modest [i.e., cv? (w) < ¢;]; otherwise go to step 3.

e Deterministic: go to step 2 if ¢ # kto for integer k; otherwise go
to step 3.

2. Invoke an SIS step. Set t =t + 1 and go to step 1.

3. Invoke a resampling step. Go to step 2.

It is not immediately clear why one needs resampling at a certain stage
t. As much detailed theoretical discussion is given by Liu and Chen (1995),
we only mention a few heuristics on the issue. First, if the weights ng) are
constant (or near constant) for all ¢ (such a case occurs when one can draw
from m; directly), resampling only reduces the number of distinctive streams

and introduces extra Monte Carlo variation. This suggests that one should

3.4 A General Framework 75

not perform resampling when the coefficient of variation [as defined in

(2.5)], cv?, for the wt(j) is small. As argued in Kong et al. (1994), the effective
sample size is inversely proportional to 14+cv?. Second, it can be shown
that as the system evolves, cv? increases stochastically (Kong et al. 1994).
When the weights get very skewed at time ¢, carrying many streams with
very small weights is apparently a waste. Resampling can provide chances
for the good (i.e., “important”) streams to amplify themselves and hence
“rejuvenate” the sampler. The resampling step tends to result in a better
group of “ancestors” so as to produce better “descendants” (i.e., Monte
Carlo samples of the future states), although it does not improve inferences
on the current state, x;.

3.4.5 Partial rejection control

As t increases, the distribution of w; typically becomes more and more
skewed, implying that the y? distance between the sampling distribution
of x; and its current guiding distribution m; increases. (This distance is
equivalent to the coefficient of variation of wy.) As a consequence, many
streams carried by the SIS will have minimal impact on the final estima-
tion. It is thus desirable to prune them away at an earlier stage. In the
previous two sections, we discussed the ideas of PERM and resampling.
In Section 2.6.4, we saw how the rejection control method can be used
to achieve pruning without creating bias or correlations. However, the im-
plementation of a full rejection control requires that we make up the lost
streams by restarting from stage 1 [i.e., sampling from g¢;() and proceed-
ing forward] and passing through all the intermediate rejection steps (i.e.,
check-points). This procedure can be extremely time-consuming and is not
very practical for a large probabilistic system.

Instead of employing the full rejection control, we can opt for the follow-
ing more practical method, the partial rejection control:

1. At each check point ¢, start RC(¢x) as described in Section 2.6.4 with

the threshold value ¢ = ¢j. If stream xgi) with weight wﬁi) passes this
check point, one proceeds the same way as in a standard SIS with
the old weight replaced by w,g:j) = max{w? ¢} }.

tk)
2. When rejected, go back to check point ¢;_; to draw a stream x,gi)_l
from the pool &, _,, with probability proportional to w,gz)_l. Reset
its weight as wy, , and proceed with the SIS procedure. If the new
stream formed in this way pass the check point ¢, then its weight is

set as wt(:j) = ma,x{w,gz),ck}.

3. Reset all the weights as wii) = p}w,g:j).

76 3. Theory of Sequential Monte Carlo

The partial rejection control method combines the three main ideas used
in designing sequential Monte Carlo algorithms: weighting, rejection, and
resampling. It is also related to the method of (Hurzeler and Kunsch 1998).

3.4.6 Marginalization, look-ahead, and delayed estimate

Two other general methods for improving the performance of an SIS algo-
rithm are marginalization and iterative updating. The former is an analyt-
ical method and, when achievable, it can improve almost all Monte Carlo
methods. Its general principle was described by Hammersley and Hand-
scomb (1964) and Rubinstein (1981) as a dimension reduction technique.
Using marginalization to improve a static importance sampling method has
been discussed in Section 2.5.5. Its use with Markov chain Monte Carlo
methods will be discussed in the next chapter. The latter approach is to
make use of Metropolis or Gibbs sampling (heat-bath) algorithm to im-
prove the underlying importance sampling distribution. MacEachern et al.
(1999) provide some theory on why these operations help to improve the
performance of the algorithm.

Another useful strategy in constructing the trial sampling distribution
is to “look-ahead” for a few steps. This method has been successfully im-
plemented for polymer simulations (Meirovitch 1982, Meirovitch 1985, Ba-
toulis and Kremer 1988) and for nonlinear state-space models (Liu and
Chen 1995). It is also called the “scanning future method” in statistical
physics literature. More precisely, we can construct our sampling distribu-
tion as close to the future target as possible. One such construction is to
let

gt(u’ﬁt | Xt—l) = 7Tt+s($t | Xt+1)-

Note that
Teps(Te | Xe1) = /Wt+s($t+s,--- 2Ty | Xe—1)dTpyy - - ATy

If we regard each 7;(x) as a “posterior distribution” conditional on the
information up to time ¢, then the above approach is just trying to make
use of as much future information as possible. If we had chosen s so that
t + s = n, for example, then the resulting sampling distribution g; from
“forward-looking” is in fact the ideal conditional distribution for z; under
the target distribution (so that the product of g; is equal to 7,). However,
the forward-looking distribution can be difficult to deal with as s becomes
large, which is the reason why we adopt the SIS approach in the first place.
In Meirovitch (1985), he proposed the mean-field scanning method, in which
one constructs g; by making use of the future states information generated
by a mean-field approximation.

3.5 Problems 77

3.5 Problems

1.

Restate the growth method as a special form of SIS. Describe a proper
PDS and the implied sampling distributions used for the growth
method for simulating SAWs.

. Describe a proper PDS for the nonlinear filtering problem with model

(3.6) and the corresponding SIS strategy.

. Design a SIS method for counting the number of 0-1 tables with given

margins (Chen 2001).

. Show that the weighting strategy in sequential imputation (Section 3.2)

is proper and show that the average of the weight can be used to es-
timate the likelihood value.

. Show that the (normalized) importance weight sequence in SIS is a

martingale sequence and the variances increase stochastically (Kong
et al. 1994).

. Show that one can still use a similar method as in Section 3.4.2 to

estimate the ratio of two normalizing constants, Z,,/Z;, when a few
resampling steps are incurred between time 1 and n.

Discuss why resampling can be useful in sequential Monte Carlo.

78 3. Theory of Sequential Monte Carlo

This is page 79
Printer: Opaque this

4

Sequential Monte Carlo in Action

The previous chapter outlines a general Monte Carlo framework based on
the sequential buildup strategy. Several essential elements are (a) the choice
of the trial densities, (b) the resampling method, (c) the marginalization
strategy, and (d) the rejection control. This chapter will illustrate how these
generic strategies are applied to various application problems.

4.1 Some Biological Problems

4.1.1 Molecular Simulation

Simulating molecular structures is one of the most important and chal-
lenging scientific problems. Starting with those simple SAW model for
long-chain polymers (Section 3.1), chemists and structural biologists have
developed numerous lattice-based models (and also more complicated mod-
els) for predicting native structures of important macromolecules, such as
protein molecules. Here, we offer the reader a glimpse of this huge area.
The most well-known open problem in structural biology and biophysics
is the the so-called protein folding problem in which one is required to
predict the three-dimensional fold shape of a protein molecule based only
on its sequence of amino acids. One simple model to imitate the real protein
folding process is a 2-D or 3-D lattice-bead model. These models have
identical structures as the SAW model described in Section 3.1, but they
usually use a more complicated function for interactive energy between
the “beads” on the lattice. In protein language, these beads correspond

80 4. Sequential Monte Carlo in Action

to amino acid residues, which are of 20 different types (i.e., a 20-letter
alphabet).

One of the simplest models used by chemists (Unger and Moult 1993)
has only two different kinds of beads, white and black, corresponding to
hydrophilic and hydrophobic residues, respectively. An example of such a
simple bead sequence of length 36 is

WWWBBWWBBWWWWWBBBBBBBWWBBWWWWBBWWBWW

It is of interest to find out its most “favorable fold” in a 2-D lattice space.
To define what is meant by a favorable fold, we define an energy function
for each configuration of this bead sequence:

Un(xn) = - Z C(ZUi,.ij),

|[i—j|>1

where c(z;,z;) = 1 if z; and z; are non-bonding neighbors and the iden-
tities of beads i and j are both black (hydrophobic), and ¢(z;, z;) = 0
otherwise. Clearly, this simple model favors the close packing of hydropho-
bic residues and, to certain extent, mimics some aspects of a real protein
fold.!

With a target distribution

Wn(xn) 0.8 exp{—Un(xn)/2},

we applied the SIS, with various modifications, including resampling, re-
jection control, and one-step-look-ahead, to all the examples in Unger and
Moult (1993). In light of a recent result of Bastolla, Frauenkron, Gerstner,
Grassberger and Nadler (1998), it is not surprising that we were able to find
the same or better minimum energy state than Unger and Moult (1993).
In fact, Bastolla et al. (1998) applied the SIS method with pruning and
enrichment modifications to the examples of Unger and Moult and many
others and achieved some excellent results. Qur results are comparable to
theirs. Figure 4.1 (b) shows the best configuration we found for a 60-mer
chain: it has 36 favorable contacts. In comparison, the best configuration
found by Unger and Moult has only 34 favorable contacts. An additional
experiment we did was to repeat the modified SIS simulation of this 60-
mers (each took about 6 minutes) for 125 times, from which we obtained an
estimate of the normalizing constant log(Z) = 89.65 and the mean squared
extension E,(R?) ~ 157.

To further investigate the effect of resampling and partial rejection con-
trols, we applied the SIS to an earlier example of simulating SAWs in which

1Because most proteins are surrounded by water, these macromolecules tend to pack
hydrophobic residues in the center of their fold and leave those hydrophilic ones on the
surface to interact with water molecules.

4.1 Some Biological Problems 81

(a) (b)

Seq length =36, best=-14 found Chain with 60 atoms, best contact=36

-4 -3 -2 -1 0 1 2 0 2 4 6 8

FIGURE 4.1. Configurations of two black-white bead chains with length 36 and
60, respectively. Configuration (a) has the minimum energy (verified by Unger
and Moult), whereas (b) has a total favorable contacts of 36, the optimal one we
have obtained. Its true minimum energy is unknown.

many accurate results have been obtained. The two-step-look-ahead strat-
egy can increase simulation efficiency greatly, as shown by our example.
We simulated a chain with N = 100 particles (99 links) and estimated the
log-partition function, log Z,, ~ 96.39 + 0.037. A numerical approximation
formula gives

4
log Z, =~ (N — 1) xlog(2.6385) + (3—; — 1) log(N — 1) —log(4) = 96.24.

In all these simulations, either the original growth method (Rosenbluth
and Rosenbluth 1955, Kong et al. 1994), which does not involve resampling
and rejection control, or the bootstrap filtering method (Gordon et al.
1993), which resamples at every step, fails.

4.1.2 Inference in population genetics

In Section 2.7, we introduced a simple demographic model (also can be use
for inferring phylogeny) for inferring relationships among different species
based on comparisons of homologous DNA segments. The computational
method described there is due to Griffiths and Tavare (1994) and can be
seen as a special SIS method. The general method of resampling discussed
in Section 3.4.4 can be applied to improve such computation (Chen and
Liu 2000Db).

As with many SIS applications, the trial distribution for simulating the
evolutionary history H (Section 2.7) has the form

k
g(H) = Hgt(H—t | H_t41).

t=1

82 4. Sequential Monte Carlo in Action

We define the current weight (for ¢ < k) for this trial density:

_ po(Hot1|H—t)---po(Ho | H-1) _) ol |H o)
gt(H_t|H 1) g(H_1 | Ho) — " ge(H_¢|H_¢11)

The final weight is then w = w_j pg(H_j)po(stop | Hg), where the last
term is same as in (2.24).

In a parallel implementation of SIS, we first generate m samples from
go(H_1|Hyp), and then recursively generate {H(_lt), e H(_T)}, called the
current sample, for t = 2,3, ..., until coalescence in all m processes. Along
with producing the current sample, we could also monitor the current
weight and incur resampling steps at any time —t¢ when the coeflicient
of variation in {w(_lg, ,w(_T?)} exceeds a threshold B. In resampling,
one produces a new current sample by drawing with replacement from
{H(_lt), . ,H(_T)} according to probability o {w(_lt), . ,w(_r?)}. The weight
for each new sample after resampling is set as the sample average of the
w(fz so as to ensure that at the end we obtain a proper estimate of the
likelihood function.

We note, however, that resampling among { H Slt), . H ET)} is inefficient

w—¢

because these samples differ greatly in their coalescence speeds. Those H EJt)
that have fast coalescence speeds (small population sizes) often have small

current weights, but large final weights. Resampling among the HET) ac-
tually prunes away many “good” samples. To address this problem, we
propose to conduct resampling at the same coalescence time instead of the
same sequential sampling time. In other words, we wait until all the m
processes reach the same population size, say, i, and then resample from
{H(l) . ,HST:I}, where 3; = min{¢ : |H(_]t)| = i}. (Here, |H_;| denotes

Ziyo-
the population size of that generation.) Although early histories, H(fs) , for
s < i;, are not needed in sequential sampling (due to a Markovian struc-
ture), we still need to keep all the early histories of those processes that
survive the resampling.

The new resampling procedure can be implemented as follows. Suppose
m parallel coalescence processes have been started as in Section 2.7. Then,

fori=n—-1,...,1:

e for j =1,...,m, we run the jth process until its population size first
reaches i; denote this time as —i;;

e compute the coefficient of variation for w(_li)l,... ,w(_";l; name this
number C'V;;
e do resampling among {H(_li)l, ... ,HETZ?L} when CV; is greater than a

threshold, otherwise continue the usual sequential sampling;

e the weight for each new sample after resampling is set as the sample
(9)

average of the wri.

4.1 Some Biological Problems 83

At the end of this procedure, we produce a sample of histories H(*9), j =
1,...,m,and their associated weights w(*¥), j = 1,... ,m. As in a standard
SIS, we use the sample average of these weights,

% (w(*l) n ---+w<*m>) ,

to estimate the likelihood function py(Hp). If we are interested in estimating
po (Hp) for 8' # 6, we can use a modified weighted average

, (*1)
wH Pe (#H™)

(+m)
po (M) L em) M]
po(HGD) ot '

. 1
por(Ho) = 5 [po(HEm)

Chen and Liu (2000b) applied this modified resampling step to the trial
distribution described in Section 2.7. To compare with other approaches,
the new method was implemented for a numerical example in Stephens and
Donnelly (2000) (also treated in Section 2.7). With sample size m = 10, 000
and bound B = 4, two resampling steps were incurred. We repeated this
exercise five times and the results were rather similar. The extra compu-
tational cost was negligible. Figure 4.2(b) displays the likelihood curves
estimated from five independent replications of our method. For compar-
ison, Figure 4.2(a) shows the results (with m = 10,000) obtained by the
plain SIS method discussed in Section 2.7. Figure 4.2(b) is almost indis-
tinguishable from Figure 3(b) of Stephens and Donnelly (2000), which is
produced by using a more efficient trial function. We note that the resam-
pling modification described in this section can also be applied to their
method.

(a) (b)

Likelihood
0.00001 0.00002 0.00003 0.00004

Likelihood
0.00001 0.00002 0.00003 0.00004

0.0
0.0

5 15 20 5 15 20

10
theta
FIGURE 4.2. The estimated likelihood curve for a small dataset in Stephens and

Donnelly (2000). (a) Seven independent runs of the plain SIS method of Griffiths
and Tavare; (b) five independent runs of SIS with resampling.

10
theta

84 4. Sequential Monte Carlo in Action

RNA Polymerase

Transcription
start site

Promoter
region

Transcription
start site mMRNA

FIGURE 4.3. Cartoon illustration of gene transcription. Top figure: RNA poly-
merase binds to the promoter region and is about to start the transcription.
Bottom figure: transcription is started when the RNA polymerase zips along the
genome resulting in messenger RNA.

4.1.8 Finding motif patterns in DNA sequences

As we have briefly discussed in Section 1.5, all the hereditary information
of a living thing is stored in its genome, which can be represented by linear
sequences of letters from a four-letter alphabet (A, T, G, and C). Segments
of the genome of 100 to 10,000 DNA bases long, called genes, code for
proteins, which are responsible for almost all functions of life. An entire
genome containing millions or billions of DNA bases and may encode tens
of thousands of proteins. The process of transforming the information con-
tained in a gene into its product (protein) is fairly complicated. First of all,
the information of a gene has to be transcribed (copied) from the genome
to messenger RNA (mRNA) by a molecular complex known as RNA poly-
merase. Then, these mRNAs are translated to proteins via transfer RNAs
(tRNA). Free RNA polymerase molecules collide with the chromosomes at
random positions, sliding along it but sticking only weakly to most DNA
segments. When it meets a specific DNA sequence called the promoter,
which signals the start of RNA synthesis, the polymerase binds tightly and
starts the transcription. The promoter for a bacteria gene is located just
“upstream” (at —10 and —35) of the transcriptional start site of the gene
(Alberts, Bray, Lewis, Raff, Roberts and Watson 1994). Note that the tran-
scriptional start site is different from the start of the gene (located further
downstream).

It is an amazing fact that every single cell of an organism carries a com-
plete copy of the full genome. However, diverse cells within an individual
differ drastically (for example, cells in one’s eyes and cells on one’s skin
have completely different forms and functions). The process by which cells
acquire special characteristics, called differentiation, occurs because the ex-

4.1 Some Biological Problems 85

pression of genes is regulated by various mechanisms. In single-cell organ-
isms, genes are regulated so as to allow the cell to respond to environmental
changes. A particular important form of gene regulation is achieved by pro-
teins (often called regulatory proteins) bound to sites within or close to the
promoter of a gene located in its upstream (5 end) non-coding regions.
which then alters the rate of RNA polymerase binding to a transcriptional
starting site. A protein bound to a site within the promoter region will pre-
vent RNA polymerase from starting transcription. If the regulatory protein
binds further upstream, it may enhance gene expression by attracting RNA
polymerases. The locations on the genome where the regulatory proteins
bind are called the regulatory binding sites and these sites are composed
of one or more short DNA segments of 20 base pairs long (some are even
shorter).

colel taatgtttgtgctggtttttgtgg: g gtggte gtttttttgatcg tccacagtcttgacag
ecoarabop tg - tccacattg R getatgccatageatttttatccataag
eCObglrl acaaatcccaataacttaattattgggatttgttatatataactttataaa: t ttaataactgtgag gtcatatt caat
€CoCrp g g gtaatacattgatgtactg tcacattaccgtgcagtacagttgatage
ecocya acggtg gratg ggtcaatca tgttasattgatcacgt g gtegtg

ecodecop agtg & gatcgcattacagtgatg, gtaagtag gtgatgtgtatcgaagtgtgttgcggagtagatgttagaata
ecogale 8 ttettgtgtanacy tttattccatg geatctitgttatgetatggttatttcataccataagee
ecoilvbpr ¢ - gaattcag tga " tog gtaaagctgt
ecolac " gtgagttag agg - gettecggetegtatgttg gtEagcggataacaatttcac
ecomale acattaccgecasttctgtaacagagatcacacaaagegacggtggscs " ttgecg gagtccgttta
ecomalk tgtg: tcatg ttcgtgatgttg tggcgattttatgtgegea
ecomalt gatcagcgtcgttttaggtgagttgttaataaagatttgg g tgcaaa tcatcgettgeattagaaaggtttct
ecoompa getg ttaaacatacctta gacttttt ta gtaagtt gttgtagactttacatcgee
ecotnaa gtaat a tttaa g gtgattcgattcacatttaaacaatttcaga

ecouxul cccatgagagtgaaattgttgtgatgtggttaacccaattagaattcggga
Pbr'p4 88ct 8 8 8

trn9cat ctg tasatasatcctggtgteccty tgaga

tacgccatctcatccgatgeaag

8 8 g

(tdC) gatttttatactttaacttgttgatatttaaaggtatttaattg ta gttaatttgtgagtgg catatcctgtt

8

TABLE 4.1. A dataset of 18 DNA segments, each of 105 base pairs long, taken
from the upstream noncoding regions of 18 genes of E. coli. This dataset was
created by Stormo and Hartzell (1989) who used a greedy sequential buildup
strategy to find the binding sites.

The cyclic receptor protein (CRP) is a positive control factor necessary
for the expression of catabolite repressible genes. Table 4.1 shows a set of
DNA segments, each 105 bases long, cut from upstream non-coding regions
of 18 genes of E. coli. It is known that there is at least one CRP-binding
site in each of the 18 segments and the location of these binding sites have
been experimentally determined (Stormo and Hartzell 1989). The width of

86 4. Sequential Monte Carlo in Action

¥

R_L‘ _:al

R - —

% 3

R<\ aK—
w

FIGURE 4.4. A schematic plot for finding subtle sites in multiple sequences. The
blackened segment in each sequence represents the “common pattern” expected
from these sequences; both its location and its content are unknown.

the binding motif is decided at w = 20. So this dataset allows one to test
the ability of various new algorithms.

We can abstract the motif finding problem into a simpler form, as de-
picted by Figure 4.4: We are given K sequences, R = (Ry,...,Rk), of
letters from an alphabet of size d (d = 20 for proteins and 4 for DNAs),
and we search within them for a “conserved” pattern of length w, as il-
lustrated by the blackened region in the figure. In this model, we assume
that every sequence Ry, has exactly one binding site and their locations are
called the alignment variable and denoted as A = (ay, ... ,ak)-

Table 4.2 displays a typical alignment of a common pattern, correspond-
ing to the CRP-binding sites, found from the CRP data in Table 4.1. Each
sequence segment corresponds to a blackened part in Figure 4.4. The lo-
cations of these sites have been experimentally determined (Stormo and
Hartzell 1989). Hence, the “true” value of the alignment variable A is
Ao = (64,58,...,81). Clearly, these patterns are not exactly conserved.
Biologists also showed that there are multiple motif sites in several of the
sequence segments. For example, the 20th positions of the first and sec-
ond sequences (cole 1 and ecoarabop) are all real binding sites. Hence, the
assumption that each sequence has exactly one motif segment is not very
realistic. A few other models have been developed to account for this limita-
tion (Liu, Neuwald and Lawrence 1995, Neuwald, Liu and Lawrence 1995).

A common approach in literature (Stormo and Hartzell 1989, Lawrence
and Reilly 1990, Lawrence et al. 1993, Krogh, Brown, Mian, Sjolander and
Haussler 1994, Liu 1994a, Liu, Neuwald and Lawrence 1995, Durbin, Eddy,
Krogh and Mitchison 1998) is to assume that the specificity of the motif
can be represented as an unknown matrix with w columns (a first-order
model). Column j in the matrix represents the base-type preference for
the jth position in the motif. For example, we see from Table 4.2 that the
first position of the motif prefers T, and the second prefers both 7" and G,
and so on. Thus, a pattern matrix can be thought of as a 4 x w matrix in
our example, in which each column shows the preference of nucleotide base

4.1 Some Biological Problems

(Gene’s name

Motif Start

Binding Site

87

colel 64 TTTGATCGTTTTCACAAAA
ecoarabop 58 TTTGCACGGCGTCACACTT
ecobglrl 79 TGTGAGCATGGTCATATTT
ecocrp 66 TGCAAAGGACGTCACATTA
ecocya 53 TGTTAAATTGATCACGTTT
ecodecop 10 TTTGAACCAGATCGCATTA
ecogale 45 TTTATTCCATGTCACACTT
ecoilvbpr 42 CGTGATCAACCCCTCAATT
ecolac 12 TGTGAGTTAGCTCACTCAT
ecomale 17 TGTAACAGAGATCACACAA
ecomalk 64 CGTGATGTTGCTTGCAAAA
ecomalt 44 TGTGACACAGTGCAAATTC
ecoompa 51 CCTGACGGAGTTCACACTT
ecotnaa 74 TGTGATTCGATTCACATTT
ecouxul 20 TGTGATGTGGTTAACCCAA
pbr-p4 56 TGTGAAATACCGCACAGAT
(tdc) 81 TGTGAGTGGTCGCACATAT

TABLE 4.2. The alignment of a common motif in upstream regions of the 17 E.
coli genes. These sites have been determined experimentally. The original data
consisting of 18 segments were produced by Stormo and Hartzell (1989) and
displayed in Table 4.1. One of the sequences is eliminated from the table because
its binding site contains an extra insertion compared with others.

types, in terms of total counts of A, T', G, and C, for the corresponding
position in the motif.

As stated in Stormo and Hartzell (1989), the problem of identifying the
binding sites from a collection of unaligned sequences can be viewed as
finding the best A that gives us the maximal “mutual similarity.” This

[43

similarity among multiple DNA segments can be represented by the “in-
formation content”

w T

Ia=Y">" fislog fin (4.1)

)

where f;; is the observed frequency of base b at the jth position of the
site, and py is the fraction of base b in an appropriate background (e.g.,
the whole genome or the whole dataset in consideration). With the goal
of optimizing (4.1), Stormo and Hartzell (1989) proposed the first effec-
tive method to search for conserved patterns in multiple sequences. Their
method as outlined can be seen as a greedy sequential method:

Stormo-Hartzell Algorithm

1. Each of the w-words (k-long substring) of the first sequence, R;, are
considered as a possible motif pattern — they are indeed equally likely
to be a binding site without further information. In the CRP example,
one forms 86 “matrices” to represent possible motif patterns.

88 4. Sequential Monte Carlo in Action

2. The next sequence on the list is added to the analysis. All the matrices
formed previously (say, N of them) are paired with all possible w-
words in the new sequence, and a “similarity score” is computed for
each pair. There are a total of N x 86 possible pairs for the CRP
example.

3. The top N best scored pairs are kept, from which a new set of N
“matrices” is formed. For each kept pair, the new matrix is formed
by adding the site (w-word) found in the new sequence to the matrix
it paired with.

4. Repeat the previous two steps until all sequences have been processed.

The foregoing algorithm can be understood from a sequential imputation
viewpoint. Step 2 in the algorithm is, in fact, a predictive sampling step as
in (1.4), p(a¢ | a1, ... ,a¢-1, R1, ..., Ry). But instead of random sampling,
they chose the most probable one according to this distribution. We now
describe how the problem can be treated by a proper statistical model
and how the computation can be completed by a sequential Monte Carlo
method.

The matrix model can be more concisely stated as a product multinomial
model (Liu, Neuwald and Lawrence 1995). Let 8y = (fo1,... ,00q)" be
the probability (column) vector describing the residue frequencies outside
a motif (d = 4 in our example). For notational simplicity, we just use
numbers 1,2,... ,d, instead of the actual names of the DNA base pairs
or amino acid residues, to represent the letters in the alphabet. We let
0;,j =1,...,w, represent the frequency of each base at the jth position
of the motif. Then, ® = [64,... , 0], called a product-multinomial model
(Liu, Neuwald and Lawrence 1995), is equivalent to the pattern matrix we
described previously by words. It is also called a profile matrix in literature.
By treating the alignment variable A = (ay,...,ax) as missing data, we
can now write down a simple statistical model:

p(R|600,0,4) = OH(R{A}C) H oy(RAH—l)
j=1

= gé‘(R) H (%
j=1

In the expression, we use A;_y to denote all of A but ay, A+1 = {a; +
l,...,ax + 1} to denote the set of l-shifted positions of A, and {4} =
{ap+j—-1:k=1,...,K, j=1,...,w} to represent the set of residue
indices occupied by the motif elements with alignment variable A. For
any set C' of indices, R¢ represents the collection of the residues indexed
by elements of C. For example, given any alignment variable A, we have
Rigy = {rkaprj—1 : for j=1,...,w; k=1,...,K}. The counting

h(Ra+;-1)
) (4.2)

4.1 Some Biological Problems 89

function h(), whose argument is a set of residues, counts how many of each
letter types in a set of protein residues or DNA base pairs). For example, if
R = {AATCCCTG} is an oligonucleotide sequence, we obtain that h(R) =
(2,2,1,3) for letter types A, T, G, and C. It is much simpler to state the
complete-data model (4.2) in words: Given the alignment variable A, the
part of the dataset R outside the motif elements are like i.i.d. realizations
from a multinomial model 6y; and each position in a binding site follows
a different multinomial model @;. Our task is to make inference on A, 8,
and the motif matrix ®. In order to take a Bayesian approach, we let the
prior distribution for A be uniform on all allowable configurations; let the
prior for 8 and 6; be Dirichlet(Noag 1, - - - , Noag,4), where the o are base
frequencies in the genome and the pseudo-counts Ny were chosen as VK in
many of our examples. More details on this model can be found elsewhere
(Liu 1994a, Liu, Neuwald and Lawrence 1995). A Gibbs sampling scheme
for this problem will be shown in Section 6.5. Here, we will describe a SIS
method to impute A.

Let Ay = (a1,... ,a:) and let Ry = {Ry,...,R;} be the collection of the
first ¢ sequences. Suppose we have imputed multiple copies of the alignment
variable, Agl_)l,... ,A,ET}, with respective weights wt(l_)l,... ,w,ET_”l). Then,
with the new sequence R;, we can update the weight as

w§j) = wgi)lp(Rt | Aﬁ)l, R,), (4.3)

where the predictive probability can be computed:

li—w+1

1 .)
TmwrT L PRea=il Al R,
i=1

p(Be | A7 Rey) =
Since (A,@l, R;_1) determines an estimate of the pattern matrix ®, the
above predictive probability is just the likelihood of R; under the jth esti-
mated pattern matrix, given that it contains a binding site. Simultaneously
with the weight updating, we can impute the motif locations for the new
(9)
¢

sequence; that is, a;”’ is drawn from

P =i | AP Ry) x p(Ry,ar =i | AP, Ry_y). (4.4)

When the importance weight ng) is too skewed, we resample among

the alignment matrices with probability proportional to the w,gj) (Sec-
tion 3.4.4). One can also use a different set of weights to do resampling
(Liu, Chen and Logvinenko 2000). For better efficiency, the resampling
step should take place right after the weight updating step (4.3) and be-
fore the sampling step (4.4). One can see that the resampling and predict
sampling steps play a similar role as Steps 2 and 3 of the Stormo-Hartzell
algorithm.

90 4. Sequential Monte Carlo in Action
4.2 Approximating Permanents

Let A = (aij)nxn be a 0-1 matrix (also called the restriction matrix),
where each entry a;; is either 0 or 1. Let II be the set of all permutaions
of {1,...,n}. A useful representation of a permutation o is

where o (i) record the new position of label ¢ after the permutation. For
any o € II, we define

a(o) = Haia(i)-
i=1

Following the notations in Diaconis et al. (2001), we let Sa be the set of
all “permitted” permutations under A:

Sa={o: a(o) =1}.

The permanent of A is defined as

perm(A) = Z H aio (i) = |Sal, (4.5)

oell i=1

There are many statistical applications that are related to permutations
and the computation of the permanents (Diaconis et al. 2001). For exam-
ple, for the test of independence for the astronomy data in Section 1.7, we
want to approximate the tail probability of a test statistics under the uni-
form distribution of all “permitted” permutations. This task requires us to
simulate from the uniform distribution on S 4. Sometimes one might also be
interested in the total number of permitted permutations — the permanent
perm(A). Approximating the permanent has been a great undertaking in
recent years among computer scientists (Jerrum and Sinclair 1989).

A naive Monte Carlo method for approximating perm(A) is to generate
random permutations o1,... ,on uniformly and to estimate

> a(o;)

A) = n!
perm(A) & n i

However, this method becomes very inefficient when the number of zeros in
A is relatively large. Clearly, if one of the entries in the product in ai4(1),
.5 Gng(n) 18 zero, then a(o) = 0. Thus, we want to design a Monte Carlo
algorithm that samples only on those permutations whose a;q(;) terms are
all none-zero. This goal can be achieved by the following recursive strategy
proposed in (Chen and Liu 2001).

4.2 Approximating Permanents 91

Let r;, ¢ = 1,...,n, and ¢j, § = 1,...,n, be the row sums and the
column sums of A, respectively. For the first column, we draw an entry
[i.e., o(1)] among all those positions with a;; = 1. However, we do not
want to sample o(1) uniformly among all the ¢; positions. Note that for
any permutation ¢ € II, if o(1) = s, then none of the o(i), i = 2,...,n
can be equal to s. Thus, we should prefer to use those nonzero entries that
correspond to relatively small row sums (i.e., small ry). More precisely, we
sample o (1) from the distribution

1

Plo(1) =) < —.

(4.6)
for s in the set S; = {s: as1 = 1}. If one row sum, say, rs; equals one
for some s € Si, then ¢[o(1) = s] = 1. If we can find s # s', both in
S1, such that rs = ry = 1, then there is no allowable permutation; thus,
perm(A) = 0.

After sampling the first column, or o(1) equivalently, we can update our
“working matrix” by setting all the entries in the first column and the
o(1)th row to 0’s and updating the corresponding row sums and column
sums. Then, we proceed to the next column, applying the same sampling
strategy. If this procedure can be carried out recursively to the last column,
we obtain an “allowable” permutation ¢ whose sampling distribution is

(royss —)7 (rayss =D (Pia—1)s, — 17
P[J:(31:S27---sn)]: . 2 n
Do) D D 1)

where (1), ,, is the kth modification of the sy1th row sum (after resetting
the first & columns)and the denominator is

Dy = Z (T(kyi — H,

-
B gy =t

where ag-“) is the (4, j)th entry of the kth modified restriction matrix (i.e.,
after resetting the first k£ columns and the rows s1,... , sy to 0).
The weight of each generated permutation ¢ is updated recursively as

Wi (T’(k)sk+1 - l)D(k) if D(k) < 0

Wy otherwise, (4.7)

We1(81, .-+, 8kt1) = {
If at some stage it is impossible to proceed to produce a valid permuta-
tion, we assign a weight 0 to this unsuccessful trial. After performing m
such trials of sequential sampling, we obtained m weighted permutations,

(0D, w), for j = 1,... ,m, including unsuccessful ones (corresponding
to a weight of 0), we can estimate the permanent of A as

M 4 e g
perm(4) = LT oW

m

92 4. Sequential Monte Carlo in Action

Other statistical tasks such as the hypothesis testing can also be accom-
modated.

This simple method was shown very efficient in a number of simulation
examples we have tested on. We started with an 8 x 8 matrix of which
we know the true answer. The cv? of our procedure, which approximates
perm(A) accurately, was about 0.3. We then simulated a random matrix of
50x50. The cv? of our SIS procedure for this case only increased moderately
to 0.5. It took about half a second to generate one permutation on a Sun
Ultra 60 workstation. When we increased the matrix size to 100 x 100, the
cv? was still impressively small, only about 0.7.

It should be noted that the methods of Kuznetsov (1996) and Beichl
and Sullivan (1999) can all be viewed as SIS samplers. The computational
and conceptual complexity of our approach is similar to that of Kuznetsov
(1996). But our method tends to be more efficient. Compared with Beichl
and Sullivan, our approach is much simpler, yet more efficient.

4.3 Counting 0-1 Tables with Fixed Margins

The problem of counting 0-1 tables with fixed margins was introduced in
Section 3.4.2. It is a long-standing problem in the fields of applied math-
ematics and computer science and has been subject to active research for
many years. In a recent work, Chakraborty, Chen, Diaconis, Holmes and
Liu (2001) developed a number of techniques for solving the problem. These
include a MCMC method, an exact counting method, and an SIS method.
Here, we focus on their SIS approach.

Briefly, the SIS method begins by filling in columns (or rows) of the m xn
table from left to right sequentially. After the first ¢t — 1 columns are filled,
the row sums are updated and the tth column is filled in by sampling ¢;
of its m possible positions to put in 1’s. These ¢; positions are sampled
according to a distribution that is related to the vector of the updated

row sums. For example, the probability that positions 41, ... ,i., of the tth
column are sampled can be proportional to
146
) r
(T yiiix #) . (4.8)
n—ri n— ’I‘iCt

More choices of the sampling distribution and other mathematical details
can be found in Chen (2001). This sequential sampling method gives us a
rather accurate estimate for fairly large tables.

To test the method, they examined Darwin’s finch data (Sanderson
2000), which, in the form of an “occurrence matrix,” recorded the pres-
ence and absence for each of the 13 species of Galdpagos finch in 17 islands
of an east archipelago. This data is shown as in Table 4.3.

4.3 Counting 0-1 Tables with Fixed Margins 93

o001 1111111011111 1|14
11 1 111111101 0 1 1 0 0f13
11 1 111111111 0 1 1 0 0|14
o o0 1 110 01O01O01 101 1 1]10
11 1 01 11 111 01 0 1 1 0 0|12
0o 0 0 00 O0OO0OO0OO0OOoO1Oo0T1 o000 0]2
o0 1 111111%001011 0 0]10
o o0 0 o000 G000 01 00000]1
o0 1 1111111501400 1 0 0]10
001 11111110101 1 0 011
00 1 11011 010O0O0O0O0O0 0|6
0o 0 1 1 0 0 0 O0OO0OO0OOOOOOTO0OO0] 2
3 3 100 9 9 7 8 9 7 8 2 9 3 6 8 2 2

TABLE 4.3. The finch dataset records the occurrences of 13 species(rows) of
Galadpagos finch in 17 islands (columns) of an east Pacific archipelago. Ecologists
are interested in testing if the occurrence pattern is a random draw from the
uniform distribution of all such patterns.

The problem of couting the number of 0-1 tables that have the same
marginal sums as the finch data was first raised by Susan Holmes in Stan-
ford. Based on 1000 sequentially simulated tables, the SIS method esti-
mated that the total count of the 0-1 tables with the given margins is
(6.72 + .02) x 10'®. The computation took 12 minutes on a Pentium 400
machine. With more computing time, 10® tables were generated and the
total number of the tables was estimated as 6.715 x 10'6. The coefficient
of variation of the importance weights (defined as the sample variance di-
vided by the square of the sample mean) was around 0.7. The “truth” they
obtained by using an exact-counting algorithm is 6.71...x 10'6.

To push further for the algorithm, we simulated a 50 x 50 random table
and recorded its marginal sums. The row sums are 1, 1, 1, 1, 1, 1, 1, 1,
1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,6,6, 7, 8 8, 9,
10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 15, 16, 18, 19, respectively, and the
column sums are 1,1, 1, 1,2, 2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, 5,
5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,9,9,9, 10, 10, 11, 12, 13, 13, 13, 14,
14, 14, respectively. The column sums were ordered from the largest to the
smallest and the columns were sampled sequentially according to (4.8) with
d = 0. This gave us a cv? of around 0.2. Based on 1,000 samples, which
took about 5 minutes to generate, we estimated that the total number of
0-1 tables with these marginal sums is (8.9 4 0.1) x 10?42, Based on 10, 000
samples, the estimate was improved to 8.78 x 10?42 with standard error
0.05 x 10?42, This example shows that the SIS method is still very efficient
even for large tables.

94 4. Sequential Monte Carlo in Action
4.4 Bayesian Missing Data Problems

4.4.1 Murray’s data

Let us revisit the Gaussian missing data problem described in Section 2.5.7.
The previous approach was based on the plain importance sampling in
which the trial density was chosen as the posterior distribution based on
the first four complete observations. Here, we consider an SIS approach.

Recall that the covariance matrix is assigned the Jeffreys non-informative
prior (2.13) The posterior distribution of ¥ given complete data is

1
p(Z|complete data) o Zi 1 exp {—§ tr[Z - S]} ,

where S = (s;5)2x2 is the uncorrected sum of squares matrix and £ =
x-L

Let the complete data be y1,...,y12, where y = (yr1,ys,2) for t =
1,...,12. Thus, the y; » are missing for observations 5 to 8 and the y; 1 are
missing for observations 9 to 12. The predictive distribution of y;41 given

Ve = (Y1,---,¥¢) is

St
~ —, t—1
yt+1|yt t2 (Oa t— 1;))

where S; = (si5), sij = Zizl Ys,i¥s,j, and ty is the bivariate ¢-distribution.
It follows that, conditional on y; = (y1,--. ,¥:), the marginal and condi-
tional distributions are

S11
Yi+1,1 |yt ~ 1 <Oat_17t_1>)
512 ISl yt2+1,1
Yerr2 | Yo errn ~ B | — Y1, o (1= |, ¢,
511 ts11 S11

respectively. Similar results can be obtained for conditional distributions
[Wet1,2 | ¥e] and [Ye41,1 | ¥¢, Yit1,2]- Based on these distributional results,
Steps A and B of the sequential imputation (Section 3.2.2) can both be
easily implemented. Figure 4.5 gives the exact posterior distribution of p
and the approximated posterior distribution based on sequential imputa-
tion. The approximation is a weighted mixture of m = 1000 complete-data
posterior distributions.

The complete-data posterior distribution of p is still difficult to compute
since it has the form

o [P 1 —(v+1)
Woln o« =% [Cw (wrlo2r) e @9
0

4.4 Bayesian Missing Data Problems 95

@ |
o
©
>‘O
E)
%]
T
<
° A
o
N
o
<
o

-1.0 -0.5 0.0 0.5 1.0
correlation coefficient

FIGURE 4.5. An approximation to the posterior distribution of the sample cor-
relation coefficient p for Murray’s data. Solid line: true density; dashed line:
approximation.

where y is the completed data after the missing part being imputed, r is
the sample correlation coefficient, and v = n — 2 = 10. To avoid numerical
integration in (4.9), we can use the algorithm of Odell and Feiveson (1966)
to generate observations from the inverse Wishart distribution, which gives
rise to a sample from p(p | y). Note that we do not have to draw from an
inverse Wishart distribution during sequential imputation.

4.4.2 Nonparametric Bayes analysis of binomial data

Kong et al. (1994) and Liu (1996b) considered the following hierarchical bi-
nomial model:

y¢ ~ Binomial(l;, (;)

G K FE 1<t<n.
Our interests are in drawing inference about both F' and the (;’s based on
the observed data y;. As a concrete example, consider a dataset (Figure 4.6)
of n thumbtacks randomly drawn from a certain population. Here, {; can
be interpreted as the inherent probability for the ¢th tack to point up when
being flicked. The observed data for the tth tack is y;, the number of times
the tack landed point up out of a total of I; flicks. The data in Figure 4.6
was generated by Beckett and Diaconis (1994), of whom each flicked 16
different thumbtacks on 10 different surfaces. For each person-tack-surface
combination (a total of 2 x 16 x 10 scenarios), the experiment was repeated
9 times. For simplicity, we treat the data as though they came from 320
different tacks and each being flicked 9 times independently. A histogram
of the data (the y;) is shown in Figure 4.6.

96 4. Sequential Monte Carlo in Action

The histogram of the original data Posterior mean of the Mixture
] o
3 | @
] o
a2 9 2 o
= [%]
> c il
3 3
o e
N b —‘ —l
° ﬂ | 3
0 2 4 6 8 0.0 0.4 0.8

FIGURE 4.6. Left: The histogram of the tack data produced by Beckett and
Diaconis (1994). Right: The predictive distribution of ¢ for a future tack (which
is also the posterior mean of F').

Different from the method outlined in Section 1.8, we take a nonpara-
metric Bayes approach by assigning a Dirichlet process prior, D(c), to the
infinite-dimensional parameter F. The hyperparameter « is a finite posi-
tive measure on interval [0, 1]. We define the norm ||« as the total measure
of the support of F. Note that D(«a) is a probability measure on P, the
set of all probabilities on the Borel sets of [0, 1]. Readers not familiar with
this special class of Dirichlet process distribution and nonparametric Bayes
inference are referred to Ferguson (1974). In the tacks example, we may be
interested in estimating (; for tack ¢, given its performance in 9 indepen-
dent flips, or in obtaining the posterior mean of the unknown distribution
F [i.e., E(F | C1y---,Cn)]-

For simplicity, suppose « is the uniform measure on [0, 1] (hence, the
norm ||a|| = 1). Then, a key result (Ferguson 1974) is that conditional on
C1,---,C—1, the posterior distribution of F' is again a Dirichlet process,
D(ag_1) with az_1 = a+ Zi;i d¢;, where d¢, is a delta measure with mass
1 located at ;. Thus, the predictive distribution for the next thumbtack,
Ct: is

t—1
GelCryeee s G ~ % <a+ 25@) , (4.10)
i=1

which should be interpreted as a probabilistic mixture of a and delta mea-
sures concentrated at the (;‘s (Antoniak 1974). Note that the posterior
mean of F, E(F | (1,...,(t), is the same as (4.10). It is easy to see from

4.4 Bayesian Missing Data Problems 97

(4.10) that
1
[GelCasenn s Gom1sme] = 7 [B(yt + 1,0 —y; + 1)Beta(y; + 1,1 —y; + 1)
t—1
+ Z (11— Cz')“yt(sci] (4.11)
=1

where

(ye + DTl —ye + 1)
Ll +2)

1
B(yt+1,lt—yt+1)=/ v (1 - hvde = 1
0

is the Beta function, Beta(:,-) is the standard Beta distribution, and
t—1
Z=Blyp+LL—y+1)+) - ghv
i=1

is the normalizing constant. Note that (4.11) is a mixture of a Beta distri-
bution and discrete point masses. From (4.10), we also get

t—1

1 1 . R
PelCrs -, Geo1) = 2 Bye + Ll —ge +1) + ZZG/ (I=G) v,

i=1

which is the term needed for updating the importance sampling weights.
Hence, both Steps A and B of sequential imputation can be easily imple-
mented (Liu 1996b).

Note that a direct application of the data augmentation algorithm (Sec-
tion 6.4) is difficult because sampling F' from

[F|<1,---,Cn]:D(a+6C1+“'+5Cn)

is infeasible. [Some approximations exist; see Doss (1994)]. Escobar (1994)
described a “collapsed” Gibbs sampling algorithm (Section 6.7) in which
the sampling of F' is not needed. His method also takes advantage of the
simplicity of the predictive distributions (4.10) and (4.11). For a related
problem where the (js are ordered, Gelfand and Kuo (1991) used a similar
idea to avoid sampling the infinite-dimensional parameter F'.

The sequential imputation procedure derived from using (4.10) and (4.11)
was applied to the thumbtack data with a being uniform and ||a| = 1.
Figure 4.6 displays the posterior mean of the unknown density function
F, E(F | y). Liu (1996b) studied the sensitivity of this result to the prior
assumption and presented a method to estimate the norm of «.

A more sophisticated “second-generation” SIS procedure for nonpara-
metric Bayes problems was proposed by MacEachern et al. (1999). They
noticed that when sampling (; from (4.11), either a new (is produced

98 4. Sequential Monte Carlo in Action

from the Beta distribution or a previous (is drawn. As a consequence, the
(¢ forms natural clusters because of the Dirichlet process assumption on
F. The plain SIS procedure tends to fix the location of these clusters at
a relatively early stage, which is inefficient because an early cluster loca-
tion may be invalidated by the subsequent new observations. The new SIS
method introduces the cluster indicator variable I;, which tells us whether
(¢ should be in one of the clusters formed by (i,...,(;1 or form a new
cluster. Conditional on the indicators I, ... , I,, one can integrate out all
the (3. The new sequential importance sampler is then constructed on the
space of (I1,...,I,). When applied to the tack data under the same prior
setting, the new method yields a substantial improvement over the plain
SIS described earlier in this section (a cv? of 11 for the new method versus
43 for the old one).

4.5 Problems in Signal Processing

4.5.1 Target tracking in clutter and mizture Kalman filter

Tracking a target in clutter is of interest to engineers and computer scien-
tists. The problem has received much attention recently since the proposal
of the bootstrap filter (Avitzour 1995, Gordon et al. 1995). Here, we use
the simple one-dimensional tracking problem in Avitzour (1995) to show
how the SIS methods can be applied in this area.

Avitzour (1995) modeled the tracking problem as a state-space model
with the state variable z;=(x¢,1,%2), where x; ;1 is the location of the
target on a straight line and =z » is the target velocity. The z; evolve in the
following way:

1
Tyl = Tg—11 + Te—12 + iwt’

Ty = Xp-1,2 + Wy,

)

where the noise term w; are i.i.d. and follow distribution N(0,q?). If we
could identify the object (without confusing it with others) at all times,
then our observation would have been the object’s location z; ; plus a small
random noise. In other words, we observe

Zt = Ty1 + Vg,

where the v; are i.i.d. Gaussian noises with distribution N(0,72). If all
the z; are directly observable, then the tracking problem can be solved
satisfactorily by using a Kalman filter (Bar-Shalom and Fortmann 1988).

When confusing objects are present in the detection window, however,
our observation at time ¢ becomes y;, which is a vector of length m;, where
my is the total number of observed objects in the window and each com-
ponent of y; represents an object’s position. Among these m; measured

4.5 Problems in Signal Processing 99

locations, at most one corresponds to the true target we are interested in
tracking (i.e., is equal to z;). The occurrence of the confusing objects is
assumed to follow a Poisson process with rate a. We further assume that
there is only a probability p; < 1 for the observation window to actually
include the target’s location (z;) in y;. Therefore, if the range of the de-
tection window is A, the distribution of m; is Bernoulli(pg)+Poisson(AA)
and the false signals are uniformly distributed in the detection region. By
introducing an indicator variable I;,

7 — 0 if the target object is not in the detection range
¢ k if the kth object corresponds to the target,

we can formulate this problem as a state-space model; that is, when I; = 0,

AA)™ A\
p(ye | 2, Iy =0) = A—mtue—m _ eXA,
mt! mt!

and when I; =k,

RV | (e, — m1)?
Ploe |0 Lo = k) = (mt—l)!e V2rr {_T :

Since a priori P(I; = 0) = 1 — pg and P(I; = k) = pg/m:, we have

(1 —pa)A if It = 0;
(yt,k - $t)2
272

Je(ye, I | 1) o] otherwise.

exp |:—
Since I; is not observable, we need to sum out the I; to obtain the obser-
vation distribution fi(y | x¢).

Using ¢(z; | #:—1) to denote the state evolution relationship, we can
obtain a sequence of auxiliary distributions, 7 (z1,... , %), as in (3.8):

me(xe) o fr(ye | 24)q(@e | De—1)m—1(X¢-1)

and
i (21) o /ft(yt | 2)q(we | Te—1)me—1(@4—1)dTi 1.

The second equation holds because of the Markovian structure among the
z;. With this formulation, the current position of the target can be esti-
mated as E, (z).

Conditional on the current value of z;_;, we can easily simulate x; from
the state equation ¢(). Given a sampled value of z;, the computation of its
weight, fi(y: | x¢), is also easy. Thus, the bootstrap filter (Section 3.3) can
be easily applied to this problem. However, if we pay a little more attention
to the model’s special structure, we can come up with a much more efficient
algorithm.

100 4. Sequential Monte Carlo in Action

Let Ay = (I1,...,I;) be called a trajectory up to time t. We note that
an important feature of our tracking model is that if we know the values
of the trajectory A; of the target, the tracking system becomes linear and
Gaussian and the computation of the Bayes estimator, E(z¢ | y1,..- ,¥t),
can be achieved ezactly by a standard Kalman filter. Therefore, conditional
on Ay, we can integrate out x; exactly. This feature enables us to design
a SIS system only on the reduced space of A; (Liu and Chen 1998, Chen
and Liu 2000a). This approach is a vivid demonstration of the power of
marginalization technique (Section 3.4.6). Since this new algorithm takes
the form of mixing over a number of Kalman filters, we call the method
mizture Kalman filter (MKF). Chen and Liu (2000a) give more details.
Briefly, a general MKF algorithm can be stated as follows.

Suppose at time ¢t — 1, we have sampled m trajectories {Agl_)l, - ,A,ET%}
with weights w,gl_)l, e ,w§T1’. For each trajectory A,@l, we can compute
via a Kalman filter the mean vector u,(sj_)l and the covariance matrix 2§J_)1
for the target. These are the sufficient statistics because the system is linear
and Gaussian given A;_,. We denote K Ft(f)l = (u,@l, Zg@l). At time ¢, we

run the following MKF updates: For j =1,... ,m,
e generate It(j) from a trial distribution g(I; | A,@l, K Ft(z)l,yt);

e conditional on each {K Ft(i)l,yt,ffj)}, obtain K Ft(-{-)l by a one-step
Kalman filter (Chen and Liu 2000a);

(9) (9)

e update the new weight as wij) = wy”; X ug”’, where
4 _ pAPL I | i)
Uy

P(Al(tj—)1 | Yt—l)g(It(j) | ’\§J;)1aKFt(z)1ayt)

e if the coefficient of variation of the w; exceeds a threshold value, we
resample a new set of K F, from {KF" ... KF{™} with probabil-
ity proportional to the weights w,gj),

Smith and Winter (1978) proposed a deterministic filtering method,
called split-track filter (STF), which has a similar flavor to the MKF we
just outlined. In STF, one always keeps m trajectories of the latent indi-
cators. At a future time step, it evaluates the likelihoods of all possible
propagations from the m trajectories kept at the previous step, then finds
and keeps the m new trajectories with the highest likelihood values. In
contrast, our MKF selects these trajectories randomly, according to the
weights (which is the predictive likelihood value), and uses the associated
weights to measure how good each trajectory is. The important step of
resampling is naturally built into MKF, which can overcome some weak-
nesses of STF. More sophisticated sampling and estimation methods can
also be incorporated.

4.5 Problems in Signal Processing 101

Error
0
Il

T T T T T T
o] 20 40 60 80 100

Error
0 20 4
Il

-20

-40
1

T
o 20 40 60 80 100

Error
0
Il

T
o 20 40 60 80 100
Time

FIGURE 4.7. The tracking errors of 50 runs of the MKF (top), a sequential

importance sampler (middle), and the split-track filter (bottom) for a simulated
target moving system.

Figure 4.7 shows the plots of tracking errors (estimated location — true
location) of 50 simulated runs, with > = 1.0, ¢> = 0.1, pg = 0.9, and
A = 0.1. These parameter combination is slightly different from that of
Avitzour (1995), with smaller clutter density but larger state equation vari-
ance. With their configuration, the results are similar, but the differences
between different procedures are smaller. Five hundred streams (m=>500)
were used, with resampling done at every step. The top part of Figure 4.7
resulted from using the MKF method, and the middle part shows the result
from using a slightly improved bootstrap filter (Avitzour 1995). We also
implemented the split-track filter for this problem, which, at each step,
saves the 500 trajectories with the highest likelihood values (bottom part).

102 4. Sequential Monte Carlo in Action

The generality of the MKF method is more thoroughly explored in Chen
and Liu (2000a).

4.5.2 Duigital signal extraction in fading channels

Many mobile communication channels can be modeled as Rayleigh flat-
fading channels, which have the following form:

Xy = FXt_1+W’U)t

State equations: ar = Gxy
sg ~ p(|8s1),
Observation equation: Y = aySp + Vg,

where s; are the input digital signals (symbols), y; are the received complex
signals, and a4 are the unobserved (changing) fading coefficients. Both w;
and v; are complex Gaussian with identity covariance matrices. It is impor-
tant to note that this model has some similarity to the tracking problem;
that is, given the input signals s;, the system is linear in x; and y;. There-
fore, we can design a MKF which focuses solely on the s; (with x; integrated
out). The algorithmic detail is similar to the MKF updating steps described
in the previous subsection and will be omitted here. Readers interested in
more details and related applications are referred to Chen and Liu (2000a)
and Chen, Wang and Liu (2000).

Consider a special example in which input signals are binary (i.e., s; =
—1 or +1). The fading coefficient takes complex values, with independent
real and imaginary parts following the same state equation. Simulation
were done with the following configurations:

0 1 0 0 0.04 0
o o 1 0 . oa| 011 o
F=19 o 0 T A B F T R B
0 094 —2.88 294 0.04 1

and V = r. That is, both of the real and the imaginary parts of «; follow
an ARMA(3,3) process

oy — 0.94at,1 + 2.88at,2 — 2.94at,3
= 0.046,5 + 0.11€t,1 + 0.116,5,2 + 0.046,573

where e; ~ N(0,0.01%). In the communication literature, this is called a
(low-pass) Butterworth filter of order 3 with cutoff frequency 0.01. It is
normalized to have a stationary variance 1.

We are interested in estimating the differential code d;y = s;s;_1. Fig-
ure 4.8 shows the bit error rate of different signal-to-noise ratios (SNR),
using a form of the MKF, the differential detection dy = sgn[real(y,y;)]

4.6 Problems 103

and a lower bound. The lower bound is obtained using the true fading coef-
ficients oy and dy = sgn[real(ay,y; as_1)]. The Monte Carlo sample size
m was 100 for the MKF. We also include the result of a delayed estimation,
in which s, is estimated using the samples si’) generated by MKF and the
weight wéﬂr)l at time ¢ + 1 (Liu and Chen 1998). This delayed estimation
is able to utilize the substantial information contained in the future infor-
mation y¢+1, hence more accurate, due to the strong memory in the fading
channel.

Bit error rate

MKF

delayed
known channel bound
diff. detection

+ + <& 0O

10’5 L L L
10 15 20 25 30 35 40
Eb/No (dB)

FIGURE 4.8. The bit error rate of extracting differential binary signals from a
fading channel using MKF and differential detection. A lower bound that assumes
the exact knowledge of the fading coefficients is also shown.

We can see that the simple differential detection works very well in low-
SNR cases and no significant improvement can be expected. However, it
has an apparent bit error rate floor for high-SNR cases. The MKF managed
to break that floor, by using the structure of the fading coefficients.

4.6 Problems

1. Prove that the method described in Section 4.2 is valid. In particular,
show that the weight updating strategy is correct. That is, the average
of the weights indeed provide us an unbiased estimate on perm(A).

2. Describe how to use the SIS method of Section 4.2 to conduct the
hypothesis test of independence for the astronomy data in Section 1.7.

3. Test to see whether you can find a better sampling distribution than
(4.6) for approximating permanents. One possible choice is P(o(1) =

104

4. Sequential Monte Carlo in Action

s) o« (rs — 1)~ for some a > 0. But it might be possible to use a
more complex function of all the r;.

. Study the “scanning future” method (Meirovitch 1982, Meirovitch

1985). Investigate its potential for the nonlinear filtering problem
and the molecular structural optimization problem.

Investigate further the difference between the method of “split-track
filter” and the mixture Kalman filter.

This is page 105
Printer: Opaque this

D
Metropolis Algorithm and Beyond

We have discussed in the previous chapters the important role of Monte
Carlo methods in evaluating integrals and simulating stochastic systems.
The most critical step in developing an efficient Monte Carlo algorithm
is the simulation (sampling) from an appropriate probability distribution
m(x). When directly generating independent samples from 7 (x) is not pos-
sible, we have to either opt for an importance sampling strategy, in which
random samples are generated from a trial distribution different from (but
close to) the target one and then weighted according to the importance ra-
tio; or produce statistically dependent samples based on the idea of Markov
chain Monte Carlo sampling. The importance sampling approach and its
extensions have been discussed in Chapters 2—4. In this chapter, we intro-
duce the cornerstone of all Markov chain-based Monte Carlo methods: the
algorithm proposed in a very short paper (four pages) by Nicholas Metropo-
lis, Arianna Rosenbluth, Marshall Rosenbluth, Augusta Teller, and Edward
Teller in 1953.

Let m(x) = Z ' exp{—h(x)} be the target distribution under investiga-
tion (presumably all probability distribution functions can be written in
this form), where the normalizing constant, or the partition function, Z,
is often unknown to us. In principle, Z = [exp{—h(x)}dx is “knowable,”
but evaluating Z is no easier (and often harder) than the original problem
of simulating from 7. Motivated by computational problems in statistical
physics, Metropolis et al. (1953) introduced the fundamental idea of evolv-
ing a Markov process to achieve the sampling of 7. This idea, later known
as the Metropolis algorithm, is of great simplicity and power — its varia-
tions and extensions have now been widely adopted by researchers in many

106 5. Metropolis Algorithm and Beyond

different scientific fields, including biology, chemistry, computer sciences,
economics, engineering, material sciences, physics, statistics, and others.
The Metropolis algorithm can be used to generate random samples from
virtually any target distribution 7(x) known up to a normalizing constant,
regardless of its analytical complexity and its dimensionality. Although
this claim is true in theory, a potential problem with these Markov-chain-
based Monte Carlo methods is that the resulting samples are often highly
correlated. Therefore, the estimates resulting from these samples tend to
have greater (often much greater) variances than those resulting from in-
dependent samples. Various attempts have been made in many different
fields (e.g., physics, chemistry, structural biology, and statistics) to over-
come these limitations. Interesting research topics include the design of
Markov-chain-based Monte Carlo algorithms that can generate less corre-
lated samples, the finding of more efficient ways to use generated Monte
Carlo samples, the assessment of statistical errors of the estimates, etc. De-
tailed discussions regarding these topics will be given in the later chapters.

5.1 The Metropolis Algorithm

The basic idea of the Metropolis algorithm is to simulate a Markov chain
in the state space of x so that the limiting/stationary /equilibrium® distri-
bution of this chain is the target distribution 7. Note that in traditional
Markov chain analysis, one is often given a transition rule? and is inter-
ested in knowing what the stationary distribution is (see Section 12.1 for
an introduction to Markov chains), whereas in Markov chain Monte Carlo
simulations, one knows the equilibrium distribution and is interested in
prescribing an efficient transition rule so as to reach this equilibrium.

Starting with any configuration x(9), the Metropolis algorithm proceeds
by iterating the following two steps.

M1: Propose arandom “unbiased perturbation” of the current state x(*) so
as to generate a new configuration x’. Mathematically, x’ can be seen
as being generated from a symmetric probability transition function?
(often called the proposal function or trial proposal) T(x®,x') [i.e.,
T(x,x') = T(x',x)]; calculate the change Ah = h(x') — h(x®).

IThere are subtle differences among these three concepts: limiting, stationary, or
equilibrium distributions. But for most practical examples, they are the same thing. See
the Appendix and Karlin and Taylor (1998) for more details.

2A transition rule is a probabilistic law, or more precisely, a conditional distribution,
that dictates the chances of moving from one point in the state space to another.

3A function T'(x,y) is called a probability transition function if it is non-negative

and satisfies 3°), T(x,y) =1, for all x.

5.1 The Metropolis Algorithm 107

M2: Generate a random number U ~ Uniform[0,1]. Let x(*+1) = x if
U < 7n(x')/m(x®) = exp(—Ah),
and let x(**1) = x(®) otherwise.

A more casual but perhaps better known description of the Metropolis
algorithm is as follows: At each iteration, (a) a small but random pertur-
bation of the current configuration is made, (b) the “gain” in an objective
function [i.e., —h(x)] resulting from this perturbation is computed, (c) a
random number U is generated independently, and (d) the new configu-
ration is accepted if log(U) is smaller than or equal to the “gain” and is
rejected otherwise. Heuristically, the Metropolis algorithm is constructed
based on a “trial-and-error” strategy.

Metropolis et al. (1953) restricted their choices of the “perturbation rule”
to the symmetric ones. According to this perturbation rule, the chance
of obtaining x’ from perturbing x is always equal to that of obtaining x
from perturbing x'. Intuitively, this means that there is no “trend bias”
at the proposal stage. Mathematically, this symmetry requirement can be
expressed as

T(x,x') =T(x,x).
The Metropolis scheme has been extensively used in statistical physics over
the past five decades and is the cornerstone of all Markov chain Monte
Carlo (MCMC) techniques recently adopted and further developed in the
statistics community.

As an illustration, we consider the simulation of a simple hard-shell ball
model for gas. In this model, the positions of K nonoverlapping hard-shell
balls, with equal diameters, are required to be uniformly distributed in
the box [0, A] x [0, B]. Let (X,Y) = {(zi,4;:), ¢ = 1,...,K} denote the
positions of these balls. The target distribution of interest, 7(X,Y’), is then
uniform for all allowable configurations (i.e., nonoverlapping and within the
box). The Metropolis algorithm for this simulation can be implemented as
follows: (a) Pick a ball at random, say, the ball at position (z;,y;); (b)
propose to move this ball to a new position (z},y}) = (2; + 01,y + 02),
where §; ~ N(0,03); and (c) accept the proposed position (z},}) if it does
not violate the constraints, otherwise stay put. With K =6,d = 0.8, A =
B = 3.5, and starting positions of the balls at regular grids, we adjusted o3
to 0.5, which gave us an acceptance rate of about 30%. Figure 5.1 shows two
snapshots of this simulation: The first one was taken after 1000 iterations,
and the second one taken after 2000 iterations.

Another example is the simulation of the Ising model. As described in
Section 1.3, the Ising model takes a probabilistic form

m(x) < exp{-U(x)/ BT},

where x = (25, s € £) and z; = £1, L is a lattice space; and U(x) =
—JY ss O2,=z,, - To simulate from this model, one needs to prescribe a

108 5. Metropolis Algorithm and Beyond

O o o0
12 0ollc
©

2 3 0 1 2 3

0

FIGURE 5.1. The simulation of a hard-shell ball model by the Metropolis algo-
rithm. Left: after 1000 iterations; right: after 2000 iterations.

way to “perturb” the current configuration. A convenient proposal transi-
tion function is as follows: Pick a site, say, o, at random, and negate its
current value z, to —z,. Thus, the proposed new configuration x' differs
from the initial one x only by a single site.

To be more concrete, consider the simulation of a one-dimensional Ising

model in which x = (z1,... ,24) and U(x) = —ng;ll ZTsTst1- By letting
J = uBT, we write the target distribution as
1 d—1
m(x) = 7 &P {uszwsH} . (5.1)
s=1
Suppose the current configuration is x(* = (mgt), ... ,mg)); then the next

state x(tt1) is produced by the Metropolis rule as follows:

e Choose a site, say, the jth site at random and set its current spin
xg-t) to the opposite. Thus, the newly proposed configuration is x' =

t t t
(mg),... ,—xg-),... ,x‘(i)).

e Compute the Metropolis ratio. In this case, it is easy to check that the
random flipping process is completely symmetric; hence, T'(x®),x') =
T(x',x®), and, when j # 1 or d,

r=nx")/rx®) =exp {—2ua:§t) (xgt,)l + 5’7921)} .

e Simulate an independent uniform random variable U. Let x(tt1) = x'
if U < r and let x(+1) = x® otherwise.

Since this distribution has many components, it is difficult to have an over-
all sense of how the chain moves in the space. In Figure 5.2(a), we plot the

5.1 The Metropolis Algorithm 109

traces of the total magnetization, defined as M®) = E?:l mgt), for the first

2000 steps of a simulation. In this example, we took yu = 1, d = 50, and

the “all-up” starting configuration [i.e., x(® = (1,...,1)].
(a) First 2000 steps (b) A total of 50000 iterations
o 500 1o e 2000 ° roo0 20000 so0e0 | aoon0 50000

FIGURE 5.2. Simulation of the 1-D Ising model. The trace plots of (a) the first
2000 steps and (b) the total of 50,000 steps.

For this example, we can, in fact, compute the normalizing constant Z
analytically and conduct an ezact simulation (Section 2.4). Note that

d—1
Z g(x) = (e!™® + e H*)exp {,u Z TiTit1 }
z1

=2

-1
(e " +e")exp {u Z .Z'il'ri+]_} .

=2

We can recursively sum out x5, 23, etc., and obtain that

RS l...z{;g(x)}...] (e # s o)t

Z1,--- 524 x4 z2

for d > 2. Thus, the marginal distribution of z4 is 4 = 1 or —1 with equal
probability (which is actually obvious without doing any computation).
Conditional on x4, the distribution of z4_; is

Pr(zq_1 = zq) = e"/(e* +e74),

and Pr(zg_1 = —z4) = e */(e* + e *). Thus, we can recursively simulate
x backward (Section 2.4).

We implemented both the exact simulation method and the Metropolis
algorithm for the 1-D Ising model (5.1) with g = 1 and p = 2, respectively.

110 5. Metropolis Algorithm and Beyond

Figures 5.3(a) and 5.3(c) show the histograms of the total magnetization
variable M from 20,000 exact samples, for model (5.1) with 4 = 1 and
u = 2, respectively. Figures 5.3 (b) and 5.3(d) show the corresponding
histograms from 20,000 Monte Carlo samples generated from 1,000,000

Metropolis sampling steps. The chosen samples were 1 in every 50 lags
[i.e., x(30) x(100) " 5 (50k) = 7,

@ (b)
: I IIIIIII : IIIIIIIII
- _-III I IIII__ - _--II Illl__
- - Exact - - Metropolis
© C))

5000

0 1000 2000 3000 4000
3000

-a0 -20 o 20 a0 -a0 -20 20 40

o
Exact Metropolis

FIGURE 5.3. Histograms of the total magnetization M. (a) and (c): using 20,000
exact samples from the 1-D Ising models with g = 1 and p = 2; (b) and (d):
using 20,000 samples chosen from 1 million Metropolis steps for each model.

From these simple graphs, we can make several interesting observations:
(i) The computational effort for each Metropolis step is roughly 1/50th
of that of exact simulation, so 1 million Metropolis steps took roughly the
same CPU time as the production of 20,000 exact samples; (ii) when p =1,
the samples produced by the Metropolis algorithm were almost as good as
those produced by independent sampling (at least to our eyes); (iii) when
p = 2, the independent sampling showed an obvious advantage. These
observations, in fact, reflect some important features of and deeper issues
about the Metropolis algorithm: Each step of the Metropolis algorithm is
usually very simple, but the Monte Carlo samples produced by a Metropolis
sampler may become very “sticky”(e.g., getting stuck in local modes) in
distributions with “low temperature” (i.e., high-energy barrier). In fact,
the “stickiness” is already observable when p = 1 from Figure 5.2 (a):
If one starts from an “all-up” configuration, it took about 1000 steps to
get to the “ball park” of the interesting region and it took about 2000
steps to complete an “up-down” cycle. Quantitative measurement of this
“stickiness” is often expressed as autocorrelations. A lag-k autocorrelation
for a time series MW, M3 . is defined as

pi = corr(M ™), M*H+D),

5.2 Mathematical Formulation and Hastings’s Generalization 111

under their stationary distribution. Higher autocorrelations imply that the
produced samples are stickier. Figure 5.4 shows the autocorrelation plots
(i-e., a plot for py versus k) for those Monte Carlo samples in Figures 5.3(b)
and 5.3(d), respectively.

ACF
ACF

0o o s00 1000 1500 2000

Lag

o 500 1000 1500 2000
ag

FIGURE 5.4. Autocorrelation plots of the time series M™ produced by the
Metropolis sampler for the 1-D Ising model with (a) p =1 and (b) p = 2.

One observes that the 2000-lag autocorrelation of the M (™ series pro-
duced by the Metropolis sampler for p = 2 is still as high as about 0.9, im-
plying that roughly one independent sample is as good as 20,000 Metropolis
steps. More discussions on efficiency analysis of Markov chain Monte Carlo
methods are discussed in Section 5.8 and Chapter 12.

5.2 Mathematical Formulation and Hastings’s
Generalization

The Metropolis algorithm prescribes a transition rule for a Markov chain.
It uses a symmetric proposal function T'(x,y) to suggest a possible move
and then employs an acceptance-rejection rule to “thin it down.” Hastings
(1970) later extended the algorithm to the case when T is not necessarily
symmetric. In Hastings’ generalization, the only serious restriction on the
proposal function is that T'(x,y) > 0 if and only if T'(y,x) > 0. With this
transition function, one can implement the following iteration:

Metropolis-Hastings Algorithm. Given current state x(®):
e Draw y from the proposal distribution T'(x(*), y).

e Draw U ~ Uniform[0,1] and update

(t+1) — Y, if U < Ir(x(t)JY)
x { x(®) otherwise. (52)

112 5. Metropolis Algorithm and Beyond

where Metropolis et al. (1953) and Hastings (1970) suggested using
()T (y,x) }
T(x)T(x,y)

Clearly, this algorithm is identical to the original Metropolis algo-
rithm when T'(x,y) =T (y,x).

r(X,y) = min {1,

Barker (1965) suggested another acceptance function:

7(y)T (y, x)
7(¥)T(y,x) + 7(x)T(x,y)

A more general formula for r(x,y) is given by Charles Stein (personal
communication):

B (X: y) =

8(x,y)
7(x)T(x,y)’

where §(x,y) is any symmetric function in x and y that makes r(x,y) <
1 for all x,y. The intuition behind the ratio T(y,x)/T(x,y) is that it
compensates the “flow bias” of the proposal function.

If a rejection function of the form (5.3) is used, then for any y # x, the
actual transition probability from x to y is

) =T o) = 9

Because d(x,y) = d(y,x), we have that m(x)A(x,y) = n(y)A(y,x). This
implies that the Markov chain induced by the Metropolis-Hastings rule is
reversible and has 7 as its invariant distribution (the next section).

For discrete state spaces, Peskun (1973) showed that the optimal choice
of (x,y) in terms of statistical efficiency is the one in the original Metropo-
lis algorithm (see Section 13.3.1 for more details). But the issue is less clear
in terms of convergence rate of the induced Markov chain (Frigessi, Diste-
fano, Hwang and Sheu 1993, Liu 1996¢) As we will show in the next section,
a main criterion used in the design of a Markov transition rule such as the
Metropolis-Hastings algorithm is to ensure that the target distribution m(x)
is the invariant distribution of this chain.

r(x,y) = (5.3)

=7(x)"1o(x,y). (5.4)

5.3 Why Does the Metropolis Algorithm Work?

We first verify that the Metropolis-Hastings algorithm prescribes a tran-
sition rule with respect to which the target distribution 7 (x) is invariant.
Let A(x,y) be the actual transition function of the algorithm. It differs

5.3 Why Does the Metropolis Algorithm Work? 113

from the proposal function T'(x,y) because an acceptance-rejection step is
involved. We are required to show that

/ () A(x, y)dx = 7(y). (5.5)

Fortunately, there is an easier-to-check, but more restrictive, condition
than (5.5), the detailed balance, which can be stated as

T(X)ARx,y) = n(y)A(y,%). (5.6)

Clearly, if the detailed balance (5.6) holds, we have

[76 y)dx = [), xdx = a(y) [Ay, x)dx = 7).

Thus, the detailed balance ensures invariance. The converse is not true. In
Markov chain literature, chains that satisfy the detailed balance condition
are called reversible.

We can write down A(x,y) explicitly for the Metropolis algorithm: For
any x # y, the probability that we actually make the move from x to y
is equal to the proposal probability, T'(x,y), multiplied by the acceptance
probability; that is,

Ax,y) =T y)ymin {1,

for x # y. Hence,

r(Axy) = 7(x)T(xy) min{l,
= min{r(x)T(x,y),7(y)T(y,x)},

which is a symmetric function in x and y. Thus, the detailed balance con-
dition is satisfied.
More generally, as long as the transition function A(x,y) is of the form

Ax,y) = n(y)i(x,y),

where §(x,y) is a symmetric function in x,y, one can easily verify that
the detailed balance condition has to be satisfied. The difficulty in the
construction of A, however, is that the symmetric function 6(x,y) has to
be chosen properly so that the integral [A(x,y)dy = 1. One can easily
check that the Metropolis transition can be written as (for x # y)

T(x,y) T(y,X)}
n(y) = w(x) |’

Ax,y) = () min {

114 5. Metropolis Algorithm and Beyond

The acceptance rule proposed by Barker (1965) corresponds to a transition
(for x # y)

Txy)T(y,x)
TWT(y,x) + 7(x)T(x,y)

It was not clear, then, which acceptance rule is better. Peskun (1973) later
showed that the Metropolis rule generally works better in terms of statis-
tical efficiency.

By the standard Markov chain theory, if the chain is irreducible*, ape-
riodic® [this is almost surely true for the Metropolis algorithm (Tierney
1994)], and possesses an invariant distribution, then the chain will be-
come stationary at its invariant distribution, 7. Therefore, if we run this
chain long enough (say, after a burn-in period of ng steps), the samples
Xno+1, Xne+2,- - - Produced by the chain can be regarded as approximately
following the target distribution 7. One then realizes the task of drawing
random (but correlated) samples from a given distribution.

A(x,y) = 7(y)

5.4 Some Special Algorithms

To illustrate how the Metropolis-Hastings rule is practiced, we describe a
few special algorithms that have appeared frequently in the literature.

5.4.1 Random-walk Metropolis

Suppose the target distribution m(x) is defined on the d-dimensional Eu-
clidean space R?. A natural “perturbation” of the current configuration
x® is the addition of a random “error;” that is, the next candidate po-
sition is proposed as x' = x® + ¢, where €; ~ g, (-) is independent and
identically distributed for different ¢. Here, o represents the “range” of the
proposal exploration and is controlled by the user. In problems where we
do not have much information on the shape of the target distribution, we
often end up letting g,(-) be a spherically symmetric distribution. Typical
choices include the spherical Gaussian distribution N (0,02I) or the uni-
form distribution in a ball of radius o. Clearly, if one does not exercise
the Metropolis rejection rule to this proposal, the resulting walk will drift
away to infinity and never come back (when d > 3). It is thus worthwhile
to point out that in a Metropolis algorithm, the proposal chain is not re-
quired to have any good “global properties” other than being irreducible

4 A Markov chain is said to be irreducible if the chain has nonzero probability (density)
to move from one position in the state space to any other position in a finite number of
steps.

5 A Markov chain is said aperiodic if the maximum common divider of the number of
steps it takes for the chain to come back to the starting point (any) is equal to one.

5.4 Some Special Algorithms 115

(see footnote 4 on page 114). But we do require some local properties for
T(x,y) [e.g., T(x,y) > 0 whenever T(y,x) > 0].

Given the current state x(*), the random-walk Metropolis algorithm it-
erates the following steps:

e Draw € ~ g, and set x' = x() +¢€, where g, is a spherically symmetric
distribution and ¢ can be controlled by the user.

e Simulate u ~ Uniform[0,1] and update

: m(x')
x(t-‘rl) — y if u S W(X(t))

x® otherwise.

In the example of simulating six hard-shell balls in a box, we used the
random-walk method for each individual ball. In an interesting study, Gel-
man, Roberts and Gilks (1995) suggested that a rule of thumb in choosing
o in a random-walk Metropolis is to maintain a 25% to 35% acceptance
rate. This rule is supported by a theoretical analysis for a Gaussian target
density (more details in Section 5.8).

5.4.2 Metropolized independence sampler

A very special choice of the proposal transition function 7T'(x,y) is an in-
dependent trial density g(y); that is, the proposed move y is generated
from g(-) independent of the previous state x(*). This method, as first sug-
gested in Hastings (1970), appears to be an alternative to the rejection
sampling and importance sampling. Its convergence properties was studied
in Liu (1996a), where all the eigenvalues and eigenfunctions of the actual
transition function are derived (see Section 13.4).

The MIS Scheme: given the current state x(®),

e Draw y ~ g(y).

e Simulate u ~ Uniform[0,1] and let

. , w(y)
<t =) Y if ugmm{l,w(x(t))}

z(® otherwise,

where w(x) = m(x)/g(x) is the usual importance sampling weight.

As with the rejection method, the efficiency of MIS depends on how close
the trial density g(y) is to the target 7(y). To ensure robust performance, it
is advisable to let g(-) be a relatively long-tailed distribution. Gelman and
Rubin (1992) and Tierney (1994) suggested that one can insert a couple of

116 5. Metropolis Algorithm and Beyond

MIS steps into Gibbs iteration when correctly sampling from a conditional
distribution is difficult. The idea is useful in many Bayesian computations
in which each conditional density can be approximated reasonably well
by a Gaussian distribution. To accommodate irregular tail behaviors, it is
essential to use a long-tailed ¢-distribution as g(x).

5.4.3 Configurational bias Monte Carlo

The configurational bias Monte Carlo (CBMC) algorithm can be viewed as
an SIS-based Metropolized independence sampler. Suppose the argument
of the target distribution, x, can be decomposed as x = (x1,... ,24). As
in a sequential importance sampler (Section 2.6.3 and Chapters 3 and 4),
we assume that there is a sequence of auziliary distributions

7T1(£L'1),7T2($C1,.’E2), - ,Fd_l(xd_l),ﬂ'(x)

that can help us construct the trial sampling distribution.
Let the trial sampling distribution of x be

9(x) = g1(z1)g2(@2 | 1) - - ga(a | Xa-1)-

To implement a CBMC algorithm (Siepmann and Frenkel 1992), we first
draw x(® from g(x) via a SIS strategy and compute its importance weight
w(® (up to a normalizing constant). Suppose that currently we have x(*)
with weight w(x(®); then, at the next iteration, we do the following:

e Independently generate a trial configuration y from g() (using the
sequential approach); compute its importance weight

w(y) =n(¥)/9(y),
which can often be derived recursively as

771(:’/1) 7T2(Z/1;yz) 7Td(yla'-' ayd)
gi(y1) g2(y2 | y)m(y1) 94(wa | ya—1)ma—1(ya-1)

w(y) =

(This recursion is key to the SIS approach.)

e Accept y; that is, let x(**1) =y, with probability min {1, w’z’&?)) };

and let x(t+1) = x(®) otherwise.

This procedure is exactly the same as the Metropolized independence sam-
pler described in the previous subsection, except that the trial density is
built up sequentially and the importance weight computed recursively.

A useful modification of the foregoing CBMC procedure is to incorporate
a stage-wise rejection decision. Suppose all the previous k — 1 steps in the

5.5 Multipoint Metropolis Methods 117

sequential simulation of the trial configuration x’ have been accepted. Then,
at the kth stage of SIS, we accept xj, = (z1,...,z},) with probability

e (X) Th-1 (Xk—1) gk (e | Xe—1) | _ ug (x4
T (Xp) Tr—1 (X} _1)9k (@), | x;c_l)} - {1’ }

where uy is the same as that in (3.10). In other words, the acceptance
probability is equal to the ratio of the incremental importance weights
between the trial and the current configurations. When rejected, we go
back to the first stage to rebuild the whole configuration. It should be
noted that one does not need to perform the acceptance-rejection decision
at every stage and she/he has a complete control on when to conduct
conduct the acceptance-rejection step.

This multistage method has been shown effective in simulating super-
fluid Helium 4 and other quantum mechanical systems (Ceperley 1995).
Compared to the CBMC, this multistage sampler can force an early stop
so as to save computing power. However, the chance of the final acceptance
of a complete configuration in the multistage approach should be smaller
than that in the CBMC because

Ppr = min {1,

min(1,a;) x --- x min(1, aq) < min(1, a; X --- X aq).

To show that the multistage modification of CBMC is proper, we can
write down its actual transition function and prove that it satisfies the
detailed balance. Here, we provide only a proof for the case when d = 2 [i.e.
x = (21, %2)]. The general proof is left to the reader. Suppose the auxiliary
distributions when d = 2 are 71 (x1) and 72(x) = 7(x). Suppose the current
state is x. Then, the probability of accepting a new configuration x' =

(z175) # x is

. T
P(x = x') = g1(z})g2(chle}) min {1,

y mm{ 7z, Th)7f1(1)g2(

= m(x) min{g; (1) m1 (21), 771(%)g1(z1)}
« min 1($1)91($2|$1)’ m1(21) g1 (22]1) |
m(x') (%)
Hence, this transition function is indeed of the form w(x')§(x,x’), where

¢ is a symmetric function. The detailed balance condition is thus satisfied
(see the argument in Section 5.3).

5.5 Multipoint Metropolis Methods

In principle, the Metropolis sampling method discussed in Section 5.2 can
be applied to almost any target distribution. In practice, however, it is

118 5. Metropolis Algorithm and Beyond

not infrequent to discover that finding a good proposal transition kernel is
rather difficult. Although the important generalization of Hastings (1970)
enables one to use asymmetric proposal functions, a simple random-walk-
type proposal is still most frequently seen in practice simply because there
is no obviously advantageous alternative available. It is then often the case
that a small step-size in the proposal transition (for the algorithms similar
to those described in Section 5.4.1) will result in exceedingly slow movement
of the corresponding Markov chain, whereas a large step-size will result in
very low acceptance rate. In both cases, the mixing rate of the algorithm
would be very slow.

Here, we describe a generalization of the Metropolis-Hastings’s transition
rule. This new rule (Frenkel and Smit 1996, Liu, Liang and Wong 2000, Qin
and Liu 2000) enables a MCMC sampler to make large step-size jumps
without lowering the acceptance rate.

5.5.1 Multiple independent proposals

Suppose T'(x,y) is an arbitrary proposal transition function and §(x,y) is
an arbitrary symmetric and non-negative function. A modest requirement
is that T'(x,y) > 0 if and only if T'(y,x) > 0. Define

w(x,y) = m(x)T(x,y)A(%,y), (5.8)

where A(x,y) is a non-negative symmetric function in x and y that can
be chosen by the user. The only requirement is that A(x,y) > 0 whenever
T(x,y) > 0. We present a few choices of \(x,y) in the latter part of this
section. Suppose the current state is x¥ = x; then, a MTM transition is
defined as follows:

Multiple-Try Metropolis (MTM)

e Draw k independent trial proposals, y1,...,¥k, from T(x,-). Com-
pute w(y;,x) asin (5.8) for j =1,... ,k.

e Select y among the trial set {yi,...,yr} with probability propor-
tional to w(y;,x), j = 1,..., k. Then, produce a “reference set” by

drawing x7,... ,x}_; from the distribution T'(y,-). Let x} = x.

e Accept y with probability

w(ylax)+"'+w(Yk5X)} (59)

ro =min< 1, " "
! { w(xi,y) + -+ w(xg,y)

and reject it with probability 1 — ry. The quantity ry is called the
generalized M-H ratio.

5.5 Multipoint Metropolis Methods 119

When T(x,y) is symmetric, for example, one can choose A(x,y) =
T~Y(x,y). Then, w(x,y) = m(x). In this case, the MTM algorithm is sim-
plified as the following algorithm, known as orientational bias Monte Carlo
(OBMC) in the field of molecular simulation.

OBMC Algorithm
e Draw k trials y1, ..., yx from a symmetric proposal function T(x,y).

e Select Y = y; among the y’s with probability proportional to 7(y;),
J =1,...,k; then, draw the reference points x{,... ,x)_; from the
distribution T'(y;,x'). Let x}, = x.

e Accept y; with probability

R)

and reject with the remaining probability.

The proof of the correctness of this method is straightforward (Liu, Liang
and Wong 2000). Roughly speaking, one can directly check the detailed
balance by writing down what the algorithmic instructions mean mathe-
matically. To illustrate the idea, we prove the case for k = 2.

Proof: Let A(x,y) be the actual transition probability for moving from
x to y in a MTM sampler. Suppose x # y and let I indicate which of
y; has been selected. Since w(y,x) = n(y)T(y,x)A(y,x) and the y; are
exchangeable, we have

T(x)A(x,y) = 27(x)P[(Y1 =y)n(I =1)|x] (symmetry)

] w(y, x)
=2 W(X)/T(X;Y)T(X’yQ)w(y,x) + w(y2,x)

: ’LU(y,X) + ’lU(y2,X) } * *
Xmin< 1, T(y,x5)dy2dx
{ ’U)(X, y) +’U}(X;,y) (y 2) Y2aXy

_ o wx y)uw(y,x) .
= 2 W/T(EH)T(%XQ)

. 1 1
X min 5 -
{w(y,x) +w(Y27X) w(X7Y) +w(x27Y)

} dyodx;.

The final expression is symmetric in x and y because A(x,y) = A(y,X).
Thus, we proved that w(x)A(x,y) = 7(y)A(y,x), which is the detailed
balance condition. ¢

Another interesting application is to combine the MTM approach with
the Metropolized independence sampler (Section 5.4.2). Because the trial

120 5. Metropolis Algorithm and Beyond

samples are generated independently, one does not need to generate another
“reference set.” More precisely, suppose the current state is x(¥) = x in our
MCMC iteration; then, the next state can be generated by the following
multiple-trial Metropolized independence sampler (MTMIS):

MTMIS:

e Generate a trial set of i.i.d. samples by drawing y; ~ p(y), j =
1,...,k, independently, where p() is a trial distribution chosen by

the user. Compute w(y;) = 7(y;)/p(y;) and W = Z?:l w(y;).

e Draw y from the trial set {y1,...,yx} with probability proportional

o Let x(t+1) =y with probability

min {1, T w(z‘; + w(x) }

and let x(*+1) = x with the remaining probability.

The idea of using MTM to make large-step moves along certain favorable
directions is a useful heuristic and can be applied broadly. We will show
later (Chapter 11) how the MTM can be applied to improve the algorithm’s
performance in more complicated settings.

5.5.2 Correlated multipoint proposals

Based on the work of OBMC and MTM, Qin and Liu (2000) provide a
more general scheme, termed as the multipoint method, which allows one to
choose from multiple correlated proposals at each iteration. Its application
in hybrid Monte Carlo has shown promising results. Suppose the current
state is x(*) = x. We generate k trial proposals as follows: Let y; ~ P; (- | x)
and let

Yy NPJ(| X, ¥15--- an—l)a .7 = 25 7k'
For brevity, we also let y[1.; = (y1,---,¥;), Y] = (¥j,--- ,¥1) and let
Py | x) = Pu(yr [%) -~ Pi(y; | X, ¥[us-1))-
A weight function is defined as
Wi (X, ¥1:57) = 7(X) P (Y151 | X)A; (%, ¥a:7)s (5.10)
where \;() is a sequentially symmetric function; that is,

)\j(a,b,... ,z):)\j(z,... ,b,a).

5.5 Multipoint Metropolis Methods 121

The general algorithm is as follows:

Multipoint Method:

e Sample y from the trial set {y1,...,yr} with probability propor-
tional to w(yy:.1},%); suppose y; is chosen.

e Create a reference set by letting x; = y;—; for I = 1,...,j — 1,

x* = x, and drawing

J

X:,L ~ Pm(| y’xrl:m—l])’

form=j5+1,...,k.
e Let x(*+1) = y with probability

S w(yp, x) }

Tmp =ming 1, = "
{ Zl:l w(x[l:l]) Y)

and let x(*+1) = x with the remaining probability.

The simplest choice of \;() for (5.10) is the constant function. But we
may, in some cases, want to give larger weights to larger j’s since these
points are “farther” away from the initial point x. When P; is constructed
by composing a symmetric transition kernel j times, the resulting function
is sequentially symmetric. Thus, we can choose A; as v;/P;, where v; is a
constant, so that w;(y[;.1},%x) = v;m(y;). The resulting algorithm is very
similar to OBMC.

When the state space is R?, we can create a random-grid Monte Carlo
algorithm similar to the random-ray Monte Carlo method (Liu, Liang and
Wong 2000) to be described in Section 6.3.3. At each iteration, we do the
following steps.

Random-Grid Method:

e Randomly generate a direction e and a grid size r.

Construct the candidate set as

yi=x+1l-r-& for I=1,...,k.

e Draw y = y; from {y1,...,yr} with probability proportional to
u;m(y;), where u; is a constant chosen by the user (e.g., u; = /7).

e Construct the reference set by letting x; =y —1-r-e,forl =1,...k.
Therefore, x; =y; ;forl <jand x; =x— (I —j)-r-&forl>j.

e Accept the candidate y with probability

k
p =min {1, Zﬂ(yl)/ Zﬂ(xl*)} ,
=1

=1
and reject otherwise.

122 5. Metropolis Algorithm and Beyond
5.6 Reversible Jumping Rule

In applications such as image analysis (Grenander and Miller 1994) and
Bayesian model selections (Green 1995), one often needs to design a sam-
pler that jumps between different dimensional spaces. In principle, one still
can follow the Metropolis-Hastings’s rule to guide for the design of such a
sampler. The only technical complication is in ensuring the reversibility of
proposals for jumping between two different dimensional spaces.

Suppose X is the state space of interest and) is a subspace of X with a
lower dimensionality. For example,) can be a manifold defined as) = {x :
f(x) = 0} for some differentiable function f. Furthermore, we suppose that
the target distribution m(x), known up to a normalizing constant, lives on
these two spaces simultaneously. This distribution can be represented as

(%) o go(¥)|xey + q1(x), (5.11)

where gg and ¢; are two unnormalized probability density functions defined
on their respective spaces [i.e., ¢;(x) = ¢;m;(x) with ¢; unknown]. Therefore,
if we draw a random sample from X according to m(x), the chance that
it lies in Y is zero! To make things worse, we assume that the ratio of the
two constants, v = ¢p/c1, is generally unknown to us. If we can design a
Monte Carlo algorithm to sample from 7 (x), the ratio v can be estimated
by the ratio of the number of samples lying in Y over that lying in X

The above setting is of particular interest in Bayesian hypothesis testing
problems. Suppose we have a probability model f(y | @) where 8 = (6o, 61)
and we are interested in testing Hy: 8y = 6, versus Hy: 8y # 61 in light of an
observation y. We let model M; correspond to the unrestricted parameter
space 0 (two dimensional) and let model My correspond to the subspace
defined by 6y — 6; = 0. It is sometimes natural assume that the two models
are equally likely a priori; then, the posterior distribution of 8 under the
“mixture” of two plausible models is

m(0) o< f(y | 0)fo(0)lo0=0, + f(v | 8) fo(6)los20. -

Statisticians are often interested in estimating the ratio of the two normal-
izing constants,

co _ Joyms, Iy |)fo(8)d8
a [fy]0)fi(6)de

which reflects the posterior odds ratio of model My versus model M;. As
we mentioned in the previous paragraph, this ratio can be estimated if we
can design a Monte Carlo scheme to sample 7.

In order to design a Monte Carlo Markov chain that lives on both the
general state space and the restricted space, we need to have two different
proposals, one for)J) =+ X and another for X —). Since)Y is of lower

5.6 Reversible Jumping Rule 123

dimensional, any transition from) to X must have a degenerate density
with respect to the dominant measure on X', implying that no proposal for
moves from X —) can be properly “reversed” by a proposal from) to X.
To overcome this difficulty, we must have a “matching space” Z, so that
Y x Z has the same dimension as X’ and a matching proposal g(z | y). With
the matched space, one can come up with two non-degenerate proposals
and follow the Metropolis-Hastings’s rule to design jumps.

Green (1995) presented a formal treatment of this type of moves (involv-
ing change-of-variables and Jacobians) and named them reversible jumps.
Here, we study only a sufficiently instructive special case: X =)Y x Z.
Therefore, each x can be written as x = (y,z), and “subspace”) in fact
corresponds to Y x {zg} for some zg € Z. In order to jump from Y to
X, we may first propose y — y' by a proposal transition T} (y,y’), match
y' with a z’ drawn from g(- | y'), and then let x’ = (y',2z’). This can be
viewed as an expansion transition. A contraction transition is needed to
propose from x € X back into). This can be achieved by first dropping
the z component in x, and then proposing y’ from T»(y,y’). According the
Metropolis-Hastings rule, the expansion proposal y — x' is accepted with
probability

IIT !
a:min{l a2y, y) }

"o (y)Ti(y,y")9(z' | y')

where ¢go and ¢; are as defined in (5.11). The contraction proposal x — y’
(where x = (y, z)) is accepted with probability

—in [1 2ODLG ¥)9(z] y)
b= {1’ a(y,z)Ta(y,y") }

The expansion proposal in the foregoing procedure can be seen as first
“proposing” and then “lifting” (from a lower dimensional space to the
higher one). Similarly, we can conduct “lifting” first and “proposing” after-
ward. More precisely, in order to accomplish the proposal y — x', we can
first draw z ~ g(- | y) and then draw x' from S1[(y,z),-]. The contraction
move is achieved by first proposing x — x’ = (y',2’) according to Sa2(x, x')
and then dropping z'. Thus, the acceptance probabilities are respectively

a':min{l ¢ (x')S2[x', (v, 2)] }
"q0(¥)9(z | y)Si[(y,2),x'] }

! ! ! oo
BI = min {1, qO(y)g(z | Yy)51[(}’ ,Z)’x]} .
a1 (x)S2[x, (v, 2')]
Note that both S; and S» are proposals in the higher-dimensional space

X, whereas both 77 and T» are proposals in the lower-dimensional sub-
space). Thus, without having other justifications, we prefer lifting after

124 5. Metropolis Algorithm and Beyond

proposing than the other way around because it is often easier to pro-
pose lower-dimensional moves. It is conceivable, however, that lifting before
proposing can sometimes help the chain escape from a local energy trap
of the lower-dimensional space. Similar ideas have been employed in the
clustering method and simulated tempering (Chapters 7 and 10).

A useful strategy in improving Monte Carlo sampling efficiency is to in-
troduce a number of related probabilistic systems with different levels of
“difficulties” (in terms of Monte Carlo sampling) and then simulate them
together. These auxiliary systems are often made by varying a “temper-
ature” parameter in the original target distribution for the sake of easy
manipulation (i.e., simulated tempering and parallel tempering; see Chap-
ter 10). However, it may be more efficient to consider a system consisting
of spaces with different dimensions (Liu and Sabatti 1998). To sample
from this augmented system, one needs to use the reversible jumping rule.
It should be noted that the basic principle behind the reversible jumps is
similar to that behind the sequential importance sampling and the CBMC
(Sections 2.6.3 and 5.4.3) because the move from y to x can be seen as a
one-step SIS update.

5.7 Dynamic Weighting

Wong and Liang (1997) introduced the use of a dynamic weighting vari-
able for controlling Markov chain simulation. By using this scheme, they
were able to obtain better results for many optimization problems, such
as the traveling salesman problem and neural network training, and high-
dimensional integration problems, such as the Ising model simulation.

To start a dynamic weighting scheme, we first augment the sample space
X to X x R so as to include a weight variable. Similar to the Metropolis
algorithm, we also need a proposal function T'(x,y) on the space X. Sup-
pose at iteration ¢, we have (x,w®)) = (x,w). Then an R-type move is
defined as follows:

e Draw y from T'(x,y) and compute the Metropolis-Hastings ratio

r(x,y) =

e Choose 8§ = f(w,x) > 0, and draw U from Uniform(0,1). Then let

. wr(x,y)

,wr(x,y) + 6 ifU < —————

(x(HD) (1)) = B r(ey) +0) o wr(x,y) +6
(xm,%> otherwise.

(5.12)

5.8 Output Analysis and Algorithm Efficiency 125

It is easy to check that the R-type move does not have 7 as its equilibrium
distribution. Wong and Liang (1997) propose to use invariance with respect
to importance weighting (IWIW) for justifying the above scheme; that is,
if the joint distribution of (x,w) is f(x,w) and x is said correctly weighted
by w with respect to 7 if 3, wf(x,w) « m(x). A transition rule is said
to satisfy IWIW if it maintains the correctly weightedness for the joint
distribution of (x,w). Clearly, the R-type move satisfies IWIW.

The purpose of introducing importance weights into the dynamic Monte
Carlo process is to provide a means for the system to make large transitions
not allowable by the standard Metropolis transition rules. The weight vari-
able is updated in a way that allows for an adjustment of the bias induced
by such non-Metropolis moves. Although this algorithm has been applied
successfully in many difficult optimization and simulation problems [see
Section 10.6 and Liang (1997)], theoretical properties of this algorithm are
still rather subtle. A first theory is recently given by Liu, Liang and Wong
(2001) and some of which, together with another type of dynamic weighting
scheme, the Q-type move, will be presented in Section 13.6. An important
application of the dynamic weighting method is to be combined with a
simulated tempering algorithm, and this aspect will be discussed in more
detail in Section 10.6.

5.8 Output Analysis and Algorithm Efficiency

In analyzing outputs from a Markov chain Monte Carlo algorithm (this
applies to all the later chapters), one of the major concerns is its statis-
tical efficiency in estimating the expectation of interest. Let us suppose
that the Markov chain is irreducible and aperiodic (see footnotes 4 and 5
on page 114) and converges to its unique stationary distribution, 7(x). At
the heart of every MCMC computation is the estimation of E,h(x) for a
certain h() of interest. Thus, what we really care about at the end is how
accurate we can estimate this quantity. Suppose we have drawn samples
xM ... x(™) via a MCMC sampler with 7(x) as its equilibrium distri-
bution. Let us further assume that we have run the process long enough
(in the previous day, say) and have thrown away the initial ng iterations
needed for the equilibration of the chain (i.e., we assume that x(®) ~ 7).
Then,

Wy 4 ... (m) [ma ;
mva,r{h(X)+ bl)} = o° 1—}—22(1—%)@
j=1

m

~ o [1+2) p; (5.13)
j=1

126 5. Metropolis Algorithm and Beyond

where o2 = var[h(x)] and p; = corr{h(x("), h(xU*+1)}. In physics litera-
ture (Goodman and Sokal 1989), one defines the integrated autocorrelation
time of h(x) as

1 [o9)
j=1

Then we have

~

mvar(h) = 27int (h)o?.

This variance is, in effect, equal to that of an estimator with m/[27in(h)]
independent random samples. Thus, m /[27¢(h)] is often called the effective
sample size.

If is often observed that p; decays exponentially. Therefore, we can model
the autocorrelation curve as

o] ~exp{— J }
Texr)(h)

which gives rise to the expression

J

Texp(h») = lim Supj_ﬂx)m,

where Texp(h) is called the exponential autocorrelation time. When Texp(h)
is large, we can see that

—

1 1
— = & Texp(h).

oo
. ~ —j/Texp(h) - =
Tint (h) J_ZO € 2 1- 6—1/Texp(h) 2

The “relaxation time” of the system is defined as

Texp = SUD Texp(h).
hEL2()

The concepts of the autocorrelation and relaxation time are also closely
related to the convergence rate of the algorithm (i.e., the second largest
eigenvalue of the Markov chain transition matrix). More precisely, if we let
h be an eigenfunction that corresponds to an eigenvalue A of the transition
matrix, then we have p;(h) = M. Hence,

1+A 1

Tint (h) = 2(1 =)’ Texp(h) = “log [\’

and the relaxation time is

5.9 Problems 127

where Ao is the second largest eigenvalue in modular of the transition
matrix. Thus, Texp reflects the convergence speed of an MCMC sampler,
whereas Tint is most relevant when the statistical efficiency of the algorithm
is of interest.

It is commonly agreed that finding an ideal proposal chain is an art.
In fact, the Metropolis algorithm aided with Hastings’s (1970) generaliza-
tion is so general that one always tends to feel unsatisfactory in settling
down on any specific proposal chain. It is important, therefore, to analyze
autocorrelation curves of an algorithm in order to obtain its behavioral
characteristics. Peskun (1973) suggests that two Markov chains, with tran-
sition functions P; and P, respectively, and the same equilibrium distribu-
tion, should be compared based on a statistical criterion — the asymptotic
variance of the corresponding estimator (5.13). When the state space is
finite, he found an explicit asymptotic formula for (5.13), from which he
concluded that for a given proposal transition, the Metropolis acceptance-
rejection rule is “optimal” in the sense of having the smallest asymptotic
variance for the resulting estimates. Consequently, Barker’s proposal is less
desirable in general. An interesting twist of Peskun’s result will be described
more details in Section 5.4.2.

Another interesting result is given by Gelman, Roberts and Gilks (1995)
for a continuous state space. Suppose the target distribution is N(0,1)
and a random-walk Metropolis algorithm (Section 5.4.1) is used for its
simulation. The proposal transition is of the form x' = x(!) + ¢, where
€ ~ N(0,0?). Gelman, Roberts and Gilks (1995) show that the optimal
choice for ¢ that gives the smallest autocorrelation is o = 2.38. A slightly
larger o does not affect the efficiency much, but a smaller one has a signif-
icant adverse effect. These assertions can be verified by direct simulation.
This optimal o corresponds to an acceptance rate of 44%, suggesting that
this is a useful reference number to be watched when tuning a proposal dis-
tribution. Roberts, Gelman and Gilks (1997) recommended calibrating the
acceptance rate to about 25% for a high-dimensional model and to about
50% for models of dimensions 1 or 2.

5.9 Problems

1. Implement a Metropolis algorithm to sample from a Poisson (A) dis-
tribution. Test it for A=3, 5, and 10. A suggestion for the proposal
function: the simple random walk on a line.

2. Let 7(x) be N(0,1). Implement the random-walk Metropolis algo-
rithm to sample from 7, using N(-,02) as the proposal function. Plot
the autocorrelation curve for the corresponding chain. Argue why
o = 2.38 is a good choice.

128

10.

11.

5. Metropolis Algorithm and Beyond

Prove that the multistage modification of the CBMC method is proper
for all d (Section 5.4.3).

Show that the detailed balance condition 7(x)A(x,y) = 7(y)A(y, x)
guarantees that 7 is the invariant distribution of A(x,y).

Suppose the Metropolized independence sampler (MIS) is applied to
sample from 7(x), where x is defined on a finite state space and the
trial distribution is g(x).

(a) Write down the actual transition matrix A for the MIS.
(b) Show that the second largest eigenvalue of A is ming {7 (x)/g(x)}.

(¢) Find its corresponding eigenvector.

Show that the random-grid method is proper [i.e., it leaves the tar-
get distribution 7(x) invariant]. Implement the random-grid method
to sample from a multidimensional Gaussian distribution. Study em-
pirically how the choices of k and the grid-size distribution affect
algorithmic efficiency.

Show that the reversible jump algorithm as described in Section 5.6
leaves 7 invariant.

Show that the R-type dynamic weighting rule satisfies the IWIW
property.

Show that the @-type dynamic weighting rule does not satisfy the
IWIW property.

Implement both the random-ray and the random-grid methods to
replace the griddy-Gibbs method in Example 6.1 of Ritter and Tanner
(1992).

Prove that the MTMIS algorithm gives rise to a reversible Markov
chain whose equilibrium distribution is .

This is page 129
Printer: Opaque this

0
The Gibbs Sampler

The proposal transition T'(x,y) in a Metropolis sampler is often an ar-
bitrary choice out of convenience. In many applications, the proposal is
chosen to be a locally uniform move. In fact, the use of symmetric and
locally uniform proposals is so prevailing that these are often referred to as
“unbiased proposals” in the literature. If not subjecting to the Metropolis-
Hastings rejection rule, this type of move would have led to a form of sim-
ple random walk in the configuration space X'. Although such a proposal
is simple both conceptually and operationally, the performance of the re-
sulting Metropolis algorithm is often inefficient because the proposal is too
“noisy.” In contrast, the conditional sampling techniques to be discussed
in this and the next chapters enable a MCMC sampler to follow the local
dynamics of the target distribution. A distinctive feature of these MCMC
algorithms is that at each iteration, they use conditional distributions (i.e.,
those distributions resulting from constraining the target distribution = on
certain subspaces) to construct Markov chain moves. As a consequence, no
rejection is incurred at any of its sampling steps. The multipoint methods
described in Section 5.5 are similar in spirit but are computationally more
expensive than conditional sampling.

6.1 Gibbs Sampling Algorithms

The Gibbs sampler (Geman and Geman 1984) is a special MCMC scheme.
Its most prominent feature is that the underlying Markov chain is con-

130 6. The Gibbs Sampler

structed by composing a sequence of conditional distributions along a set
of directions (often along the coordinate axis).

Suppose we can decompose the random variable into d components [i.e.,
x = (21,... ,24)]- In the Gibbs sampler, one randomly or systematically
chooses a coordinate, say 1, and then updates it with a new sample z}
drawn from the conditional distribution 7 (- | x[_1]), where x[_ 4] refers to
{zj, j € A°} for any subset A of the coordinate indices. Algorithmically,
we can describe two types of Gibbs sampling strategy.

Random-Scan Gibbs Sampler. Let x(*) = (x@, e :c((it)) for iteration t.
Then, at iteration ¢ 4+ 1, we conduct the following steps:
e Randomly select a coordinate ¢ from {1,... ,d} according to a given
probability vector (ai,...,aq) [e.g., (1/d,...,1/d)].
gt'H) from the conditional distribution 7(- | x[(t_)z]) and leave
the remaining components unchanged; that is, let

e Draw z

(t41) _ ()
X = X

Systematic-Scan Gibbs Sampler. Let x(t) = (xgt), . .xgt)). At thet+1
iteration:

o We draw xgtﬂ) from the conditional distribution
t+1 t+1 t t
T RN N S 0)

Fori=1,...,d.

It is easy to check that every single conditional update step in both the
random-scan and the systematic-scan Gibbs samplers leaves 7 invariant.
To see this point, suppose x*) ~ 7. Then, x[(t_)i] follows its marginal distri-
bution under 7. Thus,

X W(Xf?i]) = W(X[(t,)~]7$z(t+l));

m(z*Y | Xfi)i])
which means that after one conditional update, the new configuration still
follows distribution .

Under regularity conditions, one can show that a Gibbs sampler chain
converges geometrically and its convergence rate is related to how the
variables correlate with each other (Liu 1991, Liu, Wong and Kong 1995,
Schervish and Carlin 1992). Based on a finding that the Gibbs sampler’s
convergence rate is controlled by the mazimal correlation (Section 12.6.3)
between the states of two consecutive Gibbs iterations, Liu, Wong and Kong

(1994) and Liu (1994a) argued that grouping (some researchers also call it

6.2 Illustrative Examples 131

blocking) highly correlated components together (i.e., update them jointly)
in the Gibbs sampler can greatly improve its efficiency. Some researchers
have also shown that random scan can outperform systematic scan in terms
of convergence speed (Roberts and Sahu 1997).

A simple restatement of the conditional updates used in the Gibbs sam-
pler can be potentially useful: Each Gibbs update can be seen as a random
relocation (we used the word “perturbation” in a Metropolis sampler) of the
current state x along a chosen direction. For example, if the first coordinate
direction is chosen, then this “relocation” can be represented as

(Z1,... ,2q) = (X1 +7v,2Z2,... ,%4q),

where + is a random draw from an appropriate distribution. It is not diffi-
cult to show that if is drawn from p(y) o< 7(z1 +, %X[_1]), then the move
leaves 7 invariant. This view is critical in generalizing the Gibbs updates to
more versatile conditional moves [e.g., Markov chain updates under a trans-
formation group setting (Liu and Wu 1999)], which are useful for designing
more efficient MCMC samplers. See Chapter 8 for more discussions.

The Gibbs sampler’s popularity in statistics community stems from its
extensive use of conditional distributions in each iteration. The data aug-
mentation of Tanner and Wong (1987) first links the Gibbs sampling struc-
ture with statistical missing data problems and the EM algorithm (see Sec-
tion A.4 of the appendix for a detailed description of the algorithm). The
generality and the basic theory behind Gibbs sampler were noted by Li
(1988). Gelfand and Smith (1990) further demonstrated that the condi-
tional distributions needed in Gibbs iterations are commonly available in
many Bayesian and likelihood computations.

6.2 Illustrative Examples

Consider the simulation from a bivariate Gaussian distribution. Let x =
(z1,22) and let the target distribution be

{(0):(1))

The Markov chain x() = (xgt),;vgt)) corresponding to a systematic-scan
Gibbs sampler is generated as

2 12~ N, (1- p?)},
AV 12l ~ N{pl, (1 - p*)}

It is seen from simple computation that

(wﬁ“) "N (ﬂ”‘lwé")) (L pit2 ppte)
xgt) thxgo)) p— p4t71 1— p4t .

132 6. The Gibbs Sampler

Thus, as t — 0, the joint distribution of (w&t),xgt)) converges to the target
distribution. Furthermore, the rate of convergence is equal to the maximal
correlation between mgt) and argtﬂ), which is p?. A more general analysis
along this line is given in Chapter 12.

Another simple example is given by Casella and George (1992), in which

the target distribution is

o) o (1)yrremta - gyt
x

forx =0,1,... ,nand 0 < y < 1. It is easy to see that the two necessary
conditional distributions are

z |y ~ Binom(n,y)
y|xz ~ Beta(z +a,n—z+pf)

A Gibbs sampler iterates between the above two conditional sampling steps.
Figure 6.1 shows some simulation results for n = 20 and a = 8 = 0.5.

First 50 iterations Histogram overlayed by true density
o
-
[ee] o
o 8
© S
o o
< 8
o o
o~ o
S S
2 o
[0} 5 10 15 20 0.0 0.2 0.4 0.6 0.8 1.0
yl
Autocorrelation for X Autocorrelation for Y
e e
i i
(=] [ee)
S S
|.|.©' LI_LO'
o o
25 25
E Il S Il
o o
= HHHHHHHHHHHHH = HHHHHHH\H\Hmm
o 10 20 30 40 50 o 10 20 30 40 50
Lag Lag

FIGURE 6.1. Using the Gibbs sampler to simulate from Beta-Binomial distribu-
tion. (a) Trace plot of first 50 iterations; (b) estimating the density of y using
the Monte Carlo samples (from 200,000 iterations); (c¢) and (d), autocorrelation
plots for z and y.

It is noted that the autocorrelation plots of 2 and y are almost iden-
tical — this is not an accident. It has been shown (Liu et al. 1994) that
in a two-component Gibbs sampler, the two components share a common
convergence rate and can be thought of as “interleaving chains” (see Chap-
ter 12 for detailed analysis).

6.3 Some Special Samplers 133
6.3 Some Special Samplers

6.3.1 Slice sampler

Suppose 7(x) is a density function of interest and x € R¢. Then, draw-
ing x ~ mw(x) is equivalent to generating z = (z1,...,2441) so that it is
uniformly distributed in the region S under the surface of «; that is,

S={z e R : 2401 <7(21,...,2a)}-

However, generating uniformly distributed random variables in an arbitrary
region is equally as difficult as the original Monte Carlo simulation problem.
One can apply the following Gibbs iteration to achieve the sampling;:

e Draw y(*+1) ~ Uniform[0, 7(x(®)].
e Draw x(**1) uniformly from region S¢+1) = {x: 7(x) > y{+1}.

However, region S{t1) in the iteration is still difficult to deal with.
When 7 can be written as the product of k functions [i.e., 7(x) = fi(x) x

- %X fr(x)], Edwards and Sokal (1988) introduced k auxiliary variables
Y1,... Y and described a Gibbs sampler for sampling (x,y1,... ,yr) uni-
formly over the region 0 < y; < fi(x), i =1,... ,k:

e Draw ygtﬂ) ~ Uniform[0, f;(xM)], i = 1,... , k.

e Draw x(“t1) uniformly from the region

k
ST = (M{x: filx) >y}

i=1

This method is also related to the clustering algorithms for Ising model
simulations pioneered by Swendsen and Wang (1987) (Chapter 7). Damien,
Wakefield and Walker (1999) showed that in many cases, one can find a
decomposition of 7 so that the intersection set S*+1) is easy to compute,
which leads to an easily implemented sampler. Applications of this ap-
proach to image analysis have been discussed by Besag and Green (1993)
and Higdon (1998). However, the convergence rate of the slice sampler may
generally be rather slow because of the presence of many auxiliary variables.

6.3.2 Metropolized Gibbs sampler

When the state space of interest is discrete, Liu (1996¢) suggested an
“over-relaxation” strategy to improve the ordinary Gibbs sampler. Let
x = (z1,... ,24), where z; takes m; possible values, and let m(x) be the
distribution of interest. In the random-scan Gibbs sampler described in
Section 6.1, a coordinate ¢ is first chosen at random and the current value

134 6. The Gibbs Sampler

z; is replaced by a value y; drawn from the corresponding full-conditional
distribution. Here, we consider a modification of this procedure in which a
value y;, different from z;, is drawn with probability

W(yi | X[—i])
L—m(zi | x_q)

then y; replaces x; with the Metropolis-Hastings acceptance probability,

. { 1—7T(fcz'|x[i])}_
min{1l, —— A< &
1—7(yi | x(—q)

else z; is retained. Liu (1996¢) proves that the modified Gibbs sampler for
discrete random variables as defined earlier is statistically more efficient
than the random-scan Gibbs sampler (see Section 13.3.1).

When m; = 2, the Gibbs sampler is essentially the method of Barker
(1965), whereas the modified procedure becomes a Metropolis algorithm.
Peskun (1973) makes some general comparisons between these two sam-
plers. Besag, Green, Higdon and Mengersen (1995) note that the superiority
of Metropolis for binary systems results from its increased mobility around
the state space. This rationale applies more generally to the Metropolized
Gibbs sampler described here.

6.3.3 Hit-and-run algorithm

Suppose the current state is x(*). In the hit-and-run (HR) algorithm, one
does the following: (a) uniformly select a random direction e(®); (b) sample
a scalar 7() from density f(r) o< m(x{®) 4+ re®); and (c) update x(t+1) =
x® 4+ rel®) This HR algorithm behaves like a random-direction Gibbs
sampler and allows for a complete exploration of a randomly chosen direc-
tion. It tends to be especially helpful when there are several modes (with
comparable sizes) in the target distribution.

A main difficulty in implementing the HR algorithm, however, is that
one is rarely able to draw from f(r) in practice. Then, one may end up
only using a single step of Metropolis update (Chen and Schmeiser 1993)
— which renders the algorithm equivalent to the random-walk Metropolis.
The MTM method introduced in Section 5.5 can help achieve the effect
of conditional sampling required by the HR algorithm (Liu, Liang and
Wong 2000). The following random-ray Monte Carlo scheme is a way of
using MTM to achieve the hit-and-run effect. Suppose the current state is
x{) = x*; our new algorithm is as follows:

Random-Ray Monte Carlo:

e Randomly generate a direction (a unit vector) e.

6.4 Data Augmentation Algorithm 135

e Propose to draw yi,...,yx from a distribution T.(x*,y) along the
direction e. A generic choice is to draw i.i.d. samples rq,... ,rg from
N(0,0?), where o can be chosen rather large, and set y; = x + r;e.
Another possibility is to draw r; ~ Uniform(—g,0).

e Conduct the MTM step; that is, we choose y* from y1, ...,y with
probability proportional to 7(y;); and then draw xi,... ,x}_, ii.d.
from T, (y*,x). Let x* = x},. Then, compute the generalized Metropo-

lis ratio
k *
— {1 S m(y)Ty,)}

Yo () Te(x), y*)

In our experience, a much larger ¢ can be used compared to that in an
HR with a single Metropolis update, resulting in a higher acceptance rate
for the same computational time. The random-grid Monte Carlo method
described in Section 5.5 can also serve as a good alternative to the HR
algorithm. In Section 11.1, we will introduce another interesting variation
of this algorithm — the adaptive directional sampling (Gilks, Roberts and
George 1994) and conjugate gradient Monte Carlo.

6.4 Data Augmentation Algorithm

6.4.1 Bayesian missing data problem

A main reason for statisticians to favor conditional sampling approaches
(e.g., the Gibbs sampler) over the more flexible Metropolis algorithm is
that in many statistical models, it is not very difficult to derive and to
sample from necessary conditional distributions and conditional moves are,
in general, more “global” than a perturbation-type move. Another reason
is that the proposal chain in the Metropolis algorithm seems to be too
“random” to be effective in statistical models because the joint space of
the parameter 8 and missing data ymis in a statistical model (Section 1.9)
is often “irregular.” For example, # may include a discrete component and
a continuous component; or different components of @ (such as a mean
vector and a covariance matrix) may have completely different scales. For
these problems, defining a reasonable “perturbation” of the current con-
figuration of (0, ymis) is very difficult. However, the Metropolis algorithm
is often employed together with a conditional sampling approach (Gelman
and Rubin 1992, Liu 1996a, Tierney 1994, Liu, Liang and Wong 2000).
As shown in Sections 1.9 and 3.2, we assume in a Bayesian missing data
problem that the “complete-data” model f(y | @) has a nice analytical form
from which we can do all the posterior computations in closed form. Let
¥ = (Yobs, Ymis), where Yobs is observed but ymis is missing. The observed-

136 6. The Gibbs Sampler

data posterior distribution is

p(e | YObs) = /p(9 | YmiS7YObs)p(Ymis | YObs)deis- (6.1)

If we can draw ymis from p(¥mis | Yobs), then a Monte Carlo approximation
to (6.1) can be easily obtained. This observation forms the basis of the data
augmentation algorithm.

Tanner and Wong (1987) observed that if we start with an approximation
g(0) of the target distribution, p(@ | yobs), we can draw m independent

copies of the missing data, ygi)s, . ,ym”fs), from
5mie) = [plis | 0,¥uns)o(0)d. (62)

This sampling can be achieved by first drawing 8) ~ ¢(8) and then draw-
ing ygi)s ~ P(¥mis | O(j),yobs). The ygi)s so produced are often called mul-
tiple imputations (Rubin 1987) in statistics literature. With the newly gen-
erated copies of ynis, we can form a hopefully improved approximation of

the posterior distribution as

m

1 .
Guew(8) = — " p(6 | Yabs, V). (6.3)

i=1

Note that if g() were indeed the true posterior distribution, (6.2) would
have been the exact predictive distribution of ymjs.

6.4.2 The original DA algorithm

A formal data augmentation scheme starts with a set of imputed miss-
ing values yr(r?i’sl’)l, e ,yfr?i’sm), providing us with the first approximation of

the posterior distribution: go(6) =m™" 37, p(@ | yobs,yfgi’g)). Then, one

carries out the following iterations.
Data Augmentation (DA) Algorithm:
e Fort=1,...N (N large):

Forj=1,... ,m:

DA1. Draw [from the set {1,... ,m} at random (uniformly)
(1.0

DA2. Draw a 0" from p(€ | Yobs, Yris
DA3. Draw yg;’;) from p(Ymis | Yobs, 0*)
End

e End

6.4 Data Augmentation Algorithm 137

Steps DA1 and DA2 produce a sample of @ from the mixture distribution

m

1 L
gt—l(e) = m ZP(G | yObS7y1(rt1isl,]))' (6-4)

i=1

Thus, the random sample yn,;s produced by Step DA3 follows its updated
predictive distribution [i.e., (6.2) with g() substituted by g;—1()].

6.4.3 Connection with the Gibbs sampler

After a careful examination, it is observed that imputing multiple copies
(m) of ymis in each iteration is not really necessary. To illustrate this point,
we look only at the first iteration. In order to produce a new imputation

yr(ii’sj), we need to first draw a mixture component (Step DA1), say, the one

(0,0)

corresponding to y, ., at random, and then draw

0" ~ p(@ | YObs;ygfé))-
Effectively, we can treat y,(ii’sj) as a “child” of ny{é). Because of random
sampling, some of the members in the zeroth generation (roughly m/2.718
when m is large) will have no children, which means that they will not con-
tribute in anyway to the future approximation of the posterior distribution.
In a sense, we can think that 37% of the zeroth-generation imputations are
discarded (thus, wasted), completely at random. After a sufficient number
of iterations, all the children will come from one ancestor (coalescence),
implying that only one member in the zeroth generation contributes to the
final approximation. Since the sampling of the mixture component (i.e.,
the parent) in producing 8" is completely at random, the remaining single
ancestor bears no selection bias — purely by luck. Consequently, the DA
procedure is mathematically equivalent to an algorithm in which one im-
putes only a single ymis (i-e., K = 1) in each of its iterations — exactly a
Gibbs sampler with two components. From now on, we will just call a two-
component Gibbs sampler a Data Augmentation Scheme. This procedure
can be illustrated more heuristically by the diagram in Figure 6.2:

o o2 o®

NSNS

Vs Ymh Yei

FIGURE 6.2. A graphical illustration of the data augmentation scheme.

An abstract formulation of the data augmentation approach can be
summarized as follows. Suppose we are interested in simulating from a

138 6. The Gibbs Sampler

distribution ¢(@). We can construct an “augmented” system (6, ymis)
so that the marginal distribution of @ under this system is ¢(0) [i.e.,
J (6, Ymis)dymis = q(0)]. If this augmented system is so nice that it facil-
itates iterative conditional sampling, then we can simulate from it by the
Gibbs sampler and obtain all necessary information regarding ¢(6).

6.4.4 An example: Hierarchical Bayes model

We have shown in Section 1.8 that a hierarchical Bayes model can be
used to improve predictions of students’ performances from their LSAT
and undergraduate GPA scores (Rubin 1980). Here, we demonstrate by a
simple example how the data augmentation scheme can be used to compute
with a hierarchical Bayes model.

Efron and Morris (1975) applied an empirical Bayes method to the anal-
ysis of a dataset consisting of the first 45 at-bats in the middle of a season
for n = 18 major league players (shown in column 2 of Table 6.1). They es-
timated the 18 “true” batting probabilities based on this dataset, and then
used them as predictions of each person’s batting average for the remain-
der of the season. Here, we apply a hierarchical Bayes model for the same
task. Let Y; denote the observed batting average (column 2 in the table)
in the first 45 at bats of the ith person, and let p; denote his true batting
percentage. A variance-stabilizing transformation of Y; was first performed
in Efron and Morris (1975): We let

X; = /45 arcsin(2Y; — 1)
and let
6; = V45 arcsin(2p; — 1).

Then, the X; can be regarded as Gaussian random variables with mean 6;
and variance 1. Furthermore, a hierarchical structure is assumed on all the
0; such that 6; ~ N(u,o?) independently. Furthermore, we assume that
the prior distribution for p and o is uniform on (—o0,00) X% (0, 00), thus
improper. As an exercise, the reader may try out other priors, but note
that the prior for o cannot be singular at 0.

With the model and the prior, we can implement a data augmentation
scheme as follows:

e Draw 6;,i=1,...,18, conditional on x and o2.
e Draw p and o2 conditional on all the values of 6;.

Figure 6.3 displays the approximated posterior density of u estimated by
Gibbs sampling (almost indistinguishable from its true posterior) as well

6.5 Finding Repetitive Motifs in Biological Sequences 139

Batting average [Batting average| Stein’s [Efron-Morris’s
Player | for first 45 at-bats | for remainder | estimator estimator

I .400 .346 290 334
.378 .298 .286 2313

3 .356 276 .281 .292
4 .333 222 277 277
5 .311 273 273 273
6 .311 .270 273 273
7 289 263 .268 268
8 267 210 .264 264
9 244 269 .259 259
10 244 230 .259 259
11 222 .264 .254 .254
12 222 .256 .254 .254
13 222 303 .254 254
14 222 264 .254 254
15 222 226 .254 254
16 200 285 .249 249
17 178 .316 .244 .233
18 .156 .200 .239 .208

TABLE 6.1. Batting averages and their estimates.

T T T T
0.0 0.2 0.4 0.6 0.0 0.2 04 0.6 0.8 1.0

FIGURE 6.3. Left: Posterior density of 4 — Gibbs sampling (solid) versus normal
(dotted) approximation. Right: a graphical view of how shrinkage estimates are
related to their respective MLE’s.

as the shrinkage estimates.! In fact, this data augmentation procedure can
be further modified to improve efficiency. See Liu (1994a), Gelfand, Sahu
and Carlin (1995) and Liu and Sabatti (2000) for more discussions.

6.5 Finding Repetitive Motifs in Biological
Sequences

In computational biology, it is often of interest to identify common pat-
terns among a diverse class of protein or DNA sequences (Sections 1.5

17t is seen that the estimates of the p; are pulled towards their common mean. In this
sense, the estimate is “shrunk” toward a common point. The name “shrinkage estimator”
is usually used more narrowly for estimators p; that are shrunk towards zero.

140 6. The Gibbs Sampler

and 4.1.3). These common patterns are usually called “motifs” in the lit-
erature. As illustrated in Figure 4.4, a total of K protein (or DNA) se-
quences, R = (Ry,... ,Rk), with lengths I = (I1,... ,lx) are given. They
are believed to share a common motif as indicated by the blackened region;
that is, every sequence in the dataset contains a subsequence of length w
that is “similar” to each other. The locations of these subsequences and
the motif pattern are unknown. Table 4.2 shows an alignment for a mo-
tif in multiple DNA sequences. This alignment matrix (if we know how
to align the sequences) can be described by a product-multinomial model
® =[04,...,0,] (Section 4.1.3). The base frequency in the background is
described by an independent multinomial model 6.

By treating the motif locations, called the alignment variable, A =
{ai,...,ax}, as missing data, we can state our basic block-motif model
more formally: Every residue/base in the dataset R outside the motif pat-
terns (outside the blackened areas in Figure 4.4) are i.i.d. observations from
Multinom(8y) and the residue/base at position j of the motif pattern of
each sequence (the blackened region) follows distribution Multinom(8;).

6.5.1 A Gibbs sampler for detecting subtle motifs

In Section 4.1.3, we gave a uniform prior on the alignment variable A
and independent Dirichlet(Noax) priors for all the 6;, where ¢ is the base
frequency in the genome (or other comparable database) and Ny is the
amount of pseudo-counts. Based on these settings, we can easily implement
a data augmentation algorithm to compute the posterior distributions of
A, g, and O.

Data Augmentation Motif Sampler:

(a) Given a realization of the parameter values, 8¢ and ®, we impute the
alignment variable A.

(b) Given the current imputation of the alignment variable A; we sam-
ple a new realization of the parameters based on its complete-data,
posterior.

Step (a) can be easily achieved by “sliding” the pattern matrix © along
each sequence and computing the relative probability of each position as
the start of a motif; that is, we have

w h(ri;-1) w h(rii45-1)

_ h(Rs) 0; ’ 8, ’

m(ar =1] ®,0y, Ry) x 0, H 0 ocH 0 .
Jj=1 Jj=1

In words, the probability of a; = [is proportional to the “signal-to-noise”

ratio of the sequence segment (ry;,...,7ki4+j—1. Given A, the posterior

distributions of 6y and ® required by Step (b) are trivial to derive provided

6.5 Finding Repetitive Motifs in Biological Sequences 141

that their priors are standard Dirichlet or mixture Dirichlet distributions.
With Dirichlet priors, these posteriors are, again, Dirichlet distributions.

It is, however, not difficult to see that given A, all the parameters can be
analytically integrated out (Liu 1994a, Liu, Neuwald and Lawrence 1995),
which results in a joint distribution on A:

w(A| R) o n(A, R) = //W(R,A | 86, ©) (80, ©)dBod®.

This joint distribution can be used to derive a Gibbs sampling algorithm
that focuses only on A. Although exact formulas for the conditional distri-
butions required by the Gibbs sampler involve ratios of Gamma functions
(Liu, Neuwald and Lawrence 1995), a very simple approximation, the pre-
dictive update form (Chen and Liu 1996), exists:

LTy h(ri,i45-1)
mlar =1| A, R) o« [[(%) , (6.5)
o[— k]

Jj=1

where é]-[_k] is the posterior mean of 8; conditioned on the observation R
and the current alignment A;_j) (excluding the kth sequence) and 90[_ k] is
the posterior mean of 8y based on the current non-site positions Rga,_,}e-
The formula implies that conditional on the fixed sites of the motif pat-
terns in the remaining sequences, the probability that the motif pattern
in sequence k starts at position [is proportional to the likelihood ratio of
its being a motif site to its being a nonsite. Equation (6.5) forms the ba-
sis of the site sampler described in Section 1.5 (used in the second step for
the predictive distribution). Both the exact formula and the approximation
(6.5) were tested by Liu, Neuwald and Lawrence (1995) and no observable
discrepancy between the two results were present.

6.5.2 Alignment and classification

It is often the case in biological applications that the sequences in consid-
eration fall into two (or more) classes and each class has its own motif. To
account for this complication, we introduce a model variable M: M = 1
stands for the one-class model and M = 2 for the two-class model, and
assume P(M=1) = P(M=2) a priori. One of our goals is to compute
P(M | R) (i.e., whether the data support the one-class model or prefer
the two-class model). When M =2, we introduce the class indicator vec-
tor C = (¢1,...,¢K), with ¢; = 1 or 2, where K is the total number
of sequences. A uniform prior for C' is used with the restriction that the
minimal class size has to be 3. We let K; be the size for class one and
Ky, = K — K for class two. When M =1, we let ¢;=1 for all i. Assuming

142 6. The Gibbs Sampler

that A is independent of M a priori, we have

P(R,C,A| M =2)
B [[C(h(riairi1: ¢ = 1)+ BT (h(ria4j—1: ¢ =2)+B)]
B LKy + [1B1)“T (K2 + [18]1)*
. F(||ﬂ||)]2wrl L(h(R-a)+B) 1 1 '
I'(8) L)l - KEw + [|B]) [#A] 251 — 2K

Our sampling scheme consists of the following steps:

e Align: For a given C, we can use the predictive updating rule (Liu,
Neuwald and Lawrence 1995) to update the alignment vector A.
Namely, for V i, we update a; based on P(a; | C,A_;, R, M).

e Fragment: Let A+1={a; £1,...,ax + 1}; propose a move from
Ato A—1or A+ 1 with equal probability and accept or reject the
move based on the Metropolis ratio for P(A | C, R, M). This can be
seen as a step of group move.

e Classify: When M = 2, we update C by cycling through draws from
P(c; | C—;; A, R, M = 2), conditional on A.

e Jump: Conditional A, we jump between M = 1 and M = 2 based on
the Metropolis ratio for P(M,C | A, R). The proposal distribution
from M =1 to (M = 2,(C) is uniform on all allowable configuration
of C. We use dynamic weighting to help the jump.

In the algorithm, a “cycle” consists of eight rounds of alignment itera-
tions followed by one step of fragmentation and two rounds of classifica-
tion iterations. The fragmentation step is a group move with the use of
a translation group. This step greatly helps the convergence of alignment
(Liu 1994a). After every cycle, a model jump step is conducted, with the
help of a Q-type dynamic weighting (Section 5.7).

This algorithm was applied to the helix-turn-helix (HTH) dataset of
Lawrence et al. (1993), which consists of 30 protein sequences with lengths
ranging from 91 to 524. This set represents a large class of sequence-specific
DNA binding structures involved in gene regulation. The correct locations
of the motif in all the sequences were known from X-ray and nuclear mag-
netic resonance (NMR) structures or other experiments. The length of the
motif was also determined as ~20. With w=15, our algorithm (with 2500
cycles) correctly identified all the motif locations. It provided a weighted
estimate (after truncation of the weights at the 95th percentile; see Sec-
tion 10.6 for details on the weight truncation method) of the posterior
probability of M =2 as p <0.001.

We also applied the algorithm to another dataset consisting of the first
20 sequences in the HTH dataset and 10 new randomly shuffled sequences.

6.6 Covariance Structures of the Gibbs Sampler 143

In each of the 10 random sequences, we inserted a conserved motif of length
15. The motif segment is produced from the pattern “ANHLPEQYTRGI-
VAK,” with each position having probability 0.3 to be randomly altered.
For this new dataset, the weighted estimate (truncation of the weights at
the 95th percentile) of the posterior probability of M =2 is 0.94, consistent
with the simulation. Conditional on M = 2, the algorithm (with 5000 cy-
cles) correctly classified the sequences and correctly identified the locations
of all the conserved segments. Without using dynamic weighting, the sam-
pler induces a virtually reducible Markov chain. Acceptance probability for
the reversible jump between M = 1 and M = 2 is in the range of 10710,

6.6 Covariance Structures of the Gibbs Sampler

6.6.1 Data Augmentation

Suppose x = (z1,x2) and the target distribution is 7(x). As we have rede-
fined in Section 6.4.3, data augmentation is equivalent to a two-component
Gibbs sampler; that is, with an initial value (x§°) , mg")), data augmentation

iterates as follows:

e Draw x§t+1) from the conditional distribution 75 (- | xgt)).

(t+1) (t+1))
2 1 .

e Draw z from the conditional distribution ma; (- | =

This sampler has some nice theoretical properties. Under some regularity
conditions, it can be shown that the sampler converges geometrically and
monotonically (Liu et al. 1994, Liu, Wong and Kong 1995). The convergence
rate of the sampler is equal to the maximal correlation between the two
components, which is closely related to a statistical concept, the faction
of missing information (Rubin 1987, Liu 1994b) in Bayesian missing data
problems (see Chapter 12 for more details).

From the graphical illustration in Figure 6.2, we see that z{o) is condition-

ally independent of xg), given wgo). Thus, we have the following theorem.

Theorem 6.6.1 Suppose the Markov chain resulting from a data augmen-
tation scheme is in stationarity . Then,

cov{h(z{"), h(z{")} = var{E-{h(z1) | 22}} (6.6)

holds for any function h.

144 6. The Gibbs Sampler

Proof: Without loss of generality, we assume that E h(z1) = 0. Then,

cov{h(@"), h(z{")} = E{h(@”)h(z{V)

= E[E{h(z{")h(z}") | z37}]
E[E{n") | 2} - B{h(=(") | 27}
Er[Er{h(z1) | 22}]?

= var {E.{h(z1) | 22}}.

The third equation follows from the conditional independence between x§°’

and mgl), given xgo); the fourth equation follows from the fact that under the
stationarity assumption, both (x§°)) xgo)) and (:179)) a:go)) follow the target

distribution 7. ¢&

More generally, an explicit expression for lag-n autocovariances can be
found:

cov[h(xgo)), h(mﬁ"))]
COV[g(fEéO)); g(xgn)]

vary [Ex[- - Ex[Er{h(z1)|z2} 2] | ---11, (6.7)
vary [Ex[- - Ex[Br{g(ws)|e1} | 22]|---]], (6.8)

where the right-hand sides of both (6.7) and (6.8) have n expectation signs
conditioned alternately on z; and zs. These identities show that for a
two-component Gibbs sampler, the k-lag autocovariances are non-negative
and monotone nonincreasing. A similar argument can be applied to show
that a random-scan Gibbs sampler also has non-negative and monotone
nonincreasing autocovariances.

6.6.2 Autocovariances for the random-scan Gibbs sampler

Suppose x has d components [i.e., x = (21,...,%q)]. In each iteration
step of the random-scan Gibbs sampler, we independently draw an index 4
according to a preassigned distribution V' = (a4, ... ,aq) on the index set
I =1{1,...,d}, thenreplace the value of the random variable z; correspond-
ing to that index by a new sample drawn from the conditional distribution
m{x; | X|—;}. The distribution V' need not be uniform, but we do require
that a; > 0 for all 4. One can easily show that « is invariant under the
above transition. It is known that the Gibbs sampler with random scan-
ning satisfies the detailed balance relation; thus, it generates a reversible
Markov chain. Besides the non-negative even-lag autocovariances guaran-
teed by the reversibility of the chain, Liu, Wong and Kong (1995) showed
that all the autocovariances must be non-negative and monotone decreas-
ing. Furthermore, these autocovariances can be expressed as the variances
of some iterative conditional expectations. To establish these properties,
we first look at the lag-1 autocovariance.

6.6 Covariance Structures of the Gibbs Sampler 145

Lemma 6.6.1 Let x(© and x(") be two consecutive realizations of the
random-scan Gibbs sampler under stationarity, and let 1 be the random
variable representing which index is updated at stage one, taking values on
I={1,...,d} with distribution V. Then, for any h() € Li(n),

d
cor h(x), AxV)) = B | e (h(x) |)
=F [Ez{h(x) | i,X[_i]}] > 0.

Proof: From the definition of the scan, it is understood that

E{h(x®)h(xV)} = BIE[E{AxO)h(xM) |i,x*} | xO]]
d
> wEEX)xD) i =i,x",}]

[—i]
i=1

d
E|Y o, B {n(xD) | ¥}
i=1

= E[E*{h(x) |i,x_3}] > 0.

The second equality follows from our understanding of the random scan;
the third equality is true because conditioned on a chosen updating index
i = i and fixed values of the corresponding components, x(® and x(!) are
independent and identically distributed under stationarity. <

The lemma suggests setting a; small when E[E?{h(x) | x[_;}] is large.
Since h(x) has mean zero, we also have

E[E*{h(x) | x(—}] = var{h(x)} — Elvar{h(x) | x_q}].

Hence, a; should be set small if E[var{h(x) | x[_;}] is small, which can be
understood as that one should make fewer visits to a component that is
less variable.

Theorem 6.6.2 Letx(x™1) ... | be consecutive samples generated by the
random scan under stationarity, and let 1 be the random variable represent-
ing the random index in the updating scheme. For h(x) € L3(r), the lag-n
autocovariance between h(x(®) and h(x™) is a non-negative monotone
decreasing function of n. It can be written as

cov{h(x?), h(x(™)} = var[E[- - - E[E{h(x) | i,x_y} | x] | -]}, (6.9)

where there are n conditional expectations taken alternately on {i,x[_i]}
and x.

Proof: The expression is derived by repeatedly applying Lemma 6.6.1 and
the Markov property. The monotonicity is a simple property of conditional
expectations. &

146 6. The Gibbs Sampler

In Chapter 12, we show how these expressions can be used to compare
different sampling schemes and how the the mazimal correlation among the
d variables relates to the convergence rate of the scheme.

6.6.3 More efficient use of Monte Carlo samples

An interesting and immediate consequence of (6.7) and (6.8) is that Rao-
Blackwellization always increases computational efficiency of Monte Carlo
estimates. This problem can be formulated as follows: Suppose we are inter-
ested in estimating I = E.[h(z1)] using the Monte Carlo samples obtained
by data augmentation. Then, we have at least two possible estimators:

i= %{h(x?)) oot b)) (6.10)

= AEh@) | o]+ + Blh@) (57} (6

The first estimator I is termed the histogram estimator and the second is
called the mizture estimator. The name “mixture” stems from the fact that
expression (6.11) is a mixture of complete-data posterior distributions (a
natural choice of the kernel densities for a smooth estimate of the density
curve). It has been pointed by Gelfand and Smith (1990) that the second
estimation I should be preferred — but their argument was based on the
assumption that the Monte Carlo samples x() are mutually independent
(as explained in Section 3.4.6), which is clearly false in a Gibbs sampler.
However, by using (6.7) and (6.8), we see that under stationarity,

m2var(l) = mo2 +2(m —)o? + --- + 202,_,, (6.12)

where o7 = cov[h(xgo)), h(mgk))]; we have shown from (6.7) that this quan-
tity is non-negative. By using the expression (6.8), we can derive that

m?var(l) = mo? +2(m — 1)o3 + - + 202,. (6.13)

Comparing the two variances, we see that each term in (6.13) is exactly
one lag behind the corresponding term in (6.12). Because of monotonicity

of the autocovariances, we conclude that var(I) < var([).

6.7 Collapsing and Grouping in a Gibbs Sampler

Let x = (x1,...,24) be a random variable that can be partitioned into
d components, with density 7(x). We consider a systematic-scan Gibbs
sampler being applied to sample from this target distribution; that is, a

6.7 Collapsing and Grouping in a Gibbs Sampler 147

Markov chain {x® = (z\",. .. ,mg)),t =0,1,...} is constructed with its
transition function defined by the d-component Gibbs sampler,
d
t+1 t+1 t+1) (¢ t
K(x® xtH)y = Hw{wl(+1) | m§+),... ,xl(_t),ml(_gl,... ,ac((i)}. (6.14)
=1

It is easy to check that 7(x) is invariant under this transition.
Suppose the last two components x4 1 and x4 can be drawn together;
then, we have a reduced Gibbs sampler on a new partition of the ran-

dom variable x* = {z1,... ,2),_,}, where 2/, | = {x4_1,24}, by grouping.
Furthermore, suppose that the component z,; can be integrated out, then
an even more reduced sampler on x~ = {x1,... ,24 1}, with its marginal

density 7w(x~) = [w(x) dzq, results from collapsing. We will compare the
three schemes.

In order to argue rigorously, we introduce some concepts concerning a
Markov chain and its associated function spaces. Let L?(7) denote the set
of all functions h() that are square integrable with respect to 7 (i.e., has a
finite variance). This set is a Hilbert space with an inner product defined by
(h,g) = E-{h(x)g(x)}. Thus, ||h|| = var, (h). Let x(® ,x(1)| ... be a general
state-space Markov chain with transition function K (x,y) = P(x(") =y |
x(®) = x). We define the forward operator F on L?(r) for the Markov chain
as

Fh(x) = [Kix)h¥)dy = E{h(x) | x® = x).

We observe immediately that the norm of the operator is at most 1, where
the norm is defined as ||F|| = sup, ||[Fh(x)|| with the supremum taken over
all functions with E(h%) = 1. On the other hand, since the constant func-
tion ¢ is an eigenfunction of the operator corresponding to eigenvalue 1, we
know that the norm of F is exactly 1. When the chain is reversible [i.e.,
the detailed balance condition n(x)K (x,y) = n(y)K(y,x) is satisfied], F
is a self-adjoint operator. When F' is compact and self-adjoint, (which is
true when the state space is finite and the chain is reversible), the second
largest eigenvalue (in absolute value) of F characterizes the mixing rate,
or convergence rate, of the Markov chain. Many methods are available for
bounding the second largest eigenvalue and finding the actual rate of con-
vergence for this case (Diaconis 1988, Diaconis and Stroock 1991). Methods
for dealing with nonreversible chain also exist, although rare (Fill 1991);
see Section 12.6 for more details.

Now, we consider LZ(m) = {h(x) € L*(n) : E{h(x)} = 0}, which is a
subspace of L?(r) of all mean zero functions. Clearly, this is again a Hilbert
space with the same inner product and is invariant under the operator F.
We use Fy, called the forward operator, to denote the operator on L2 ()
induced by F. Then, the largest eigenvalue of Fg is exactly the same as
the second largest eigenvalue of F. Typically, the spectral radius of Fg

148 6. The Gibbs Sampler

characterizes the rate of convergence of the Markov chain in both reversible
and nonreversible cases. When the chain is reversible, the spectral radius
of Fg is the same as its norm. A general relationship between the norm
and the spectral radius of an operator is

lim [[Fo™[!/" =,
n—00

where r is the spectral radius. This suggests that one can compare different
Markov chains by comparing the norms of the corresponding forward op-
erators. It is interesting to note here that ||Fo||? equals the second largest
eigenvalue of the transition operator for the reversiblized chain, which ties
in with the method of Fill (1991).

Let Fg denote the forward operator for the standard Gibbs sampler, cor-
responding to the transition function (6.14); let Fg be the forward operator
corresponding to the grouping procedure and let F for the collapsed Gibbs
sampler with x4 integrated out. The three samplers can be illustrated by
the diagrams of their respective visiting schemes:

Fs: T1 = Ta = - = Tg;
Fy: Ty = T = - = {Ti-1,T4}; (6.15)
F.: T4 > Ty —> " —>Tq—1-

Theorem 6.7.1 (Three-schemes theorem) The norms of the three for-
ward operators are ordered as

[IFell < [|Fgll < [IFs]|-

A similar result for the random-scan Gibbs sampler is proved in Sec-
tion 13.2.2. This theorem can be understood from the the diagrams in
Figures 6.4 and 6.5. Consider simulating a three-component random vari-
able x = (21,2, 23) from 7(x). The deterministic-scan Gibbs sampler is
depicted in Figure 6.4 and the samplers resulting from grouping and col-
lapsing are shown in Figure 6.5.

To illustrate the foregoing theorem, we compared the regular data aug-
mentation and the collapsing approach for the bivariate Gaussian problem
with Murray’s data (Section 4.4.1). Because the posterior distribution of
the unknown covariance matrix ¥ is “easy” when given completed data and,
given ¥, imputing the missing data is easy, we can implement a standard
data augmentation algorithm by iterating between

[E | Yobs, Ymis]

and

[Ymis | Yobs, E]-

6.7 Collapsing and Grouping in a Gibbs Sampler 149

:L_gl) -1_52)
.’L'gl) xg2)
xgl) 1_§2)

FIGURE 6.4. A graphical illustration of the standard Gibbs sampler with three

components. The arrows represents the “causal relationships” in Gibbs sampling:
x?) is drawn conditional on (mgl),xgl)); xém is drawn conditional on (a:gl), x?));
(2)
3

and x5’ is drawn conditional on (m?), mg))

Grouping Collapsing
xgl) xgz)
$§1) $§2)
< xé1)> < xé2)>
xgn xg2) xgn x§2)

FIGURE 6.5. Graphical representations of grouping and collapsing schemes. The
arrows represent the “causal relationships” in Gibbs sampling.

In a collapsing scheme, we can integrate out ¥ and iterate only among the
missing values; that is, we can iterate the step

[ymis,i | Yobs> Ymis,[—z']];

which is a noncentral ¢-distribution whose accurate form can be found in
Kong et al. (1994, Section 3.1). More precisely, conditional on the current
imputed values for all the missing components ymis j, j # %, We can easily
update Ymis,i-

To compare the collapsed and the standard schemes, we compute au-
tocovariance curves for each of the eight missing components. Figure 6.6
contains two groups of autocovariance curves; within each group, there are
eight curves for eight missing values, respectively. They are estimated from
20,000 iterations for each chain. Since both chains are geometric mixing,
we fit the model auto(n) = Cp™ + € to the autocovariances for the two
bundles, respectively, where auto(n) denotes the lag-n autocovariance. It

150 6. The Gibbs Sampler

<
—i

0.8

0.6

Autocorrelation
0.4

0.2

Lag

FIGURE 6.6. Autocovariance plot for both the standard and the collapsed Gibbs
sampling scheme. Upper group: the standard; lower group: the collapsed.

is seen that the p estimated from the standard scheme is about 2.5 times
larger than that of the collapsed scheme. The ordinary DA has an intuitive
appeal for “decoupling” the dependency among the missing data. But our
results showed that the collapsing scheme is significantly better in terms of
both the convergence rate and the cost per iteration.

As another illustration, we consider a simple Gibbs sampling algorithm
for the nonparametric Bayes problem in Section 4.4.2, where we describe
a sequential imputation method for the posterior computation. The algo-
rithm described here and its various improvements can be found in Esco-
bar (1994), Liu (1996b), and MacEachern (1994). Recall that we observe

y; ~ Binom(l;, (;), and assume that (; "% Fand F ~ D(c), where D(a)
represents a Dirichlet process. By the Bayes theorem, we obtain the pre-
dictive distribution of ¢; [equivalent to (4.11)]:

(G | 9ir Gpoap) o G (1= G ¥ a(Gi) + D ¢ (1= ¢)H7¥6¢, (G-
J#i

Hence, a collapsed Gibbs sampler (with F' collapsed down) can be applied
to iteratively sample (; using the foregoing predictive distribution.

Moreover, the Gibbs sampling algorithm for finding repetitive motifs in
biological sequences as illustrated by (6.5) is also an application of the
collapsing theorem in which the parameters 8y and @ are integrated out
from the model (Liu 1994a).

The collapsing theorem suggests that one should avoid introducing un-
necessary components into a Gibbs sampler. This is in agreement with the
common wisdom for Monte Carlo computation: Do as much analytical work
as possible. However, in the next chapter, we show that in the Ising model

6.8 Problems 151

one can greatly improve computational efficiency by introducing a clever
auxiliary variable.

6.8 Problems

1. Implement a Gibbs sampler for simulating from a Ising model defined
on a 32 x 32 grid.

2. Write down the transition matrix of a random-scan Gibbs sampler
as defined in Section 6.1. Show that the resulting Markov chain is
reversible.

3. Write down the transition matrix of a systematic-scan Gibbs sampler
as defined in Section 6.1. Show that the resulting Markov chain is
nonreversible.

4. Evaluate the efficiency gain in using the mixture estimate versus the
histogram estimate for the bivariate Gaussian example and the hier-
archical Bayes example discussed in Section 6.4.4.

5. Why is the random-grid Monte Carlo method described in Section
5.5 a sensible alternative to the hit-and-run algorithm?

6. Explain why the original data augmentation algorithm of Tanner and
Wong (1987) is practically equivalent to a Gibbs sampler with two
components.

152 6. The Gibbs Sampler

This is page 153
Printer: Opaque this

7
Cluster Algorithms for the Ising Model

7.1 Ising and Potts Model Revisit

In Section 1.3, we introduced the Ising model, which is used by physicists
to model the magnetization phenomenon and has been studied extensively
in statistical physics literature. A closely related model is the Potts model.
Similar to the Ising model, the Potts model is also defined on the lattice
space £ with configurations x = (z;, | € L), where

L= {l:(ll,lz) for ll,lg :].,... ,N}

Different from the Ising model, each z; in the Potts model can take values
in an alphabet of size ¢: {1,...,q}. The potential energy function for the
Potts model can be written as

H(X) = _JZ6E‘LEJ - Zhj(a"j)a

where 84 is the Kronecker §-function, equaling 1 when a = b and 0 other-
wise. The symbol ¢ ~ j indicates that ¢ and j are neighbors in the lattice
space. The function h;() represents an outside magnet field. The distribu-
tion of interest is then the Boltzmann distribution

m(x) o< exp{—SH (x)}.

Here, 8 = (KT)~! with the Boltzmann constant k and the absolute tem-
perature 7. When ¢ = 2, the Potts model is equivalent to the Ising model

154 7. Cluster Algorithms for the Ising Model

in that

1 1 1
H(X) = _§J22 (5%% - 5) - Z 5]- Zhj.%’j.
i~vj i~vj j
For brevity of presentation, in this section we focus on the simulation of
the Ising model under the setting h; = 0, which is supposedly the most
interesting setting (Newman and Barkema 1999).

An important problem to physicists is the phase transition phenomena for
such a model; that is, it is observed that when the temperature is high, all
the spins behave nearly independently (no long-range correlation), whereas
when temperature is below a critical temperature ¢y, all the spins tend to
stay the same (i.e., cooperative performance).

The standard Metropolis algorithm can be easily applied to simulate
from this model: First, we randomly pick a spin and turn its value z; to
the opposite —z;; then, we compute the Metropolis ratio to decide whether
to accept such a move. However, this single-site update algorithm slows
down rapidly once the temperature is approaching or below the critical
value cg, the so-called “critical slowing down.” Swendsen and Wang (1987)
introduce a powerful clustering algorithm which, together with an imple-
mentation modification of Wolff (1989), almost completely eliminates the
critical slowing down.

7.2 The Swendsen-Wang Algorithm as Data
Augmentation

Conceptually, we can think of the Swendsen-Wang algorithm as a data
augmentation scheme (Edwards and Sokal 1988, Higdon 1998, Tanner and
Wong 1987). To be precise, we consider augmenting the space of spins by
a “bond variable” u = (uj~y) with its component variable u; ;s sitting on
every edge of the lattice and taking values in [0, e?5/]:

m(X) x exp {,BJZQ:Z:CII}

i~

o [[exp{8I(1 + mar)}

I~
Note that 1 + z;xp is equal to either 0 or 2. Hence, if we introduce an
auxiliary variable u such that
(X, u) x H I0 < wypr <exp{BJ(1+ xiz1)}],
I~

then the marginal distribution of x is the desirable distribution. Clearly,
under this joint distribution, the conditional distribution [u | X] is a product

7.3 Convergence Analysis and Generalization 155

of uniform distributions with ranges depending on two neighboring spins.
Conversely, the conditional distribution of x given w is also easy to figure
out: If uy r > 1, then z; must be equal to 2y ; otherwise there is no constraint
on z;’s. Thus, u affects x only through the event I[u;;» > 1]. Based on the
configuration of u, we “cluster” those lattice sites according to whether they
have a “mutual bond” [i.e., whether u;;» > 1]. Then, all the z; whose site !
belongs to a common cluster should take identical value. Conditional on the
clusters, every configuration that does not violate the cluster homogeneity
is equally likely.

Therefore, we can produce another augmented model that only uses an
auxiliary bonding variables, b = (b;y), to indicate whether u(l,l') > 1
holds. More precisely, we define

bl,l’ = I[ul,lr > 1].

Then, the corresponding augmented model is

m(x,b) o H {1+bl,l'(62ﬁJ—1)},

Ti=Tp

and b;;» = 0 whenever x; # ;.. The clustering of the spins can be achieved
by connecting all those neighboring sites whose bond value is 1. Conditional
on the realization of b, the spin value of one cluster is independent of those
of other clusters. The algorithm of Swendsen and Wang (1987) is then a
data augmentation scheme that iterates between sampling from w(b | x)
and 7(x | b).

Swendsen-Wang (SW) Algorithm

e For a given configuration of the spins, form the bond variable by
giving every edge of the lattice, {I,1'), between two “like spins” (i.e.,
x; = zy) abond value of 1 (i.e., b;y = 1) with probability e=2%/, and
a bond value of 0 otherwise.

e Conditional on the bond variable b, update the spin variable x by
drawing from p(x | b), which is uniform on all compatible spin con-
figurations; that is, clusters are produced by connecting neighboring
sites with a bond value 1. Every cluster is then flipped with proba-
bility 0.5.

7.3 Convergence Analysis and Generalization

Based on Theorem 6.6 and theory in 13, the convergence rate of this algo-
rithm is characterized by the mazimal correlation between x and b (Liu et
al. 1994, Liu, Wong and Kong 1995), which is defined as

var[E{h(b) | x}]

P= D ar(h(b)} (7.1)

156 7. Cluster Algorithms for the Ising Model

under the equilibrium distribution. Thus, we can obtain a lower bound
of the algorithm’s convergence rate by computing var[E{h(b) | x}] for a
particular test function. As in Li and Sokal (1989), we can choose h(b) =
>~ bir. Then, by denoting p, = 1 — e~27 it is easy to see that

E[h(b) | X] = Pazdz;:z,,;
L

pa(]- - pa) Z 5wl=w,/ .

L

var[h(b) | x]

If we let U(x) =), ;s dz,=2, , then E[U(x)] is related to the mean energy
and var[U(x)] is proportional to the specific heat. From definition (7.1) and
the theory in Section 13.2.1, we have

N s rER®) []} pvar(U)

PTIET vah(e)] T pRvar(U) + pa(1 - p) E(U)’
where), is the second largest eigenvalue of the transition operator of this
data augmentation chain and p is as defined in (7.1). This is the key in-
equality for Li and Sokal (1989) to derive an approximate bound on the
critical exponents of the SW algorithm.

A more general formulation of the SW algorithm is given by Edwards
and Sokal (1988) and described also in Higdon (1998). In particular, Higdon
(1998) successfully applied this approach to tackle a class of image analysis
problems. Suppose the target distribution has a form

m(x) o mo(x) H Te(x).
k

One can introduce an augmented model with w = (ug) so that
(3,) o< mo ()10 < g < f(x)] (7.2)

Then, a data augmentation scheme can be formally implemented by it-
erating (a) draw u ~ [u | x] and (b) draw x ~ [x | u]. Although step
(a) is trivial, step (b) may not be achievable in problems other than the
Ising or Potts models. This strategy is also referred to as the slice sampler
(Section 6.3.1).

A partial decoupling method was also given by Higdon (1998) in which
he replaces the expression (7.2) by

(X, u) X 7o (X) ka(x)l_de[O < < fk(x)5k].
k

One can iterate [u | x] and [x | u] as in the previous case. The partial
decoupling method is potentially useful when one does not have the nice
symmetry as in the Ising or Potts models, which is typically the case in
statistical image analysis (a likelihood term will destroy symmetry in the
model).

7.4 The Modification by Wolff 157
7.4 The Modification by Wolff

Wolff (1989) introduced a modification for the Swendsen-Wang algorithm,
which, although both conceptually and operationally simple, significantly
outperforms the SW algorithm.

Wolff’s Algorithm

e For a given configuration x, one randomly picks a site, say z;, and
grow recursively from it a “bonded set” C' as follows:

— Check all the unchecked neighboring sites of a current set C'(©1d);

add a bond between a neighboring site and C(°'9) the same way
as in the Swendsen-Wang algorithm.

— Add those newly bonded neighboring sites to C(°') so as to form
a new set C(ew),

— Stop the recursion when there is no unchecked neighbor to add;
name the final set C.

e Flip all the spins corresponding to the sites in set C' to their opposites
(no random sampling here).

The only difference between this algorithm and the SW algorithm is
that in each iteration, only one cluster is constructed and all spins in that
cluster are changed to their opposite value. However, the algorithm provides
a new insight that is different from the one based on data augmentation.
Consider the “move” in the Wolff algorithm from a Metropolis algorithm
viewpoint. Suppose the cluster C' we have grown has m + n neighboring
“links” among which m are linked with +1 spins and n with —1 spins. Thus,
if the current state of C' is all +1, by flipping the whole cluster of C' to —1,
the probability ratio (of the new to old) is €*#7("~™) Now, consider the
process of building C (i.e., the proposal). This proposal, in comparison with
the reverse proposal, can be viewed as “breaking bonds” along the edge of
the cluster C. Since C starts with all +1, the probability of breaking m
bonds is e=287™_To propose back, one needs to break n bonds which has
a probability e 28", Thus, the ratio of the proposal transitions is

T(x®ew) — x(1d)) exp{—28Jn}
T (x(0ld) — x(new)) — exp{—28Jm}

This ratio cancels the probability ratio and, thus, the proposed change is
accepted with probability one.

= exp{28J(m —n)}.

7.5 Further Generalization

There is no essential reason for restricting the growth of the cluster to
be among those “like spins.” More generally, Niedermayer (1988) suggests

158 7. Cluster Algorithms for the Ising Model

that one can allow “bonds” to link neighboring spins of opposite values.
Let p, be the probability of growing a bond between [and I’ when z; = zp,
and let p, be that when x; # xp. After growing the cluster C, we can flip
every spin in C' to its opposite. First, it is not difficult to see that such a
“transition rule” is completely symmetric for the interior or the cluster;
that is, the energy difference between the two states, Xo1q = (xc,x[_c])
before the move and Xpew = (—Xc,X[_C]) after the move, is equal to the
energy difference of the two states at the boundary. Now, suppose there are
m same-spin links and n different-spin links between C and its complement
C. Then, the transition ratio is

T(X(new) N X(old)) (1 —pa)m(l _pb)n B (1 _pa>m_"

T (@D — xMew)) ~ (1 —p)"(1—pp)™ \1—pp

Therefore, we can choose p, and py so as to cancel the transition ratio
with the probability ratio, e287("=™) achieving a no-rejection transition in
the Metropolis algorithm framework. It is of interest to see if this type of
cluster-growth method can be used more generally in statistical computa-
tion. One area that might benefit from the method is the statistical image
analysis, as shown in Higdon (1998).

7.6 Discussion

The auxiliary variable approach discussed in this chapter seems to be at
odds with the theory presented in Section 6.7. This “apparent” conflict
seems to suggest that adding “decoupling” variables does not necessarily
help in improving convergence rate of the sampler unless the system pos-
sesses a special symmetry structure. For example, in the bivariate Gaussian
inference problem (Sections 2.2 and 6.7), parameter ¥ serves as a “decou-
pling” variable; that is, given ¥, all the missing components are mutually
independent. On the other hand, all the missing components are dependent
of each other if we integrate out X, as suggested by the collapsing theorem
of Section 6.7. Our numerical results clearly showed that this “decoupling”
really did not improve convergence rate and is more time-consuming for
each iteration. A similar phenomenon was also observed for the Gibbs mo-
tif finding algorithm (Section 6.5).

Generally, the Gibbs sampler itself does not specify exactly how the
random variable should be augmented or partitioned. This is a decision that
users have to make and is where they can apply their ingenuity. There are
two conflicting criteria that a good Gibbs sampler algorithm has to meet:
(a) Drawing one component conditional on the others is computationally
simple; (b) the Markov chain induced by the Gibbs sampler with such
partitioning components has to converge reasonably fast to its equilibrium
distribution. For example, drawing the variables jointly with no partitioning

7.7 Problems 159

at all is optimal for convergence, but it is formidable and is the reason why
the Gibbs sampler was invented. The above theorem provides a theoretical
confirmation of such a conflict. It seems to be a reasonable strategy to
“group” or “collapse” when it is computationally feasible. But as a whole,
it is left to the reader to make compromises to balance all factors mentioned.

7.7 Problems

1. Implement the SW algorithm for simulating a 64 x 64 Ising model
near the critical temperature.

2. Implement Wolff’s algorithm for the above task.
3. Implement the Niedermayer’s generalization for the above.

4. Experiment with different choices of p, and pp in the Niedermayer’s
algorithm. Can you find a pair of p, and p; so that the resulting
algorithm outperforms Wolff’s algorithm?

5. Is it possible to generalize Wolff’s or Niedermayer’s algorithms along
the line of Li and Sokal (1989) described in Section 7.3?

160 7. Cluster Algorithms for the Ising Model

This is page 161
Printer: Opaque this

8

General Conditional Sampling

The fundamental idea underlying all Markov chain Monte Carlo algorithms
is the construction of implementable Markov transition rules that leave the
target distribution 7 (x) invariant. Although the Metropolis-Hastings algo-
rithm for constructing a desirable Markov chain is very simple and power-
ful, a potential problem with the Metropolis algorithm, as explained in the
previous chapter, is that the proposal function is often chosen out of conve-
nience and is somewhat too “arbitrary.” In contrast, the Markov transition
rules of the Gibbs sampler are built upon conditional distributions derived
from the target distribution 7(x). In this chapter, we describe a more gen-
eral form of the conditional sampling, partial resampling , introduced in
Goodman and Sokal (1989) and generalized in Liu and Sabatti (2000).

8.1 Partial Resampling

The basic steps of a Gibbs sampler are (i) decomposing the random vector
of interest x into two components [e.g., x = (x1,%[_17)] and (ii) updating
one component, 1, by a new sample xj drawn from (- | x[_1;). More gener-
ally, any transition rule A(z; — x7) that leaves the conditional distribution
m(21 | X[_1)) invariant also leaves 7(x) invariant. Thus, a proper move can
be made by drawing a new z3 from the transition function A(z; — -) and
then updating x to x* = (z7,x[_1)). Additionally, this transition function
A can actually depend on the current value of x|_y), in that the invariance

162 8. General Conditional Sampling
is guaranteed by
/w(xl,x[,l])A(azl = x7 | X[_1))dzy

= n(xi_1)) / r(@1 | x)A(er = o} | xp_y)des
= r(xp_)n(a] | X)) = 7x)

Although the iterative conditional sampling approach used by the Gibbs
sampler is effective in many cases, it can be adversely affected by the param-
eterization (or, decomposition) of the space. A reparameterization (Gelfand
et al. 1995) can sometimes improve the performance of the algorithm sig-
nificantly. Although a proper decomposition of the sample space (or the
random vector) should not be dependent upon the coordinate system em-
ployed by the problem, in practice one is confined by the coordinate system
imposed on the problem simply because it appears easier to get appropriate
conditional distributions.

In general, suppose we can find a partition of the sample space X; that
is, we have X = |J,c4 Ao and X, (A = 0. Then, the corresponding
decomposition of 7 can be constructed:

wwz/wmwm,

where v, (x) is the conditional distribution of x given that it lies on X,,. Here
each X, is called a fiber. It is seen that any transition of the form A(x — x')
on the fiber that leaves v, invariant also leaves 7 invariant (Goodman and
Sokal 1989, Liu and Sabatti 2000). However, determining the explicit form
of v, can be a difficult task when an arbitrary fiber construction is given.

To illustrate the idea of partial resampling, we give three “fiber” con-
structions and the corresponding v, for 7 defined on X = R? with x =
(21, x2).

(i) For a € R, we define the fiber as X, = {x: z; = a} and, corre-
spondingly,

| w(my | z) if =«
va(x) = { 0 otherwise.

This fiber construction allows one to move along the x5 direction.

(ii) The fiber is defined as X, = {x: z2 = z1 + a} and, correspondingly,

Vo (%) m(x1,22) if 22 —21 =«
@ 0 otherwise.

This fiber construction allows for a conditional move along the line
ro —T1 = Q.

8.2 Case Studies for Partial Resampling 163

(iii) For a € R' \ {0}, we can define X, = {x : z2 = az1}. By Theo-
rem 8.3.1, the corresponding v, is

Vo (x) oc{ |z1 |7 (21, a21) i 20 = ax;
@ 0 otherwise.
If conditional moves are performed along the fibers, construction (i) results
in a standard Gibbs sampling step along the x, axis, whereas the latter
two constructions correspond to certain reparameterizations of the space.
Clearly, different fiber constructions imply different conditional moves for
the corresponding Monte Carlo sampler.

The benefits of partial resampling are as follows: (a) Similar to a Metropo-
lis move, the conditional move reduces a high-dimensional simulation prob-
lem to a series of lower-dimensional ones; (b) it allows the sampler to follow
the local dynamics of the target distribution; and (¢) it enables “non-axis”
moves that cannot be achieved by the Gibbs sampler. Difficulties in ap-
plying partial resampling in Monte Carlo simulation, however, are also
nontrivial. First, there is no clear guidance on how to construct a fiber
decomposition of the space. Second, even with a given fiber construction,
there is no easy way of obtaining the corresponding conditional measure,
Vo(X). [Note that v, (x) in case (iii) is not obvious to most people.] In the
later part of this chapter, we will describe a way to construct fiber decom-
positions by using transformation groups. We believe that this is perhaps
the most general formulation that still permits us to derive some nice and
useful mathematical results (Liu and Sabatti 2000).

8.2 Case Studies for Partial Resampling

8.2.1 Gaussian random field model

Consider a Gaussian model defined on an N x N regular lattice A as shown
in Figure 8.1. In this model, x = (x5, s € A) and z, € R'. The target
distribution is

7(x) o exp {_% Z Bsst (x5 — '733’)2 - % Z'Vs(z's - Ms)2})

s~s’ sEA

where the notation “s ~ s'” means that s and s’ are neighbors in space
A, Bsss = Bss, and the B4 and the pg are fixed constants. This type of
model if often called a Markov random field (MRF) model. A single-site
Gibbs sampler can be easily applied to simulate from this model: Given the
values of all but one site, x[_,), the conditional distribution of z; is

1 Vsbhs + D gins Bss' Ts ’
(25 | X[—q) o exp {_5 (75 2 B) <m o +§ Bos)

s'~s

164 8. General Conditional Sampling

(i.e., a Gaussian distribution). However, this single-site updating scheme
can be very slow (Goodman and Sokal 1989).

FIGURE 8.1. Left: an 8 x 8 lattice A; Right: a 4 x 4 sub-lattice S of A, as outlined
and shaded. There are 16 boundary links that connect pixels in S with pixels out
of S.

Alternatively, we can consider updating a “window” of pixels simultane-
ously. Suppose S is a sub-lattice of size k x k of A (e.g., Figure 8.1). Let
xgs = {zs, s € S}. We consider the move

x — (xg + 9, X[,s]), (8.1)

where ¢ is a real number and we define that xg +6 = (z; + 6, s € §). In
this “coarsening move,” the corresponding fiber construction is X, = {x:
X[_g] = a}; that is, only those random components indexed by the sites in
S are allowed to move.

In order to make the move (8.1) proper, we need to draw ¢ from some
distribution so that the the target distribution 7 is invariant. By Theo-
rem 8.3.1 in Section 8.3, one can easily derive that § should be drawn from

p((s) & W(XS + 6ax[—5])7

similar to those conditional distributions needed by the regular Gibbs sam-
pler. It is easy to show that distribution p(d) is Gaussian with mean

E ,Bss’ (xs - x,’s) + E 73(378 - Ns)
s€ES

__ s'~s€dS

fe = Z ﬂss’ + Z Vs

s'~s€dS seS

and variance

1
0-3 = < Z ﬂss’ +Z’YS) 3

s'~s€dS seS

8.2 Case Studies for Partial Resampling 165

where the notation). means that the summation is over all boundary
5'~sEDS
pixels of S and their respective neighbors outside of S.

AR A

%% X X% X% % %X XXX

FIGURE 8.2. Graphical representation of the multigrid Monte Carlo schemes. (a)
In a one-dimensional Markov random field model, pairs of the variables are moved
together at each coarse grid update. (b) In a two-dimensional MRF, quadruples
of the variables are moved together.

As shown in Figure 8.2, we can apply the “window move” hierarchically
with different “resolution” levels. More precisely, we first update the set
of 4-pixel windows; then update the set of 16-pixel windows; and so on. It
is helpful to recognize that the joint distribution of all non-overlapping 4-
pixel window updates form a new lattice model (Goodman and Sokal 1989),
which is also a Gaussian random field. Thus, the hierarchical procedure can
be understood as a recursive application of the basic “coarsening move.”
It was shown (Goodman and Sokal 1989) that by properly arranging the
coarsening and refining moves (the so-called “W-cycles” and “V-cycles”),
one can obtain a Monte Carlo algorithm whose convergence rate (or, equiv-
alently, relaxation time) is nearly independent of the lattice size.

8.2.2 Texture synthesis

An image I as in Figure 8.3 can be represented by an N x N (e.g., N=128 or
256) lattice A with each of its pixels s € A having an “intensity value” I(s).
It is argued that human perception of texture patterns comes from pre-
attentive extraction of certain “summary statistics” such as local contrast,
orientation of small patches, etc.

In a sequence of papers (Wu, Zhu and Liu 1999, Zhu, Wu and Mumford
1997, Zhu, Wu and Mumford 1998, Zhu, Liu and Wu 2000), Zhu and col-

166 8. General Conditional Sampling

FIGURE 8.3. An observed cheetah’s skin texture pattern. (Courtesy of Professors
S.C. Zhu and Y.N. Wu.)

laborators established a mathematical basis for texture modeling. One of
their models, the Julesz ensemble, can be described as follows. Given a set
of K histogram functions (filters), H = {h(“) : a=1,...,K}, one can
compute for any image I the “summary statistics”

H(I) = (RO (), ,h9O(I)).

Then, a Julesz ensemble with a given summary statistics Hg is the set of
images that match this summary statistics:

Qx(Ho) = {I: H(I) = Ho}.

Due to limited recording accuracy and intensity quantization, in practice
one needs to relax the above definition as

QA(H) = {I: H(I) e H)},

where H is an open set around Hg. For example, H can be defined as
H(Ho)={I: D(H(I),Hy) < €}, where D(-,-) is some distance metric.

For a given observed image whose summary statistics is H, it is of inter-
est to “synthesize” new ones whose statistics are as close to H as possible.
To achieve this end, Zhu et al. (2000) introduced an energy function defined
on the space of all images:

(o0 if D(H(I),H,)<e
G(I) —{ D(H(I),H,) otherwise. ’

Then the distribution

o(I; Ho, T) = ﬁ exp{—~G(I)/T}

converges to a uniform distribution on Q4 (#) as T — 0. In their framework,
each statistic h(? (I) is the histogram of the values of the corresponding

8.2 Case Studies for Partial Resampling 167

(a) (b)

=\

=\

——)
=%

=
=

——
=

=

——
——

=

——

=
=

=

\
E—
—
=
=
=

——

]

il
)

=
=

—————

————r

l

———

FIGURE 8.4. Two filter functions used in Zhu et al. (2000).

filter function, F(%), applied to all the windows of size [x I of A. Typical
filter functions are shown in Figure 8.4.

It is straightforward to use an iterative single-site update method (i.e.,
the stanford Gibbs sampler) to simulate from ¢(I; Hg,T); that is, one ran-
domly picks a site s € A and updates the value I(s) by a new value drawn
from the conditional distribution q(I(s) | I(—s); Ho,T). The efficiency of
this algorithm, however, can be exceedingly low because of the special fea-
tures of the filtering functions, h(a), for a = 1,... , K. Recently, Zhu et
al. (2000) proposed an efficient method called the window Gibbs sampler
for sampling from such a model. This new MCMC strategy can be seen as
a special way of conducting “coarser moves” in the image space. At each
step t of the window Gibbs sampler, one randomly picks a pixel s € A and
updates

IO() — 1D () 4 s@w @),

where Ws(a) is a window function centered at s and its size is chosen to be
the same as the filter F(®) used for extracting texture features. Here, §(®)
should be chosen from the conditional distribution

p(8) o< q(ID () + W5 Ho,T).

In the computation, § value is quantized. Otherwise, a random-ray or
random-grid Monte Carlo strategy (Section 5.5) can be useful.

For illustration, both the single-site Gibbs and the the window Gibbs
were applied to synthesize textures of a cheetah’s skin (a true pattern is
shown in Figure 8.3). The marginal histograms of eight filters were cho-
sen as the statistics h. Both the single-site Gibbs and the window Gibbs
algorithms were simulated with two initial conditions: I, a uniform noise
image, and I, a constant white image. Figure 8.5 displays the results for
the first 100 sweeps, where (a) and (c) are the results of the single-site
Gibbs starting from I,, and I, respectively, and (b) and (d) are the results
of the window Gibbs starting from I,, and I., respectively.

168 8. General Conditional Sampling

FIGURE 8.5. (a, ¢): Sampled images from single-site Gibbs sampler; (b, d): sam-
pled images from the window Gibbs sampler. (Courtesy of Professors S.C. Zhu
and Y.N. Wu.)

The total matching error at each sweep of the Markov chain is defined
as

K
E =Y ||h® (Igyn) = R
a=1

The change of E is plotted against the number of sweeps in Figure 8.6. It
is seen that the single-site Gibbs starting from both I. and I, exhibits a
high error floor. In contrast, the matching errors for window Gibbs in both
cases dropped under 0.08 (i.e., a less than 1% error on average for each
histogram).

In summary, the window Gibbs algorithm outperforms the single-site
Gibbs in at least two aspects: (1) The window Gibbs can match statistics
faster, particularly when statistics of large features are involved. (2) The
window Gibbs moves faster after statistics matching. Thus, it can render
texture images of different details.

8.2 Case Studies for Partial Resampling 169

(] 10 20 30 a0 50 60 70 80 %0 100

FIGURE 8.6. The matching errors in L, distance, summed over eight filters,
against the number of sweeps in the samplers. Top two curves: single-site Gibbs;

bottom two curves: window Gibbs. (Courtesy of Professors S. C. Zhu and Y. N.
Wu.)

8.2.83 Inference with multivariate t-distribution

Iterative methods for the inference with ¢-distribution has been considered
(Liu, Rubin and Wu 1998, Liu and Sabatti 2000, Meng and van Dyk 1999).
The central component of their algorithms is, in fact, a partial resampling
step.

Let y;, i =1,...,n, beii.d. observations from a d-dimensional ¢, (u, 2)
distribution, where v is the known degrees of freedom and p and ¥ are
unknown. Because a t-distributed random variable can be regarded as the
ratio between a Gaussian random variable and a function of an independent
x? random variable, the estimation problem for the ¢-distribution can be
“reconfigured” into a missing data problem. More precisely, we let ¢; ~
X2 /v be mutually independent and regard them as missing data. Given g;,
we have [y; | ¢i] ~ N(u,%/q;). When given an improper prior

mo(k, B) o [Z| @V

for p and ¥, the joint posterior distribution of (i, X, q) is

n v+d _q _ n4d+1
W([L,E,q) X (qu 2) |2| 2
i=1

X exp {—% Zqi(l/ +(yi—p)'S Yy — H))}

i=1
and a Gibbs sampler/data augmentation scheme can be easily applied:

(a) Conditional on the g;, the posterior distribution of ¥ is an inverse-
Wishart distribution (Gelman, Roberts and Gilks 1995) with a scale

170 8. General Conditional Sampling

matrix
n
S= ZQi(Yi -9y —y)
i=1

where y is a weighted average of the y; with weight vector ¢ =
(15 5 an)-

(b) Conditional on the ¢; and X, p is distributed as Gaussian with mean
¥ and covariance matrix /(g1 + - + ¢n)-

(¢) Conditional on ¥ and p, the ¢; are mutually independent and dis-
tributed as scaled-x2 random variables:

@i~ Xoyallv+ (yi —)T (yi — p)]-

We observe that the samples of ¥ and g obtained from the above algorithm
tend to be tightly “coupled” because of steps (a) and (¢). In other words,
if the starting values of the ¢; are large, the resulting sample of ¥ tends to
be large and vice versa. Iterative sampling between them is therefore not
very efficient. A possible remedy is to consider a potential non-coordinate
move:

(EaQ) - ’Y(EJQ) = (’YEa’th te a’yqﬂ)a

for v > 0. Clearly, this move, if achievable, can “damp down” simulta-
neously the two tightly coupled components, ¥ and q. Additionally, this
move implies a decomposition of the space of (X, q): Each fiber in this
decomposition corresponds to one equivalent class, or the orbit, under the
relationship

(Z,q) = (¥',q') if and only if Fy >0 such that (X,q) = (vX',vq).

To derive the proper sampling distribution for v, we note that the set of
all proper «’s form a transformation group (the scale group) on the space
of (%,q), a (n+d(d+1)/2)-dimensional space. Using Theorem 8.3.1 in the
next section, we found that conditional on ¢ and X, v should be drawn from
X2, /(v > | qi). Thus, in addition to the regular Gibbs sampling steps, we
can add this partial resampling step so as to update (X,) jointly to a new
configuration (yg,X). This step is central to the success of the so-called
“parameter expansion” technique developed recently in statistics literature
(Liu, Rubin and Wu 1998, Liu and Wu 1999, Meng and van Dyk 1999).

We have experimented with different dimensional problems (d = 1, 4,
10), different numbers of observations, and different degrees of freedom
(v =1,...,5). The partial resampling step was helpful for moderate values
of v, but we did not observe a significant increase in efficiency for large
v’s, which is consistent with our understanding: The target distribution is
almost the same as a Gaussian distribution when v is large.

8.3 Transformation Group and Generalized Gibbs 171
8.3 Transformation Group and Generalized Gibbs

A MCMC sampler can be viewed as a scheme, or a plan, for moving a
“ghost point” around in its sample space. The output of this sampler is
just the trace of this point’s movement. For example, at any step of a
Metropolis algorithm, a tentative position/configuration that is “close to”
the current position of the ghost point is proposed. Then, according to the
acceptance-rejection rule, one decides whether to move the ghost point to
this new position or to leave it unmoved. In a random-scan Gibbs sampler,
one randomly selects a coordinate-direction in the space and moves the
ghost point along that direction to a new location, where the new location
is drawn from an appropriate conditional distribution.

More generally, suppose that at time ¢, the “ghost” point is at location
x® = x, then at time ¢t + 1, this point is “moved” to a new location
x(t+1) = x'. The basic criterion for designing a proper MCMC scheme is to
make sure that such a move leaves the target distribution mw(x) invariant.
The partial resampling principle described in Section 8.1 is a very general
rule to ensure invariance. However, partial resampling is not sufficiently
constructive and is difficult to apply. Here, we seek a more explicit solution
under a more specific setting (i.e., when the “moves” can be described by
transformation groups).

Suppose the move from x to x’ in a MCMC sampler can be achieved
by selecting a transformation v (a mover) from a set of transformations (a
moving company), I, and applying it to x [so that x' = y(x)]. For exam-
ple, in a random-scan Gibbs sampler (with the remaining part fixed), the
current position x = (z;,X[_;)) is moved to a new position x' = (z},X[_y).
This move can be seen as applying a translation transformation to x:

(mia X[,,’]) - (.73, + 77x[7i])3 Y€ Rla

where the set of all eligible forms a group under the usual “+” operation.
We need to choose v according to an appropriate distribution so that 7 is
invariant with respect to such a move. Therefore, a general formulation of
the problem is as follows: Suppose x ~ 7 and T’ is a set of transformations,
what distribution should one draw v € T from so that x' = 7(x) also follows
distribution 77?7 An explicit answer to this question is given in Theorem 8.3.1
when I' forms a locally compact group.

Suppose 7(x) is a probability distribution of interest defined on sample
space X. A set T' = {7} of transformations on X is called a locally compact
group a topological group or if (i) I is a locally compact space, (ii) the ele-
ments in T form a group with respect to the usual operation for composing
two transformations [i.e., y172(X) = v1(72(x))], and (iii) the group opera-
tions (y1,72) = Y172 and v — ! are continuous functions (Rao 1987).
For any measurable subset B C I' and element vy € I', 70.B defines another
subset of T' resulting from vy “acting” on every element of B. A measure

172 8. General Conditional Sampling

L is called a left- (invariant) Haar measure if for every vy and measurable
set B € ', one has

£B) = [@)= [Ly = L)

One can similarly define a right-Haar measure. Under mild conditions, these
measures exist and are unique up to a positive multiplicative constant
(Rao 1987).

Generally speaking, any move from x to x' in sample space X can be
achieved by a transformation v chosen from a suitable group T'; that is,
we can often find a group I" of transformations so that x’ = y(x) for some
v € I'. For example, suppose x = (Z1,...,%q) and x' = (2], %2,... ,Z4).
Then, the move can be done by a translation group I' acting on x in the
following way:

F={7€R1 : ’YZ':('Z.I + 7, T2, de)}'

An appropriate sampling distribution for 7y gives rise to the Gibbs sampling
update of z1 to z}. To obtain a complete Gibbs sampling chain, one needs
to use a combination of translation groups (one for each coordinate of x).
Provided that this combination is transitive (i.e., one can move from one
point to any other in X via a sequence of transformations selected from
the groups), the resulting Markov chain is irreducible.

Given T', it is then necessary to determine an appropriate sampling distri-
bution for « so that 7 is invariant under the move x' = y(x). The following
theorem, first stated by Liu and Wu (1999) and later extended by Liu and
Sabatti (2000), provides an explicit form of the sampling distribution.

Theorem 8.3.1 Suppose T is a locally compact group of transformations
on X and L is its left-Haar measure. Let m be an arbitrary probability
measure on space X. Suppose x ~ 7(x) and v is drawn from T' according
to the distribution

Px(7) o< m(v(x))[Jy ()| L(d),

where J,(x) = det{0v(x)/0x} is the Jacobian of the transformation. Then
x' = y(x) follows 7.

The standard Gibbs sampler can be realized by applying this theorem
to those I'’s corresponding to the translation group along each coordinate
direction. An easy extension of the standard Gibbs sampler is to let ' be
the translation group along an arbitrary direction; that is,

F={yeR": y(x) =x+7ye= (21 +7e1,... , T4+ 7€)},

where e = (eq, ... ,eq) is a fixed vector given in advance. The proper dis-
tribution for drawing v can be derived from Theorem 8.3.1 as px(y) o
m(x + ~ye). For any locally compact transformation group I', we can define
a generalized Gibbs step as

8.3 Transformation Group and Generalized Gibbs 173

o draw v € T from px(7) o< m(7y(x))|Jy (x)|L(d7); (G1)
e set x' = v(x). (G2)

The result described in Theorem 8.3.1 can be understood as a one-step
Gibbs sampling updating under a reparameterization guided by a transfor-
mation group. More precisely, a point x € X is reparameterized as (o, p),
where o, indicates the “orbit” point x lies on and p is its location on the
orbit. In other words, the result of Theorem 8.3.1 can be used to achieve
the sampling effect of a reparameterized Gibbs sampler without actually
doing the reparameterization.

Groups such as the scale group, the affine transformation group, and
the orthonormal transformation group can often be used. If one wishes to
update x to x’ as

X = (xla-" 7xd) _)XI = (’y$17'-' lexd)7 Y € Rl \{0}7

for example, one can define a scale-transformation group

T ={yeR \{0}: y(21,---,24) = (YT1,... ,7¥Ta)},

and sample v from py(7) o< |y|¢ 17 (yx).

Compared with the partial resampling rule of Goodman and Sokal (1989),
the generalized Gibbs step is more constructive and readily implementable.
The following rather trivial corollary gives a direct connection with the
partial resampling framework.

Corollary 8.3.1 Suppose I' = {v} is a locally compact transformation
group on X. Then each orbit of T' can be treated as a fiber; that is, we can
define Xo = {x € X : x=(a)}, where a is a representative member of
the elements in the orbit. The corresponding partial resampling distribution
is

0 otherwise.

Vo (%) { w(y(a)) |[Ja(¥)| L(dy) if x=(a)

Proof: A direct consequence of Theorem 8.3.1. &

Although Theorem 8.3.1 provides us a nice conditional distribution py()
for T, it is often difficult in practice to sample from this distribution directly.
In this case, a Metropolis-type move would be desirable. Suppose Ay (7v,7")
is a transition kernel that leaves py () invariant. Can we substitute Step
G1 with the application of a one-step transition from Ax(y,-)? The com-
plication is as follows. In order to sample a new value 7' with Ax(7y,-), we
need a starting value 7. Also, in the event that rejection occurs, we would
like to retain x’' = x. Thus, the only way this can be achieved is by apply-
ing Ax to v = g, the identity transformation. Thus, the question is this:
What conditions has A, to satisfy so that Step G1 can be replaced by a
step v ~ Ax(7id,7)? The following theorem gives an answer.

174 8. General Conditional Sampling

Theorem 8.3.2 Assume that all the conditions in Theorem 8.3.2 hold.
Suppose Ax(7y,v')L(dy) is a Markov transition function that leaves

Px(7)dy o< w(v(x))[J (x)| L(dy)
invariant and satisfies the following transformation-invariant property:
Ax(1,7) = A =1 (170,770); (82)

for allv,v',v% €T. If x ~ 7 and v ~ Ax(Via,7), then w = y(x) follows 7.

Intuitively, condition (8.2) implies that the local transition function Ax
has to be independent of the reference point used (i.e., x) on the “orbit”
{y: y =~(x), v € T'} of the group. The condition is satisfied if Ax(y,7') is
of the form g{px(7), px(7")}. The proof of this theorem is left to the reader
as an exercise.

8.4 Application: Parameter Expansion for Data
Augmentation

In this section, we consider a special application of Theorem 8.3.1 to the
Bayesian missing data framework (Sections 1.9 and A.3.2). Let yons be
the observed data, ymis be the missing data, and 6 be the parameter of
interest in model f(Yobs,Ymis | 6). With a slight abuse of notations, we
let f denote all the probability densities related to the original model. For
example, f(Yobs, Ymis | 0) represents the complete-data model, f(6) denotes
the prior, and

F(Yons | 6) = / F(Fobes Yoniss | 0)dymis

is the observed-data model. As explained in Section 6.4, the data augmen-
tation (DA) algorithm used to simulate from f(ymis, 8 | yobs) iterates the
following steps :

1. Draw ymis ~ f(Ymis | G:YObs) X f(YObs;Ymis | 0)
2. Draw 6 ~ f(e | YmiSaYObs) o0 f(YObSa Ymis | H)f(e)

In many applications, we can find a “hidden” parameter « in the com-
plete data model f(Yobs,Ymis | 8), so that the original model can be em-
bedded into a larger one, p(yobs, W | 8, @), that preserves the observed-data
model f(yobs | #). Mathematically, this means that the probability distri-
bution p(yobs, W | 8, &) satisfies

/p(YObs;w | eaa)dw = f(YObs | 0)

8.4 Application: Parameter Expansion for Data Augmentation 175

We call a an expansion parameter.

For notational clarity, we use w instead of ymis to denote the missing
data under the expanded model. In order to implement the DA algorithm
for the expanded model, we need to give a joint prior distribution p(6, a).
It is straightforward to show that the posterior distribution of 0 is the
same for both models if and only if the marginal prior distribution for 8
from p(0,) agrees with f(6) [i.e., p(0 | Yobs) = f(8 | Yobs) if and only if
J p(6,a)da = f(8)]. Therefore, we only need to specify the conditional prior
distribution p(« |) while maintaining the marginal prior for § at f(@). It
is clear that given € and y,bs, the posterior distribution of a, p(a | yobs, 9),
remains as p(a |) because « is not identifiable from yops.

In many problems, the extra parameter a indexes for a certain set of
transformations on the missing data yms. In light of the discussions in the
previous section and in the latter part of this section, a often corresponds
to an element from a transformation group. This step can help achieve more
global movements on the missing data space and, therefore, improve effi-
ciency of the algorithm. More precisely, when « indexes a transformation,
the expanded likelihood can be derived as

P(Yobs, W | a,0) = f(Yobss ta(W) | 9)|Ja(w)|a

where J,(w) = det{0t,(w)/Ow} is the Jacobian term evaluated at w.
When the set of transformations forms a locally compact group, a natural
prior for «, as indicated by Theorem 8.3.1, is its left-Haar measure. In
this setting, a special form the the parameter ezpanded data augmentation
(PX-DA) algorithm can be defined as iterating the following steps:

The PX-DA Algorithm

1. Draw ymis ~ f(Ymis | G;YObs)-

2. Draw a ~ p(Oé | yObsyymis) X f(yobs;ta(ymis)) |Ja(ymls)| H(da)
Compute y! i = ta(¥mis)-

3. Draw 6 ~ f(9 | yobs;)’:'nis)'

Step 2 in the algorithm can be viewed as an adjustment of the missing
data. When the prior for « is proper, Liu and Wu (1999) show that the
second step should be of the form

2. Draw ag ~ p(a); compute W = ! (Ymis)-
Draw a1 ~ p(a | Yobs, W) < f(Yobs; ta(W)) |Ja(W)| po(a).
Compute y! i = ta, (t5) (Ymis))-

The interesting result here is that when a Haar measure prior is used for
the expansion parameter, one can skip the step of sampling from the prior
of a, which is essential when this Haar prior corresponds to an improper
probability measure. Note that Steps 2 and 2" are indeed very different.

176 8. General Conditional Sampling

Based on Theorem 8.3.1, Step 2 leaves the distribution f(¥obs, Ymis) in-
variant. As a consequence, the PX-DA leaves the posterior distribution
invariant. Liu and Wu (1999) shows that a nice property for using the
Haar prior for « is that the resulting adjustment y, ;. in Step 2 is condi-
tionally independent of the previous yuis, given that they lie on the same
orbit (fiber). This can leads to a conclusion that using Step 2 is always
more preferable to using Step 2/, provided that they can be implemented
with equal computational cost.

8.5 Some Examples in Bayesian Inference

8.5.1 Probit regression

Let y = (y1,...,yn) be a set of i.i.d. binary observations from a probit
regression model:

y; | 6~Bernoulli{®(X;0)},

where the X; (p x 1) are the covariates, 6 is the unknown regression co-
efficient, and ® is the standard Gaussian cumulative distribution function
(cdf). Of interest is the posterior distribution of 8, under, say, a flat prior. A
popular way to ease computation is to introduce a “complete-data” model
in which a set of latent variables, z1, ..., 2,, is augmented so that

[2: | 6] = N(X[0,1) and y; =sgn(z),

where sgn(z) = 1 if z > 0 and sgn(z) = 0 otherwise. The standard DA
algorithm iterates the following steps:

1. Draw from [2; | y;,6]; that is, sample z; ~ N(X8,1) subject to z; > 0
if y; = 1; or draw z; ~ N(X}6,1) subject to z; < 0 for y; = 0.

2. Draw [0 | 2] = N(4,V), where § = (3, X;X})~' ¥, Xizi, and

V = (3, X:X])™'. Both § and V can be computed using the Sweep
operator (e.g., Little and Rubin (1987)).

A problem with this scheme is that the “scales” of the z; are tightly
coupled with the scale of §. As seen from Step 2 of the foregoing algorithm,
conditional on the z;, the center of #’s distribution is @, a weighted average
of the z;. On the other hand, conditional on 6, the z; is centered at X}6.
Thus, it is helpful to consider a parameter-expansion approach.

The complete-data model can be expanded by introducing an expansion
parameter « for residual variance, which is originally fixed at 1:

[wi | 0] = N(Xjfo,0”) and y; = sgn(w;).

8.5 Some Examples in Bayesian Inference 177

It is clear that this model implies a conditional move that can also be
derived by using the group of scale transformation

z =to(W) = (w1 /a,... ,w,/a).

The corresponding Haar measure is H(da) = a~'da. The PX-DA algo-
rithm (Section 8.4) has the same first step as in the standard DA, but with
slightly different later steps:

2. Draw 4*> ~ RSS/x2, where RSS = Y. (z — X;0)? is a by-product
from the SWEEP operator.

3. Draw 6 ~ N(/&, V).

This PX-DA scheme also has the following more abstract and general
interpretation. The sampling from the target distribution 7(,z), where
z = (21,...,2n), is achieved by iterating the following steps:

e draw 0 from 7 (6 | z);
e update z; by a sample from 7(z; | z[_;},0), i = 1,... ,n;
o draw v from p(y) o< y" 17 (yz) and update z; to yz;, fori =1,... , n.

Thus, this scheme involves both an integration step and a generalized Gibbs
step.

We took n =100 and X; = (1,%;)', with z; generated from N(0,1). The
y; were generated from Bernoulli(®(5g + B12;)) with the true values Sy = 0
and 1 = 1,2, 4, 8. We implemented both the DA algorithm and the PX-DA
algorithm outlined above. Figure 8.7 shows the autocorrelation functions
of the draws of 3; for both algorithms under different true values for .
It is clear that when the real value for 8; gets larger, the improvement of
the PX-DA algorithm over the DA algorithm becomes more significant. To
put it another way, the PX-DA algorithm is not slowed down very much
by the increased value of 1, whereas the DA algorithm is.

For the DA algorithm, we observe that var(¢ | y,z) = (3, X;X;)™,
whereas for the PX-DA algorithm,

var(f | y,z) = (Z XiX;> +E [éé'var(xn)/RSS]

-1
~ (ZX,X;) +66'/2n,

which increases with §. What we observed in Figure 8.7 can be under-
stood from the fact (Chapter 12) that the sample autocorrelation of 6 is

determined by
_ E{var(fly,z)|y}

LT ey

178 8. General Conditional Sampling

betal =1 betal = 2

0.00.20.40.60.81.0
0.00.20.40.60.81.0

0O 10 20 30 40 50 0O 20 40 60 80 100

betal = 4 betal =8

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0 100 200 300 400 0O 200 400 600 800 1000

FIGURE 8.7. Autocorrelation functions for DA (solid lines) and PX-DA (dashed
lines) with various values of Si.

(Liu et al. 1994). The comparison in the rates of convergence should reflect
the comparison in real computing time since the implementation of the
PX-DA algorithm needs only negligible computing overhead in comparison
with the DA algorithm.

8.5.2 Monte Carlo bridging for stochastic differential equation

Consider the stochastic differential equation
dYy = by (Y, 0)dt + o4 (Yy, 6)dWy, (8.3)

which is frequently used to describe financial quantities such as deriva-
tives and interest rates. In many applications, observations are at discrete
time points but an analytical form of the transition function, p(ysys | v¢),
is unavailable. To illustrate, we let y1, ... ,y, be observations of the pro-
cess (8.3) at discrete time 7,27,...,n7, and we assume that b; and oy
do not change with ¢. Of interest is inference about 6. Pederson (1995)
proposes a direct Monte Carlo approximation to the transition function
via the Chapman-Kolmogorov equation, which tends to be inefficient in
complicated problems. Here we describe an alternative approach, Monte
Carlo bridging, in combination with the use of multigrid Monte Carlo.
The bridging idea has also been independently suggested by C.S. Jones

8.5 Some Examples in Bayesian Inference 179

(http://assets.wharton.upenn.edu/~jones13) and by O. Elerian, A. Chib,
and N. Shephard in unpublished manuscripts.

To connect two consecutive observations, y; and yj41, say, one can im-
pute a large number of “stepping stones,” treated as missing data; for
example,

Ye = Yk+1/m —7 7 Yk+(m—1)/m —* Yk+1,

where each intermediate transition can be approximated reasonably well
by a Gaussian relationship

Yt (1) /m = Ytism T 0 D(Uktism:0) + V6 0(Yrrijm:0) Wij,

with 6 = 7/m and Wj, ; ~ N(0,1). Let us write Yobs = {y1,-.. ;Yn} and

Ymis = (yl,mi87 cee ayn—l,mis)

= {Ypgjm: k=1,...,n—1;j=1,...,m—1}.
The missing data ymis is imputed purely for computational convenience
and will be called a Monte Carlo bridge of size M =m — 1.

Given 6, we can apply a simple Gibbs sampler to cycle through every
component of ynis- Conversely, given ynis, we can easily update 8 from
its approximate complete-data posterior. However, as m increases, the ef-
ficiency of this standard procedure decreases rapidly because of the high
autocorrelation between the neighboring yj.;/m- A better approach is to
impute ym;s by the multigrid Monte Carlo. More specifically, consider a seg-
ment of the Monte Carlo bridge yj, mis. For simplicity, we denote the ymis
vector by (z1,...,2a), where M = m — 1. With M = 2L and m; = 2%,
a coarse grid move of level [corresponds to drawing from

plat,... ,am;) < w(z1 +ai,... , Ty +a1, ...

cy X2l Oy S M F Q).

For illustration, we consider the Ornstein-Uhlenbeck diffusion dY; = (a—
BY;)dt + odW;. Since its transition function p(y:ys | y¢) can be obtained
analytically, this example serves as a good test case. In our numerical study,
we simulated 200 observations from the process with a =0, f=1,0 =1,
and time interval 7 = 0.5. With an improper prior p(a, 3,0) o< 071, we
applied the Monte Carlo bridging idea with bridge sizes M = 0, 1,4, 16, 32,
respectively. Figure 8.8 shows the approximated posteriors of o for these
cases and compares them with that resulting from an exact calculation. It
is seen that, with 20,000 Monte Carlo samples and a bridge size M > 16,
the approximated posterior is almost indistinguishable from the true one.

We applied level 1, 2 and 3 coarse moves to the case of M = 16. A cycle
of this multigrid sampler consists of

Standard Gibbs & Level 2 move < Level 3 move S Level 4 move.

180 8. General Conditional Sampling

o
- ~
A « M=0
o < S + M=1
° . - M=4
. . o M=16
. ° s X M=32
© . . ¢ NP
> X . 3 f@gx& — M=infinity
£ - -
o= .
<8 > -
o o | . -
~ .
o 4 SRR
T T

FIGURE 8.8. Comparison between the bridging approximations and the true pos-
terior of o for the Ornstein-Uhlenbeck process. The discrete observation interval

is 0.5.

In each coarse level move, we did not use the special properties of the
Gaussian model; instead, we applied one Metropolis step with its transi-
tion kernel satisfying Theorem 8.3.2. The computing time of this multigrid
Monte Carlo sampler is 1.8 times that of the standard Gibbs sampler. Fig-
ure 8.9 shows that the multigrid Monte Carlo significantly outperforms the
simple Gibbs sampler in terms of computational efficiency, with actual cost
of computing time taken into consideration.

(@) (b)
T IT
w0 | + Gibbs-1 ACF ® + Gibbs-1 ACF
o iy, Gibbs-2 ACF o Gibbs-2 ACF
: MGMC ACF

s,y
: ++++++++ MGMC ACF

Hy
i T
1 PH
. bRy

Correlation
0.4
Correlation
0.4

0.0

0.0

0 40 80 120 160 200 0 40 80 120 160 200

Lags Lags

FIGURE 8.9. The Gibbs sampler’s lag-1 and lag-2 versus multigrid Monte Carlo’s
lag-1 autocorrelation functions (a) for o and (b) for 3.

8.6

8.6 Problems 181

Problems

. Prove Theorem 8.3.2.

Find a counterexample to show that the condition in Theorem 8.3.2
is necessary.

Given the analytical forms of the two conditional distributions, 71 (z1 |
x2) and ma(z2 | 1), of the joint distribution 7(z1,z2), how to derive
the analytical form of 7(z1,22) up to a normalizing constant?

Generalize the above problem to the k-dimensional distribution.

Prove Theorem 8.3.1 for the case when L is both the left and the
right Haar measure.

Prove Theorem 8.3.2.

182 8. General Conditional Sampling

This is page 183
Printer: Opaque this

9

Molecular Dynamics and Hybrid
Monte Carlo

Molecular dynamics (MD) simulation is a deterministic procedure to inte-
grate the equations of motion based on the classical mechanics principles
(Hamiltonian equations). This method was first proposed by Alder and
Wainwright (1959) and has become one of the most widely used research
tools for complex physical systems. In a typical MD simulation study, one
first sets up the quantitative system (model) of interest under a given con-
dition (e.g., fixed number of particles and constant total energy). Then,
successive configurations of the system, as a function of time, are generated
by following Newton’s laws of motion. After a period of time for “equili-
bration,” one can start to collect “data” from this computer experiment —
the data consist of a sequence of snapshots that record the positions and
velocities of the particles in the system during a period of time. Based on
these records, one can estimate “typical characteristics,” which can often
be expressed as the time average of a function of the realized configurations,
of the simulated physical system.

Ideally, one would like to generate continuous trajectories (video shots
instead of snapshots), but in computer realizations, one is forced to use
discrete time steps (a discretization of the Hamiltonian equations). Since
the time step used in MD simulations is constrained by the need to conserve
the total energy (at least approximately), how to choose a good step size
has always been an art in the field. On one hand, the system will evolve
very slowly if the time step is too small, whereas on the other hand, the
simulation result will be very inaccurate if the time step used in simulation
is too large.

184 9. Molecular Dynamics and Hybrid Monte Carlo

Molecular dynamics simulation is a deterministic procedure and has to
move on a hyper-surface where a certain Hamiltonian is conserved. In con-
trast, the goal of a Monte Carlo simulation is to sample “typical configura-
tions” from a Boltzmann distribution which is determined by the system’s
potential energy and temperature. Because the “time average” will converge
to the “configuration average” in a large system (the ergodicity theorem?),
estimations from MC simulations often correspond very well with those
from MD simulations. Although many problems can be treated by both
means, it is also the case that in some problems one method is easier to
implement than the other.

It is noted in Duane, Kennedy, Pendleton and Roweth (1987) that, be-
sides the ergodicity theorem, there is also a very close technical connection
between the MD and the MC simulations. The basic idea behind the new
technique they proposed, hybrid Monte Carlo (HMC), is that one can use
MD to generate trial moves in a MCMC sampler. Thus, in a certain sense,
a bad MD move can be a good MCMC proposal. The advantage of the MD
proposal is that the resulting MCMC moves follow the dynamics of the tar-
get distribution more closely. As a consequence, much of the randomness in
an “unbiased” random-walk proposal is suppressed. Even for a non-physical
system, using an artificial Hamiltonian equation to generate MD proposals
is very helpful in making good MCMC transitions (Neal 1996). This chap-
ter will illustrate the basic idea behind the HMC and discuss some useful
generalizations.

9.1 Basics of Newtonian Mechanics

Let x(t) denote the d-dimensional position vector of a body of particles
at time t (e.g., d = 3N for an N-particle system in a three-dimensional
space). We also assume that there is a d-dimensional mass vector m =
(my, ... ,mg). Let v(t) = x(¢) denote the speed vector of the particles and
let v(t) be its acceleration vector. Suppose F' is the force exerted on the
particle; then, the Newton’s law of motion states that

F =mv(t),

IThe ergodicity theorem states that the average over a period of time of a function
of the system configuration, as the time period goes to infinity, is equal to the average of
that function over all configurations weighted by the Boltzmann factor exp{—U(x)/8T'},
where U(x) is the potential energy of the system and T is the temperature; that is,

t—oo t

i E ' x5)ds = Z~ 1 x)exp{—U(x h'e
lim /Oh(s = 7 /h()exp{—U(x)/BT}dx.

9.2 Molecular Dynamics Simulation 185

where the product between two vectors is assumed to be component-wise:
mv = (my01,... ,mgd4).

Instead of using the velocity vector v, a more convenient but equivalent
variable, the momentum vector, defined as

p=mv = (myvy,... ,Mgvq),

is most frequently seen in classical mechanics. The kinetic energy of the
system is usually defined as
d d 2
1 1 p2 1| p
k(p):—Zmivf:— —’E—H— .
2 = 2 = mi 2 ||v/m

Here, the ratio between two vectors (e.g., p//m) is a component-wise
operation which results in a new vector (pi/ma1,...,ps/maq). The phase
space of a system is defined as the product space of x and p, and vector
(x,p) is often referred to as a point in the phase space.

Let U(x) be the potential energy field of the system. Then the total
energy of the particle system at a given time is

H(x,p) = U(x) + k(p). (9.1)

The law of the conservation of energy says that the total energy remains
constant in a closed system. Differentiating both sides of (9.1) with respect
to t, we derive the Newton’s law of motion from the law of energy conser-
vation. It is mathematically more convenient to write Newton’s equation
in the form of Hamiltonian equations:

o _ OH(x,p)
pli) = - D) 93)

Clearly, the first equation describes the definition of p and the second
equation is essentially Newton’s law. This classical formulation through
Hamiltonian equations can be generalized to quantum mechanics, in which
the energy function is replaced by a Hamiltonian operator.

9.2 Molecular Dynamics Simulation

The main task of MD simulation is the integration of the equations of
motion over a given period of time and to study the physical and chemical
properties of the system during a particular period (such as the effect of

186 9. Molecular Dynamics and Hybrid Monte Carlo

water in the process of protein folding). Because one can only operate
discretely on a computer, the continuous-time equations of motion have to
be discretized and a difference method has to be used. By standard Taylor
expansion, the Hamiltonian equations can be approximated as

x(t +dt) = x(t) + ’%dt + %dﬁ +oee (9.4)
p(t+dt) = p(t) + p(t)dt + b(t) dt* +--- . (9.5)

2
This type of approximation forms the basis for all finite-difference methods.
One of the most widely used algorithms for integrating the equations of

motion is the so-called Verlet algorithm (Verlet 1967), which is the simplest
and perhaps the best. The Verlet algorithm is based on the observation that

x(t +dt) + x(t — dt) = 2x(t) + %dﬁ + O(dt*), (9.6)
x(t +dt) — x(t —dt) = 2%# + O(dt?). (9.7)

For a chosen small time increment At, Equation (9.6) gives rise to the
position update

1 0H
At) =2 - —At) — — —| (At)?
x(t + At) x(t) — x(t t) % t()%,
and Equation (9.7) gives rise to the momentum or, equivalently, the speed
update

x(t + At) — x(t — At)
2A¢

p(t+ At) =m .
All the foregoing vector operations involving m are component-wise.

Another commonly used method for the MD simulation is the leap-
frog method (Hockney 1970), which is equivalent to the Verlet algorithm
(i.e., giving identical trajectories). The distinctive feature of the leap-frog
algorithm is that it updates the momentum variable p(t) at half-time in-
tervals:

t+ 1At
x(t+ A1) = x(t) + a2 741 J:nz) 9.8)
1 1 OH

Note that 0H/0x is a function of x alone and does not depend on the value
of p. The momentum at time ¢ can be computed as [p(t + 1At) + p(t —
1At)]/2 afterward.

9.2 Molecular Dynamics Simulation 187

To illustrate, we consider a small “ball” with mass 1 in a one-dimensional
space, with Hamiltonian H(z,p) = U(z) + k(p), where

U(z) = 2° + a® — log[cosh(az)], k(p) = p*/2.

For a = 1.5, the potential function U(z) is shown in Figure 9.1.

rotenual energy
12 14 16 18

10

08

3 2 1 0 i 3 3
Position

FIGURE 9.1. The shape of the potential energy U(z), showing that two energet-
ically favorable positions are at £ = a and =z = —a.

We let the initial speed p(0) be 2.0, 1.5, 1.1, 0.7, and 0.1, respectively, and
let (0) = 1 for all the five cases. The leap-frog algorithm was performed
for 200 time steps with step size At = 0.1. Figure 9.2 shows that the
total energy in all the cases is not exactly preserved (which is due to the
discrete approximation), whereas the trajectories in the phase space are
well behaved. As one can see from Figure 9.2(b), the particle travels across
the two energy wells when the initial speed p(0) is large (greater than 1.1),
and the particle is “trapped” in the mode it is started from when the initial
speed is small.

An important property of the Verlet or leap-frog algorithm is, as in the
exact Hamiltonian equations, that the volume is preserved from one step
to another; that is, suppose V' (0) is a subset in the phase space X x P. One
can define

V(t) = {(x®),p) : (x(0),p(0)) € V(0)}-

Then, the “volume preservation” property says that

|V(t)|déf/ dxdpz// dxdp = |V (0).
V(t) v(0)

For the Hamiltonian equation, this property is called Liouville’s theorem
(Arnold 1989). To see why the volume preservation property holds in a

188 9. Molecular Dynamics and Hybrid Monte Carlo

(a) (b)

3.0
2

25

2.0

Total Energy
Momentum
0

15

1.0

- 0
Steps Position

FIGURE 9.2. Molecular dynamics simulation for a toy example: (a) the serial
plot for the total energy; (b) the trajectories in the phase space.

Hamiltonian system, we define the phase flow mapping

9" (x(0),p(0)) — (x(t),p(t))-

Then, {g' : t € (—00,00)} is a group of transformations. A simple ap-
plication of the Taylor expansion in combination with the Hamiltonian
equations shows that, for a small ¢,

gt(xap) = (x,p) + (5(71.))7: + O(t2)

OH OH
= (X7p) + (%a _§> t + O(t2)

Let y = (x,p) and f(y) = (g—g, —%—g) t + O(t?). Then, the Hamiltonian
mapping becomes

9'¥) =y + F(y)t+O(>).

A key argument in proving Liouville’s theorem is the observation that

for small ¢,
6gt(y))
V(i) = / det (dxdp
140] Vo) By

= /V(O) det {I+ %‘S”)t + O(tz)} i

By Lemma 2 of Arnold (1989), we have
det(I + At) = 1+t tr(A) + O().

OH OH
1+ di (—,——>t+0 12)d d
/Lm)< Y\op ox ()) dxdp

[V(0)| + O(t?).

Thus,

V()

9.3 Hybrid Monte Carlo 189

The last equation follows from the fact that the divergence

. (0H OH 0 (0H 0 O0H
le et et =— | —)+ =— | —— = 0.
op’ 0x ox \ Op op ox
Thus, we have shown that lim;,o(|V(¢)| — |V(0)|)/t — 0, which implies
that the volume as a function of ¢ is constant.
It is much easier to show that the leap-frog algorithm is volume-preserving

as well. From (9.9), the half-step update for the momentum gives rise to a
map in the phase space:

(x,p) — (x,p + f(X)Al),

which results in an identity Jacobian. Therefore, this mapping is volume-
preserving. The other half-step update for the position variable x, following
(9.8), results in a mapping

(x,p) — (x + g(p)At, p),

which is also volume-preserving.

9.3 Hybrid Monte Carlo

A major advantage of molecular dynamics simulation in physical systems
is its reliance on basic physics principles (e.g. Newton’s equation), which
has been shown by nature to work well. Typically, the trajectory of a MD
simulation in the position space follows the dynamics of the potential func-
tion. As we have seen in Figure 9.2, however, the total energy cannot be
exactly preserved in a MD simulation. The fluctuation can be rather sub-
stantial if the step size of MD moves is large in comparison with the initial
momentum given to the ball. Therefore, a main problem with MD simu-
lation is the stringent requirement of a small time-step size. For example,
the protein folding process takes about 1072 seconds in nature. A proper
MD simulation of such a process needs a step size of order 10712 and will
take about 10° days using a current computer. Another potential problem
with the MD simulation is its unquantified error due to discretization of
the Hamiltonians.

In contrast, in a standard Metropolis-type Monte Carlo simulation, the
proposal distribution cannot be easily adapted to “local dynamics” of the
target distribution. For example, if the system of interest consists of closely
packed particles, a random proposal for moving a particle is most likely
rejected because the proposed new position has been partially occupied
by others. Or, if the target distribution 7 is “banana shaped” (or “snake
shaped”), a random proposal in the configuration space tends to waste a lot
of effort poking around in wrong directions. To overcome some of these dif-
ficulties, Duane et al. (1987) introduced the method of hybrid Monte Carlo

190 9. Molecular Dynamics and Hybrid Monte Carlo

(HMC) which combines the basic idea of MD (i.e., proposing new positions
based on Hamiltonian equations) and the Metropolis acceptance-rejection
rule to produce Monte Carlo samples from a given target distribution.

Suppose of interest is to draw samples from 7(x) o exp[-U(x)]. Two
basic observations are important for the HMC method: (a) If we can simu-
late (x, p) from the distribution 7 (x, p) & exp[—H (x, p)], then, marginally,
x ~ 7 and p follows the Gaussian distribution ¢(p) o exp(—||p/v/ml|?/2);
(b) the Hamiltonian path is “time reversible.” Property (b) needs some
more explanation: if we run the leap-frog algorithm, starting from (x,p)
for t steps to reach (x',p'), then we can start from (x',—p’) and run ¢
steps of the same algorithm to get back to the starting position but with
opposite momentum [i.e., to (x, —p)]. This property is easy to check for
the leap-frog algorithm because each half-step can be reversed by negating
the momentum. The importance of property (b) will made clearer later in
this section.

Duane et al. (1987) introduced a “fictitious” momentum variable conju-
gate to the configuration variable x and a guide Hamiltonian

H'(x,p) =U'(x) + k(p),

where p is an auxiliary variable with the same dimensionality as x, k(p) =
E?:l p?/m;, and the m; are positive quantities representing the “masses”
of the components. Vector p plays the role of “momentum variable.” The
function U’(x) is allowed to be different from the target one, U(x). In the
next section, we generalize this formulation to accommodate a larger class
of “kinetic energy” functions, k(p). The guide Hamiltonian is used to gen-
erate a proposal state. Another Hamiltonian, the acceptance Hamiltonian,
is

H(x,p) =U(x) + k(p),

which is used to decide acceptance and rejection. The reasons that one
might use two different Hamiltonians, H' and H, are two: (i) since one can
only run a discrete time process on a computer, the resulting discretization
of the “exact” Hamiltonian can be treated as a “guide Hamiltonian” and
(ii) one sometimes wants to be flexible in proposing the new position in
the phase space. For example, if the original potential energy U(x) has
steep energy barriers, having a smoother or “tempered” potential energy
function [e.g., U'(x) = U(x)/T with T > 1] may help the sampler get out
of local energy wells.

The HMC algorithm is an iterative procedure and can be implemented
as follows. Suppose at time ¢ we are at position x (i.e., x(¥ = x) of the
configuration space X' (one needs not record the momentum information).
Then, at time ¢ 4+ 1, we do the following:

e generate a new momentum vector p from the Gaussian distribution
[i.e., from ¢(p) o exp{—k(p)}};

9.3 Hybrid Monte Carlo 191

e run the leap-frog algorithm (or any deterministic time-reversible and
volume-preserving algorithm), starting from (x,p), for L steps, to
obtain a new state in the phase space, (x',p');

e accept the proposed state (x',p') (i.e., let x(**1) = x') with proba-
bility
min{]—a exp{_H(xlapl) + H(Xap)}}a
and let x(*+1) = x with the remaining probability.

To see why this algorithm works, we define the leap-frog move at the
second step by a mapping g* on the phase space:

9" (x(0),p(0) = (x(L),p(L)).
A heuristic argument (Duane et al. 1987, Neal 1993) goes as follows: (a)
If we let (x',p') = g*(x,p), we have (x,—p) = g"(x, —p'); (b) 7(x,p) =

w(x, —p) for any palr of (x,p); and (c) because of volume preservation, we
have dxdp = dx'dp’. These three properties suggest that the proposal is
“symmetric,” as required by the Metropolis algorithm, implying that the
algorithm is valid.

Here, we provide a more rigorous mathematical proof of invariance. Sup-
pose x follows the target distribution 7(x) at time 0; after generating a
new p, making the MD transition, and deciding on rejection-acceptance,
at time 1, we have a new point x* with density f(x*). To show that f()
is in fact the same as w(), we will show that for any square integrable
function h(), the equality E h(x) = Efh(x) holds. To proceed, we let g*
be the Hamiltonian mapping on the phase space [i.e., (x',p') = gL (x,p)]
and let g~F denote the inverse mapping [i.e., (x,p) = g~ L(x/,p')]- Then

Eyh(x //h [(x*,p))min{l, %}%_4

o (1 min 1, T],

where the Jacobian term |J,-r| is equal to 1 because of the volume preser-
vation property of the Hamiltonian map g” and g—F. The first part of the
right-hand side comes from acceptance and the second part comes from
rejection.

Continuing with the equation,

E¢h(x*) = /h x*, p)dx*dp
+ / h(x*)min{r(g L (x", p)), 7(x*, p)}
—min{w(* p),m(g"(x", p)) })dx"dp (9.10)

/h x*, p)dx*dp = /h (x)dx*. (9.11)

192 9. Molecular Dynamics and Hybrid Monte Carlo

The first equality follows from the volume-preserving property of the map-
ping g¥ (so that the Jacobian term disappears). Finally, because of sym-
metry, we have

7(x, ~p) = 7(x, D). (9.12)
If we let (x',p') = g% (x,p), then time-reversibility means that
gL(xI7 _pl) = (X,p). (913)

Combining (9.12) and (9.13), we have
m(x,—p) = 7(x,p) = w(g~ " (x',p") = 7(¢"(x', -p")).
Thus, the equality between (9.10) and (9.11) follows from

[ey mingr(e™ <, p), 7 p) X'
— [h) min{a(g (', ~p), m(x, ~p)}ax'dp
— [h) minfa(g L6 ~p), (P }ax'dp
— [1<) min{n(n(x, p), o (x,) Yxdp.

At this point, we have proved that f(x') = =w(x'), meaning that the
HMC transition leaves the target distribution 7(x) invariant. Besides shar-
ing the same volume-preserving and time-reversible properties as the guide
Hamiltonian, the actual Hamiltonian also preserves the value of H(x,p),
thus incurring no rejections. It is also clear from the discussion in Sec-
tion 9.2 that the leap-frog moves are valid for proposing moves in HMC
(i.e., volume-preserving and time-reversible).

9.4 Algorithms Related to HMC

9.4.1 Langevin-FEuler moves

As in the previous subsection, we let m(x) o exp{—U(x)} be the target
distribution of interest. The Langevin diffusion refers to the following result:
The solution of the stochastic differential equation

where W; the standard Brownian motion, follows the target distribution 7.
Thus, a discretization of the equation is of the form

10U
Xt+1 = Xt — 3 B(Xt)h \/_Zt’

9.4 Algorithms Related to HMC 193

where Z; follows a standard Gaussian distribution. It we let VA = dt
in Equation (9.4) and let p, be a refreshed momentum drawn from the
Gaussian distribution ¢(p), the Langevin update is exactly the same as
the second order Taylor expansion of the Newton’s law. Thus, a Langevin
update is equivalent to a single-step hybrid Monte Carlo move Neal (1993).

9.4.2 Generalized hybrid Monte Carlo

Suppose we can augment the sample space of x to include a “momentum”
variable, say p. So now the pseudo-phase space consists of ¢ = (x,p) and
the target distribution 7 (x) is augmented to 7(¢). Furthermore, suppose we
can find a irreducible transition rule on the phase space, T'(¢, ¢'), so that
the detail balance 7*(¢)T (¢, ') = 7*(¢p)T (', P) is maintained for some
non-negative function 7*(¢) (unique up to a normalizing constant). Let
the current position in the original space be x(°). Then we can supplement
it with a momentum realization p(©) in a suitable way and then evolve the
phase space point ¢(0) = (x(o), p(o)) according to the surrogate transition
T(-,-). After k steps, we accept the new point with probability

. {1 w(p™M) /7 (¢™*) } _
" 1(¢©@) /m* ()

In hybrid Monte Carlo, one augment the original target distribution 7 (x)
to a distribution defined on the phase space; that is, 7(¢p) = 7(x) x f(p),
where log f(p) = k(p) = —||p/+/m)||?/2. The leap-frog algorithm leads to
a uniform 7*. From the proof in the previous section and the construction
of the leap-frog moves, we see that the kinetic energy function k(p) can be
rather arbitrary. The basic requirements for k(p) are that (a) it is symmet-
ric in p [i.e., k(p) = k(—p)] and (b) it is bounded from below. In this case,
the leap-frog algorithm becomes

x(t + At) = x(t) + At on ,
op t+4t
At At OH
p(”?) —P(t‘T)”t x|,

By the same argument as in Section 9.2, we can clearly see that this gener-
alized leap-frog move is volume-preserving. To see why it is time reversible
when the kinetic energy function k(p) is symmetric, we let x' (t) = x(t+At),
p'(t — At/2) = —p(t + At/2), and apply one leap-frog step. Then, we will
end at position x(t) with the negated momentum —p(t — At/2). It is not
clear, though, how to choose an effective kinetic energy function.

An interesting special case of the generalized hybrid Monte Carlo (GHMC)
for the one-dimensional sampler was proposed by Gustafson (1998) . First,
he augmented the original state space z to (x, P) where P is either —1 or

194 9. Molecular Dynamics and Hybrid Monte Carlo

1 and has a marginal uniform distribution. Suppose that currently we are
at (z®,p®); then, the proposed new configuration is y = z® + p(*)|Z|,
where Z ~ N(0,0?), and let

(w(t+1) p(t+1)) _ (y,p™) with probability r
’ (z®, —p®) with probability 1—r,

where r is the usual Metropolis ratio. It is very easy to generalize the algo-
rithm to higher-dimensional cases: The auxiliary variable P is a uniformly
distributed random direction in a d-dimensional space and Z = v/ X2, where
X? has a x2-distribution with d degrees of freedom. Although effective for
one-dimensional problems, this method may not be useful in multidimen-
sional cases. The reason is that negating direction P, in a high-dimensional
space typically will not lead to a better search direction.

9.4.3 Surrogate transition method

In some Monte Carlo simulation problems (e.g., simulation of polarized
liquid water), evaluation of the energy function h(x) = — log w(x) involves
expensive computation (such as inverting a 2000x 2000 matrix to compute
the polarization vector). It is often very inexpensive, however, to obtain
a reasonably good approximation h*(x) of h(x). For example, instead of
solving a large linear equation completely, one can opt to perform a few
rounds of iterative updates. Then, the Metropolis algorithm needs to be
adjusted to accommodate this variation.

Mathematically, we assume that one can conduct a reversible Markov
transition S(x,y) (surrogate) which leaves 7*(x) o exp{—h*(x)} invariant;
that is, the detailed balance

m(¥)S(x,y) =7 (y)S(y,%)

is satisfied. A valid surrogate transition can be devised by making use of
the Metropolis principle on 7*(x).

Suppose our current sample is x®. We let yo = x(* and recursively
sample y; ~ S(yi_1,-) for i = 1,..., k. Then, we update x(**1) =y, with
probability

: (&) /7" (Yk)
mm{l, W} (9.14)

and let x(**1) = x()) with the remaining probability.

To show that the foregoing procedure is valid, we see that the proposal
transition function from yq to yj can be formally written as

S(k)(YO;Yk)=/"'/S(YO;YI)"'S(Yk—I;Yk)dY1"'dYk—l-

9.5 Multipoint Strategies for Hybrid Monte Carlo 195
In words, S*)(-,) is the k-step transition function for the surrogate Markov
chain defined by S. Tt is easily seen that 7*(x)S™*) (x,y) = 7*(y)S® (v, x).

Thus, the actual transition function from x® = x to x(**+1) =y = x has
the form

A(x,y) = %) (x,y) min {1, M} ,

Hence,

T(x)A(x,y) = 7*(x)S® (x,y) min

= 7 (y)S*) (v, %) min

= 7(y)A(y,x),

—N —
3
*
X
3
*
D

which is the detailed balance condition. A surrogate transition procedure
with ¥ = 1 is given by Liu and Chen (1998) under the sequential impor-
tance sampling framework. We find that the surrogate procedure can be
more generally applicable in Monte Carlo simulation of complicated sys-
tems. At a conceptual level, the HMC can be seen as a surrogate transition
method in which a discretized Hamiltonian is used as a surrogate to guide
for the dynamical moves in the phase space (joint space of positions and
momentums). Because of the time reversibility and volume preservation
properties, the corresponding 7* in HMC is the uniform distribution.

9.5 Multipoint Strategies for Hybrid Monte Carlo

9.5.1 Neal’s window method

In a standard HMC algorithm, each Monte Carlo update involves L (often
between 40 and 70) steps of deterministic Hamiltonian leap-frog moves. The
acceptance-rejection decision is made, however, based only on the “energy”
comparison between the starting and the ending configurations of the leap-
frog trail. Neal (1994) suggested that some middle steps in the trail can
also be used in order to increase the acceptance rate in HMC. Suppose
the current position vector is x® and we generate a renewed momentum
vector p(*) from its Gaussian distribution. Then, the “window algorithm”
can be stated as follows:

e Choose a window size W < L (either deterministically or from a fixed
distribution).

e Draw K from {0,1,...,W — 1} uniformly.

196 9. Molecular Dynamics and Hybrid Monte Carlo

Rejection window Acceptance window
TS I T I OLK-W+) OLK
O=iiivs O=it @——= @ ® ® ° ° °
Run K steps backwards Candidate ®Cchosen in the window

FIGURE 9.3. Illustration of Neal’s “window” hybrid Monte Carlo method.

e Starting from the current point in the phase space ¢(0) = (x(), p()),
run the leap-frog steps backward for K steps and forward for L — K
steps to result in a trajectory

¢(=K),...,0(=1),0(0),¢(1),... ,¢(L - K),
e Place the “acceptance window” of size W at the end of the trajectory:
A={¢p(L—K-W+1),...,¢(L— K)};
and the “rejection window” at the beginning

R = {¢(_K)a 7¢(_K+W_ 1)}

e Define the “free energy” of a window W as

FOW) = —log Z exp{—H(¢(j))}
Piew

Go to the acceptance window A with probability
min{1,exp{F(A) — F(R)}}.
and stay in the rejection window R with the remaining probability.

e Having decided on the window W, a particular state ¢ = ¢(j) within
that window is selected according to probability

P(¢(j)) = exp{—H(&(j)) + FOV)}.
The new state is updated as (x(t+1) p(ttD) = @.

A graphical illustration is given in Figure 9.3. (Neal 1994) showed by exam-
ples that this approach, not surprisingly, can improve the acceptance rate
of the HMC algorithm. However, it is less clear if the window method actu-
ally improves the computational efficiency of the algorithm (i.e., resulting
in a more rapidly mixing Markov chain).

9.5 Multipoint Strategies for Hybrid Monte Carlo 197

9.5.2 Multipoint method

The multipoint Metropolis method described in Section 5.5 allows one to
choose a good candidate among multiple random proposals. Its basic prin-
ciple can be further extended to accommodate the multiple leap-frog steps
in the HMC algorithm.

Similar to the description of the window method in the previous section,
we define ¢(0) = (x(¥, p®), where p® is a “renewed” momentum vector,
and conduct the following procedures:

Multipoint HMC

e From the starting states, ¢(0), run L leap-frog iterations to obtain

#(1),...,o(L).

e Select one candidate ¢’ from the last M configurations [i.e., ¢ is
chosen from ¢(L — M +1),...,¢(L)] according to their respective
Boltzmann probabilities; that is,

Pr(¢' = ¢(L — M +k)) ox wy, exp{—H(¢(L — M +k))},
for k=1,..., M. Suppose we have selected ¢' = ¢(L — K).

e Run K reversed leap-frog steps from ¢(0) (by using the negated mo-
mentum) to get ¢(—1),... ,¢(—K).

o Let (x,p) = ¢' with probability

— {1 321 wj exp{=H($(L — M +j))} }
"Xl wiexp{—H($(M - K - j)} |

and let (x,p) = ¢(0) with probability 1 — p.

o Let x(**1) = x and sample (renew) p*+Y from N(0, %), where ¥ =
diag(m; ', ... ,mgb).

The w; in the algorithm are non-negative numbers are completely con-
trolled by the user. The role of this weighting vector to give a prior prefer-
ence for certain points on the leap-frog trajectory. For example, one may
wish to emphasize those points that are farther to the end of the leap-frog
trajectory more. In this case, we may choose w; o /j. A graphical view of
the multipoint method is given in Figure 9.4. One can see that the multi-
point approach is very similar to the window method, but is more flexible
and more efficient in general (Qin and Liu 2000). The correctness of this
algorithm can be shown by combining a similar argument in validating
the general multipoint approach with the volume preservation and time
reversibility properties of the leap-frog moves.

198 9. Molecular Dynamics and Hybrid Monte Carlo

Window of size M Window of size M
- b0 oM+ by
(O SERERE [® @ @ L L []
Run K steps backwards Candidate

¢Ed @Kk

FIGURE 9.4. Illustration of the multiple-trial HMC method.
9.6 Application of HMC in Statistics

Using the HMC to solve statistical inference problems was first introduced
by Neal (1996). This effort was only 10 years behind that in physics and
theoretical chemistry. In contrast, statisticians were 40 years late in using
the Metropolis algorithm. The connection between statistical problems,
especially Bayesian inference problems, and physics problems is, in fact,
quite simple: Since all unknowns in a probabilistic model, be they tuning
parameters, missing observations, latent structures, or observed data, can
be treated as joint random variables in a Bayesian framework, all the in-
ference tasks can be reduced to the evaluation of certain expectation with
respect to the posterior distribution of unknown variables. This target pos-
terior distribution can always be written out explicitly, up to a normalizing
constant, as

m(0) x f(y | 0)m0(0) = cexp{-U(6)},

where f(-) is the probabilistic model that connects data with unknown
parameters, mo() is the prior distribution of 8, and

U(0) = —log f(y | 8) — logmo(0).

In order to use the HMC to sample from this posterior distribution, we
need to introduce an auxiliary “momentum” variable p and construct the
“cuide Hamiltonian” H(@,p) = U(0) + k(p).

Although it is conventional to let

d
k(p) =Y p}/2mi,
i=1

this pseudo-energy function can be chosen more flexibly (Section 9.4.2).
Even with the conventional choice of k(p), a tricky question is how to
choose appropriate m;’s so as to make the algorithm more efficient. Intu-
itively, m; is the “mass” of the ith component. Thus, the larger an m; is,

9.6 Application of HMC in Statistics 199

the “slower” that component moves. The efficiency of HMC can be im-
proved by setting m; differently for each p; according to the properties
of component z;. A related important issue is the step-size choice for the
leap-frog moves in HMC. In the following subsections, we describe a few
statistical inference problems in which the HMC has an obvious edge over
other MCMC strategies. We hope that these expository descriptions will
motivate other researchers to study theoretical properties of HMC and to
investigate strategies for tuning the algorithm.

9.6.1 Indirect observation model

Consider the following statistical inference problem. Let § be a parame-
ter vector in some parameter space Q and let x(6) be a random vector
whose distribution is known completely if 8 is given. Suppose, however,
that we cannot directly observe x, but observe, instead, a vector y whose
relationship with x and 6 can be described as

y= g(x(O),G), (915)

where the functional form of g(-) is known. Of interest is the Bayesian
inference on the parameter vector . We further assume that inverting
the function g is difficult; thus, obtaining the likelihood function of 6 is
infeasible. The standard approach in literature is the simulated method of
moment (McFadden 1989), but it may be inefficient when the moment
functionals are not chosen properly. We take a likelihood-based approach
here.

To resolve the difficulty that the likelihood function cannot be evaluated
easily, we modify model (9.15) by introducing a Gaussian noise and pretend
that y is drawn from the modified model

y =9(x(6),0) +€ (9.16)

where € ~ N(0,0%1), I is the identity matrix, and o is a tuning parameter
controlled by the user. Therefore, under model (9.16), the joint posterior
distribution of x and € can be derived as follows:

o (x,0 | y) < fo(y | x,6;0%) f(x | 0)mo(8), (9.17)
where 7y is the prior for 8. When the data vector (x,y) can be decomposed

as (1,y1),- .-, (Tn,yn) and they are i.i.d. given 4, then we have

n

o (x,0|y) o< [T [£o(yi | ©:,6;0%)) f (@i |)] 70 (6),

i=1

where f, stands for the density function of the modified model (9.16). The
posterior distribution 7,(f | y) is then a marginal of 7,(x,0 | y). It can

200 9. Molecular Dynamics and Hybrid Monte Carlo

be shown that under mild conditions, 7, (6 | y) converges to the posterior
density w(6 | y) almost surely as o — 0.

Our strategy (Chen, Qin and Liu 2000) for the estimation in indirect
observation model is to choose a sequence of o’s:

o1 >0y >---> 0],

and generate Monte Carlo samples from all the 7,,, j = 1,... . If we are
interested in the posterior mean 6 of 0, for example, we compute the poste-
rior means 6; under the jth modified distribution and then fit a quadratic
function

0]‘ = fo +ﬂ10j +ﬂ20'12- +€;.

The estimate Bo of Bo then corresponds to the unmodified model and serves
as our final estimate of 6.

A technical difficulty remains in our approach: Monte Carlo sampling
from (9.17) is generally difficult to do. In particular, as ¢ — 0, the pos-
terior distribution of 7, lives on an almost degenerate subspace, making
the random-walk-type Metropolis algorithm very inefficient. For example,
a trivial example is

y=0z, x~ N(,1).
Under the modified model, we have

7o (,0) o< exp {— € 5029)2 _ _29)2 } 70(8). (9.18)

When ¢ is small, the sample is forced to lie around the curve 20 = y. See
the contour plots in Figure 9.5. Thus, a random directional proposal will
almost surely fail. To overcome this computational difficulty, we can apply
the HMC method to draw samples from each ;.

Having to simulate from multiple related systems is also a common prob-
lem in physics and chemistry where it is often of interest to estimate a
certain system property at different temperatures. Several “tempering”
strategies (Chapter 10) have been developed in the physics and statistics
literature for improving MCMC efficiencies in these problems. We found
that the parallel tempering method (Geyer 1991) is especially useful for
our problem. The basic idea of parallel tempering is to run the [sampling
processes (each corresponding to a 7,,) in parallel and to allow the sam-
pler to switch between different configurations corresponding to different
distributions.

More precisely, suppose ¢; and ¢; are the current states for two HMC
chains corresponding to 7, and 7, (i # j). An exchange of the two

9.6 Application of HMC in Statistics 201

sigma=0.5
0 0
2 3
o o
N N
S g
So So
B 5
0 n
g 3
=] =]
g g
0.0 05 1.0 15 2.0 25
X
sigma=0.05
n wn
2 3
o o
N N
B S
g [}
=3 E=K
=]]
(=} o 2
o o
] E
0.0 0.5 1.0 15 20 25 0.0 05 1.0 15 2.0 25
X X

FIGURE 9.5. The contour plots of density 7, (z,0) in (9.18) with a flat prior
7'['0(9) =cC.

configurations is proposed with a small probability d. If the exchange move
is proposed, it is accepted with probability

i {1 exp{—H(pi;03) — H(pj;07)} } _

'exp{—H(ps; 0%) — H(pj303)} (9.19)

Since the detailed balanced condition is never violated, each HMC chain
converges to the stationary distribution with its particular value of o.

9.6.2 Estimation in the stochastic volatility model

The stochastic volatility (SV) model is a nonlinear state-space model (Sec-
tions 1.6, 3.3, and 4.5) and can be considered as a generalization of the cel-
ebrated Black-Scholes formula (Hull and White 1987). A simple stochastic
model has the form

Y = etﬂexp(mt/Z), L1 = ¢.’L‘t +n, t=1,... , T, (920)

where ¢; ~ N(0,1) and n; ~ N(0,0?). One can see that the log{var(y;)} in
(9.20) follows an AR(1) process. Because of its nonlinear nature, the model
parameters are difficult to estimate. Shephard and Pitt (1997) suggested
a way to use the Gibbs sampler to obtain Bayes estimates. They note,
however, that the usual Gibbs sampler converges extremely slowly. They

202 9. Molecular Dynamics and Hybrid Monte Carlo

developed an improved MCMC algorithm based on conditional sampling
of a block of variables (Liu and Sabatti 2000).

We recently reported some promising results for using a HMC-based
algorithm to compute the Bayes estimates in a SV model (Chen, Qin and
Liu 2000). Our dataset consists of daily exchange rates of pound/dollar
from 10/1/1981 to 6/28/1985 (a total of T'=946 observations). Let r; be
the daily exchange rate and let dr; = logriy+1 — logr;. Since the mean of
1y is zero in the SV model, we define y; as

ye =100 (dry = 3" dri/T). (9.21)

fort =1,...,T and fit a SV model (9.20) with these y;.

Let x = (#1,...,2,) and y = (y1,...,¥:), and let the prior for 8 be
p(B?%) < B2 (improper); for o2, Inv-x?(10,0.05); and for (¢ +1)/2, a beta
prior with shape parameters 20 and 1.5. Then the following conditional
distributions can be easily sampled from:

T
1 y?
2 ~Inv? | T, = ¢
B |y, x ~ Inv-x ,T;exp(xt) :
a2 | §,x ~ Inv-x*(T + 10, V),
x%(l - ¢2) + EZ:Q(mt - ¢$t71)2
202

(¢ | 0®,x) o exp {— }(1 +9)'"°(1-9),

where

1

V=710

T
0.5+23(1— %) + 3 (i - mn?] .

t=2

Once the parameter values are given, the negative log-density is

T 2 2 2 -1 2
_ Ty Y zi(l - ¢%) (Tt+1 — ¢71)
oo = t:zl {5 "o extip(mt)) M } ' ; 202

The posterior density of x, given the parameter values, is proportional to
exp{~U(x)}.

We implemented the following iterative sampling algorithm: Given x, we
drew the parameters 3, ¢, and o from the above conditional distributions;
whereas given the realized values of the parameters, we drew the state
variable x; by the HMC. The step sizes for the HMC moves of z2,... , 2.,
were chosen as 0.03 and that for z; was 0.06.

This Gibbs-HMC method were run for 28,000 iterations and the results
from the last 20,000 iterations are reported in Figure 9.6 and Table 9.1.
It can be seen from Figure 9.6 that the efficiency of the Gibbs-HMC al-
gorithm is comparable to that of the “grouping” method in Shephard and

9.6 Application of HMC in Statistics 203

Beta Sigma Phi
<. o <
- i -
[ee] [ce] o]
o o <)
© © ©
<) o S|
S 5} 5}
s o s
o o o
o~ N NJ
(=} o o
o
S [N st pe NS 2 S = IR Y L
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
0.
< - g
o
- o 2]
—
o
o 39
[Tey]
- S
(= (=] (=]
0.5 1.0 1.5 2.0 0.10 0.15 0.20 0.25 0.90 0.92 0.94 0.56 0.98 1.00

FIGURE 9.6. Top figures from left to right: autocorrelations and the posterior
density estimates or 8,0 and ¢; bottom figures from left to right: their respective
posterior densities.

Pitt (1997). A relative advantage of the HMC approach is that no special
Gaussian approximations of certain likelihood function is needed, which
makes our method more automatic.

Parameter | Mean | Standard Error Covariance
B 0.6433 0.0958 9.17e—03 —2.16e—04 1.48e—04
a 0.1481 0.0273 —2.16e—04 7.44e—04 —1.64e—04
¢ 0.9801 0.0093 1.48¢—04 —1.64e—04 8.64e—05

TABLE 9.1. Bayes estimates of the parameters in the stochastic volatility model.

204 9. Molecular Dynamics and Hybrid Monte Carlo

This is page 205
Printer: Opaque this

10

Multilevel Sampling and Optimization
Methods

In this chapter, we describe a few innovative ideas in using auxiliary distri-
butions and multiple Markov chains (in parallel) to improve the efficiency
of Monte Carlo simulations. Roughly speaking, in order to improve the mix-
ing property of an underlying Monte Carlo Markov chain, one can build a
few “companion chains” whose sole purpose is to help bridging parts of the
sample space that are separated by very high energy (or low probability)
barriers in the original distribution. This bridging idea is achieved most
simply by incorporating an auxiliary “temperature” parameter, which is
based on the following simple but important observation: A “tempered”
distribution

T (%) x exp{—h(x)/T}

becomes “flatter” (more uniform) as the temperature T increases and be-
comes “spikier” as T decreases toward 0. The augmented system with com-
panion chains often consists of a collection of tempered distributions with
different temperature parameters. When T' — 0, all of the probability mass
will be concentrated around the global minimum of h(x).

If a Monte Carlo sampler can move freely among the augmented system
according to the Metropolis rule, then satisfactory results will be obtained
for the distribution with the lowest temperature. In practice, however, this
is not easy to achieve. A major difficulty concerns the number of the auxil-
iary distributions to be used. Since the performance of the method depends
on how freely the sampler can move in the augmented system, one must
make sure that the waiting time for a “traversal” of all the distributions
in the system is not too large. Another interesting topic has to do with

206 10. Multilevel Sampling and Optimization Methods

the choice of auxiliary distributions. Although tempered distributions are
most frequently used, other forms with reduced structures can often be
more effective (Liu and Sabatti 1998, Wong and Liang 1997).

10.1 Umbrella Sampling

The essential idea of using multiple “scaled” (or “tempered”) densities to
improve the Monte Carlo estimation seems to appear first in Torrie and
Valleau (1977), where they proposed a method, the umbrella sampling, for
estimating the ratio of two partition functions (or normalizing constants).
The problem can be stated generally as follows: Suppose we can evaluate
analytically two non-negative and integrable functions, go(x) and g (x).
We are interested in knowing the ratio
Jax)dx _ Z;

~ Jaox)dx ~ Zo’

Clearly, m;(x) = ¢;(x)/Z; defines a probability density. A rather simple idea
is to simulate x(1), ..., x(™) from my and to estimate A by averaging the
likelihood ratio:

1 faD) g
4= {QO(X(l)) * go(x(m)) } '

m
This estimate is legitimate because, by ergodicity, A converges to

p {20} _ o,

qo(x) go(x) co

However, this method can be very inefficient when the two distributions
71 and 7o differ too much, in which case the variance of the likelihood ratio
is huge. To overcome this difficulty, Torrie and Valleau (1977) noticed that
we can, in fact, simulate the Monte Carlo samples x(*), ... ,x{™) from an-
other “umbrella distribution” 7, (x) (known up to a normalizing constant).
Note that for any m,(x), with respect to which 7y and m; are absolutely
continuous, we have the identity

Eu{Q1 (X)/Qu(x)} —A
E{g(®)/q.(x)}

where g, (x) = ¢cy7,(x) and E, () stands for the expectation with respect to
7. Thus, we can use the ratios of two average likelihood ratios to estimate
A. TIf one chooses a proper 7, which covers simultaneously the “importance
regions” of the both target distributions, then a very accurate estimate of
A can be obtained. This idea is generally termed as umbrella sampling.
According to Valleau (1999), an umbrella sampler

(10.1)

10.1 Umbrella Sampling 207

... is designed to span a substantial range of different physical situ-
ations in a single MC run, sampling on a distribution quite unlike
an ordinary ensemble distribution.

A challenge in designing a useful umbrella sampler is to actually find a
good “umbrella distribution.” The first suggestion of Torrie and Valleau
(1977) is to consider the class of distributions

Ty (X) X w[AR(X)]mo (%),
where 7 (x) and 71 (x) are of the Boltzmann form
m;(x) oc exp{—h;(x)/kT;}, i=0,1

and Ah(x) = hy(x)/kT1 — ho(x)/kTo. The weight function w() can be
chosen by trial and error in a pilot study. In particular, one may want to
choose w() to favor those configurations with relatively large contributions
to the estimate of A (i.e., smaller Ah). In the case when ho(x) = hy(x), the
two distributions correspond to two systems with the same “internal energy
function” but at different temperatures. In this case, the weighting func-
tion is a function of the energy variable Uy = ho(x). Thus, the reweighting
idea of Torrie and Valleau (1977) can be seen as a precursor to the idea of
multicanonical sampling (Berg and Neuhaus 1991) and 1/k-ensemble sam-
pling (Hesselbo and Stinchcombe 1995), both of which attempt to choose
the weight function by a recursive procedure so as to achieve a certain
marginal distribution for the energy variable Uy (see Section 10.5 for more
details).

When ho(x) = hi(x) but Ty # T1 (without loss of any generality, we
let Ty > T4), Torrie and Valleau suggested the second idea which can be
seen as a precursor to various tempering approaches. In particular, they
consider intermediate systems of the “temperature-scaling” form

Tay (X) X eXp{—ho (X)/Tai }a

for To > Ty > -+ > Ty,.y > Th, where 0 < a1 < -+ < ap—1 = L.
A particular choice of the temperature sequences is T, = To + a;(T1 —
To). With these intermediate systems, one can estimate the ratios of the
normalizing constants for all pairs of neighboring systems, ¢q,,,/ca;, by
MC sampling from the relatively hotter system, m,,. Then, the ratio A can
be estimated as

~ ¢
A=Cu gy .
Co Cap_1

The idea of using temperature-scaled distributions to aid Markov chain
Monte Carlo sampling has become one of the major techniques for modern-
day Monte Carlo computation.

208 10. Multilevel Sampling and Optimization Methods

The problem of estimating the ratio of two normalizing constants is given
a new twist in some recent articles (Meng and Wong 1996, Gelman and
Meng 1998). In particular, Meng and Wong (1996) note that the identity,

co Ei{gp)a(x)}

holds for an arbitrary function a(x) defined on the common support of ¢;
and ¢». Interestingly, this identity is “opposite” to (10.1) used in umbrella
sampling. Suppose one can generate m; Monte Carlo samples from 7;, for
1 = 0,1. Then, one can estimate A by

S @ (x)a(x§) no
> qo(x)a(x) /ny

Meng and Wong found that an optimal choice of a that minimizes the
variance of Agg is

A=

Aps =

(10.2)

a(x) o< {momo(x) +mami(x)} *

This formula is not directly usable because its form depends on A. An
iterative procedure was suggested to overcome the difficulty. A more serious
problem with the bridge sampling method is that it becomes very inefficient
when 7¢ and m; have very little overlap (Chen, Shao and Ibrahim 2000).

The bridge sampling idea was further extended to path sampling by Gel-
man and Meng (1998), in which they defined an augmented system g(x | A),
with normalizing constants ¢(\), such that go is equal to ¢(x | A = 0) and
¢1 is equal to g(x | A = 1). Then, one can draw random samples from an
augmented distribution,

m(x,A) o g(x [A)f(A),

from which the ratio A can be estimated. Gelman and Meng pointed out
that their approach is closely related to the methods of simulated tempering
and parallel tempering (Sections 10.3 and 10.4).

Chen and Shao (1997) showed that if one estimates r using umbrella sam-
pling with one intermediate , (x), the optimal choice of 7, that minimizes
a relative mean square error in estimating A is

Tu(X) o< |mo(x) — 7y (x)]. (10.3)

They further proved that this optimal umbrella sampling is always better
(in terms of the same relative mean square error) than both the optimal
bridge sampling and the optimal path sampling estimates. Clearly, the
optimal umbrella distribution in (10.3) is not really usable because its form
depends on the unknown ratio A. It is conceivable, however, that one can
employ an iterative procedure to obtain a sequence of ,, that converges to
the optimal one.

10.2 Simulated Annealing 209
10.2 Simulated Annealing

The idea of using a “temperature” parameter to control the simulation of
the target density or the optimization of a target function started to become
popular with the introduction of the simulated annealing (SA) method by
Kirkpatrick et al. (1983). Although SA is an optimization instead of simu-
lation method, we will spend some time to explain the basic SA operation
in order to let the reader get familiar with the use of the (artificial) tem-
perature parameter. The SA algorithm has had tremendous impact in the
computer industry (e.g. circuit and silicon chip designs) and many other
scientific research areas.

In condensed matter physics, annealing is known as a thermal process
for obtaining low-energy states of a solid in a heat bath. The process has
two steps:

e Raise the temperature of the heat bath high enough for the solid
(metal) to melt.

e Decrease the temperature of the heat bath slowly to near zero so that
the particles in the system can arrange themselves in the ground state
of the solid (i.e., crystallize).

At the high-temperature phase, the solid metal becomes a liquid and all
its particles can “flow” around relatively freely. In this phase, the particles
may be able to find better settling positions. When the temperature is
decreased, the particles’ movements are more and more confined due to
the high energy cost. Eventually, they are forced to “line up” so as to
attain the (locally) lowest-energy state.

Realizing that the Metropolis algorithm can be used to simulate parti-
cle movements at various temperature to reach thermal equilibrium, Kirk-
patrick et al. (1983) proposed a computer imitation of the thermal an-
nealing process, the SA, and applied it to solve combinatorial optimization
problems.

Suppose our task is to find the minimum of a target function h(x). This
is equivalent to finding the maximum of exp{—h(x)/T} at any given tem-
perature T'. Let Ty > T5 > --- > T} > --- be a sequence of monotone de-
creasing temperatures in which 77 is reasonably large and limg_, o, T} = 0.
At each temperature T}, we run Ny, steps of the Metropolis-Hastings (M-H)
or Gibbs sampling scheme with 7 (x) ox exp{—h(x)/Ts} as the equilibrium
distribution. An important mathematical observation is that for any sys-
tem in which [exp{—h(x)/T}dx < oo for all T > 0, distribution 7, as
k increases, puts more and more of its probability mass (converging to 1)
into a vicinity of the global maximum of h. Hence, a sample drawn from
would almost surely be in a vicinity of the global minimum of h(x) when T},
is is close to zero. Theoretically, at least, we should be able to obtain good

210 10. Multilevel Sampling and Optimization Methods

samples from 7y if we let the number of M-H iterations Ny be sufficiently
large. The foregoing procedure can be summarized as the following:

SA Algorithm

e Initialize at an arbitrary configuration x(®) and temperature level T} .

e For each k, we run Ny, iterations of an MCMC scheme with 7 (x) as
its target distribution. Pass the final configuration of x to the next
iteration.

e Increase k to k + 1.

It can be shown that the global minimum of h(x) can be reached by
SA with probability 1 if the temperature variable T}, decreases sufficiently
slowly [i.e., at the order of O(log(Ly)™!), where L, = Ny +---+ N, (Geman
and Geman 1984)]. In practice, however, no one can afford to have such a
slow annealing schedule. Most frequently, people use a linear or even ex-
ponential temperature decreasing schedule, which can no longer guarantee
that the global optimum will be reached. It was shown by Holley, Kusuoka
and Stroock (1989) that no cooling schedule that is faster than a logarith-
mic rate can be guaranteed to find the global optimum. However, many
researchers’ experiences during the past 15 years have testified that SA is
a very attractive general-purpose optimization tool. See Aarts and Korst
(1989) for further analysis.

10.3 Simulated Tempering

In order to let a MCMC scheme move more freely in the state space, Mari-
nari and Parisi (1992) and Geyer and Thompson (1995) proposed a tech-
nique, simulated tempering (ST), in the same spirit as SA. To implement
ST, one first constructs a family of distributions II = {m;(x) ¢ € I} by
varying a single parameter, the temperature, in the target distribution ;
that is, m;(x) o exp{—h(x)/T;} for an appropriate temperature T;. The
original target distribution 7w corresponds to the member of this family
with the lowest temperature.

A new target distribution, s (x,1) o ¢;exp{—h(x)/T;}, is defined on
the augmented space (x,i) € X x I. Here, the ¢; are constants that can
be controlled by the user and they should be tuned so that each tempered
distribution in the system should have a roughly equal chance to be visited.
Ideally, the ¢; should be proportional to the reciprocal of the ith partition
function, Z; = [exp{—h(x)/T;}. But in practice, one needs to tune these
parameters via some pilot studies. An interesting tuning procedure called
the reverse logistic regression is described in Geyer and Thompson (1995).
After setting up the augmented tempering system, a MCMC sampler can

10.3 Simulated Tempering 211

be used to draw samples from 7g;. The intuition behind ST is that by
heating up the distribution repeatedly, the new sampler can escape from
local modes and increase its chance of reaching the “main body” of the
distribution. Initiated with i(®) = 0 and any x(?) in the configuration space,
the ST algorithm consists of the following steps:

ST Algorithm
e With the current state (x(*),i®)) = (x,1i), we draw u ~ Uniform[0,1].

o If u < ag, we let i®t1) = 4 and let x*+1) be drawn from a MCMC
transition Tj(x,x(*t1)) that leaves m; invariant.

o If u > o, we let x(t*1) = x and propose a level transition, i — 7',
from a transition function «(i,i') (usually a nearest-neighbor sim-
ple random walk with reflecting boundary), and let i**1 = i’ with
probability

- { |, comi (ai'i) } ;

)
cimi(x)a(i, ')
otherwise let i¢+1) = ;.

Even in the ideal situation when the sampler behaves like a symmetric
random walk along the temperature space, the expected waiting time for
a traversal of all the distributions in the augmented system is of the order
of L?. This puts a severe limitation on how many temperature levels we
can afford to employ. On the other hand, in order for ST to work well,
the two adjacent distributions m; and m; 11 need to have sufficient over-
lap, requiring that the temperature difference be small enough and the q;
be tuned properly. Otherwise, there will be large probability barriers for
the moves between the two adjacent temperature levels, making it practi-
cally impossible to accept temperature transitions based on the Metropolis
rule. Thus, although the idea of sampling from a set of tempered distri-
butions is attractive, its usefulness is still severely limited by the waiting
time dilemma. The same criticism also applies to the more efficient parallel
tempering algorithm in the next section.

A possible remedy to this dilemma is to use the dynamic weighting rule
Wong and Liang (1997) described in Section 5.7 to overcome steep energy
barriers encountered in temperature transitions (Section 10.6). For opti-
mization problems, we have designed a relaxzed version of ST in which the
detailed balance condition is not strictly followed (Cong, Kong, Xu, Liang,
Liu and Wong 1999). Although our experiences showed that this strat-
egy worked well for a number of very-large-scale integration (VLSI) design
problems, the relaxed ST can no longer be used to sample from a target
distribution.

212 10. Multilevel Sampling and Optimization Methods

For a given sequence of temperatures, 71 < --- < T, ST simulates from
the L tempered distribution, m;(x) o exp{—h(x)/T;}, simultaneously. By
doing so, one hopes to “borrow” information across different chains to
achieve a better sampling result. There is no reason why the distributions
at different levels have to be generated by varying only the temperature. We
may think of varying the dimensionality and the structure of the original
state space as well (Liu and Sabatti 1998). For example, we may approxi-
mate the original distribution by a sequence of “coarser” distributions with
reduced dimensions. These distributions of different “resolution levels” con-
stitute an augmented system and this system, as in ST, can be represented
by the state vector (i,x;), where i is the indicator for the complexity level
and the dimensionality of x; increases as i increases. The reversible jump-
ing rule (Green 1995) described in Section 5.6 has to be used to guide for
the transitions between spaces of different dimensions.

10.4 Parallel Tempering

The parallel tempering is an (PT) interesting and powerful twist of the
simulated tempering (ST) first proposed by Charles Geyer in a conference
proceedings (Geyer 1991). The same technique was reinvented later by
Hukushima and Nemoto (1996) under the name exchange Monte Carlo.
Instead of augmenting X to X x I as in the ST, Geyer (1991) suggested
directly dealing with the product space A; x --- x X, where the X; are
identical copies of X. Suppose (x1,... ,x1) € X X---xXJ. For the family of
distributions IT = {m;,i = 1,...I}, we define a joint probability distribution
on the product space as

mpe (X1, -, xp) = [[milxi)
iel
and run parallel MCMC chains on all of the X;. An “index swapping”

operation is conducted in place of the temperature transition in ST. The
PT algorithm can be more rigorously defined as follows:

(® (t))

o Let the current state be (x;”,...x;"); draw u ~ Uniform[0,1].

o If u < ag, we conduct the parallel step; that is, we update every xgt)
to xgt“) via their respective MCMC scheme.

o If u > ag, we conduct the swapping step; that is, we randomly choose

a neighboring pair, say i and i + 1, and propose “swapping” th) and
()

x; /- Accept the swap with probability
. () mi (x)
min< 1, G ® .
Wi(xi)it (Xi+1)

10.4 Parallel Tempering 213

This scheme is very powerful in simulating complicated systems such as
bead polymers and other molecular structures. It has also been very pop-
ular in dealing with statistical physics models (Hukushima and Nemoto
1996). Compared with the ST, PT does not need fine-tuning (to adjust
normalizing constants a;) and can utilize information in multiple MCMC
chains.

Typically, the auxiliary distributions m; are chosen as the tempered dis-
tributions; that is,

mi(x) oc exp{-U(x)/Ti},

for 1 =Ty < Tp < ... < Tr. As we have discussed in Section 10.3, it
is very important to choose a proper number of temperature levels. Since
the acceptance probability for an exchange operation is controlled by both
the “typical” energy difference and the temperature difference, a rough
guideline is to choose the T; so that

1 1
— AU| & —108 pa,
(n Tm) |AU| & — logp

where |AU| is the “typical” energy difference (e.g., the mean energy change
under the target distribution) and p, is the lower bound for the acceptance
rate. Another useful guiding formula is given in (11.11) on page 233.

T=0.1 T=0.2

|

-100 -50 0 50 100 -100 -50 0 50 100

5000
5000

3000
3000

0 1000
0 1000

T=0.3 T=0.4

4000

2000
0 500 1500 2500

0

-100 -50 0 50 100 -100 -50 0 50 100

FIGURE 10.1. The histograms of M, total magnetization, for the 1-D Ising model
with four different temperatures at 7= 0.1, 0.2, 0.3, and 0.4, respectively.

214 10. Multilevel Sampling and Optimization Methods

A simple illustration. We consider the simulation of a one-dimensional
Ising model of the form

d—1
1
T, (X) o exp {T Zwtwiﬂ})
i=1

where x = (21,... ,24) and z; = £1. The goal here is to simulate from this
distribution with the temperature at 7o = 0.1. As shown in Section 2.4,
it is easy to do the exact simulation from this distribution, which can
be used to double check our results (it is easy to make coding errors for
these simulation problems). Without using parallel tempering, the single-
site update algorithm was trapped in one of the modes in 200,000 iterations.

As an initial test, we introduced three tempered distributions correspond-
ing to Ty = 0.2, T» = 0.3, and T3 = 0.4, respectively. We then implemented
parallel tempering for this system. The acceptance rates for the exchange
proposals between neighboring pairs were 0.95, 0.88, and 0.65, respectively.
The histograms of the total magnetization M = Z?Zl x; for the four distri-
butions are shown in Figure 10.1 and the autocorrelation plots are shown
in Figure 10.2.

Series 1 Series 2
o)
3 3
L) @
3 3
63 5g
<o <<
3 3
S L
o ‘.|‘I|‘|I|‘|||I|‘|I‘|I|‘|||‘I|ulnlnn‘..r. o ‘|‘I|‘|I‘|‘||||I|‘|I|‘|II‘|||‘IIl|||‘|||‘|||‘.||‘.
o 10 20 30 40 0 10 20 30 40
Lag Lag
Series 3 Series 4
o)
3 3
@ @
3 3
6§ 5g
< <
3 3
S : ‘ |
3 3
. ‘|‘||‘|||‘|I||II‘|II‘|I|‘|||‘I|u||‘|||‘.||‘.||‘. o I -
() 10 20 30 40 o] 10 20 30 40
Lag Lag

FIGURE 10.2. The autocorrelation plots of M for the 1-D Ising model with
temperatures at 7= 0.1, 0.2, 0.3, and 0.4, respectively.

We felt that the acceptance rates for the exchange between the first 3 dis-
tributions were too high. After some pilot studies, we set a new tempering
system with 77=0.33, T5=0.40, and T3=0.46. With this setting, the accep-
tance rates for the exchange moves were 0.74, 0.75, and 0.74 respectively.

10.5 Generalized Ensemble Simulation 215

The new autocorrelation plots are shown in Figure 10.3. The total sum of
the autocorrelations [i.e., the integrated autocorrelation time (Section 5.8)]
for m is 7.88 under the first setting and is 5.15 under the new setting.

Series 1 Series 2

e e

3 3

® @

3 3

52 65

< <

3 3

3 3

° |||||||||||II|||||... o LU |||||||||I|I||||.... ,

g g

0 10 20 30 40 o 10 20 30 40
Lag Lag

Series 3 Series 4

o o

3 3

© ©

3 3

&2 ok

<. <o

3 3

o o

3 3

o |||||||||I|||... o ||||||I|||m L

3 g

0 10 20 30 40 (] 10 20 30 40
Lag Lag

FIGURE 10.3. The autocorrelation plots of M for the 1-D Ising model with
temperatures at 7'= 0.1, 0.33, 0.40, and 0.46, respectively.

10.5 Generalized Ensemble Simulation

In statistical physics, simulating from the Boltzmann distribution 7(x) =
Z=Y(B)e PH™) where § = 1/kT, is often called the canonical ensemble
simulation. One can think of this “canonical” distribution as giving each
configuration x a weighting factor

wp(B,x) = e*BH(X),

which is derived under the canonical ensemble assumption (also called the
constant-NVT ensemble; N represents the number of particles, V the total
volume, and T the temperature of the system), where the system has a
fixed number of particles, a fixed volume, and a fixed temperature.

The two methods to be introduced in this section, the multicanonical
sampling and 1/k-ensemble sampling suggest using weighting functions dif-
ferent from wg, which, in physics, implies that one has to simulate systems
under different “ensemble” conditions simultaneously. The basic idea of
these methods is to sample from a modified distribution 7'(x) which is

216 10. Multilevel Sampling and Optimization Methods

much “smoother” than 7 but also possesses key characteristics of 7. A way
to achieve this is to choose a particular 7' so that the “energy variable,”
U = H(x), or some other variable such as the entropy variable V' (to be
defined later), has an approximately uniform distribution under 7’. The
advantage of sampling in the generalized ensemble is that the resulting
distribution is “easier” to explore in comparison to the canonical ensemble
distribution.

10.5.1 Multicanonical sampling

Multicanonical sampling (Berg and Neuhaus 1991) seeks to sample from a
modified distribution 7'(x) o« w(x)w(x) under which the energy variable
U = H(x) is approximately uniformly distributed. With a slight abuse of
notations, we see that the marginal distribution of U, when x ~ =, is

where Q(u) is called the density of the states (or spectral density). Now, if
we can draw x from

7' (x) o e S} where S(u) = log Q(u),

then the resulting distribution for U is 7y (u) o ¢. Therefore, the central
idea of multicanonical sampling is to iteratively update the approximation,
Q(u), to the spectral density Q(u) and then produce Monte Carlo samples
from an approximated version of 7'.

The procedure starts with a Monte Carlo sampling with the tempered
distribution 75 (x) o< e"##) and initializing the histogram function Ng()
of U which tabulates the realized U values of the starting Monte Carlo
run. In other words, the function Ng(-) is defined on the set of integer
{0,...,B}. Suppose the range of U is discretized as —oo < wg < u1 <

- < up < 00, with up = up_1 + Au. Suppose we have Monte Carlo
samples x, ... x™) drawn from 3. A histogram function for U can be
produced as

Ng(i) = #{xD : wu;_; < HxY) <u;}.

Clearly,

n—oo

Ns(@)/N "= Z71(B)Q(u;)e ™% Au.
Thus, we can estimate the spectral density as

A o Ng(i)ePw

Q) = ——""—— rouig <u<u;. 10.4
) S Ny 1 .

10.5 Generalized Ensemble Simulation 217

A first-order approximation (ignoring the variation in the denominator) to
the variance of this estimate, with fixed u, is

var{fly(w} & 77 {Z(9)e™ — 2w} (10.5)

where |S| is the total number of states. If u corresponds to the minimum
energy, then the larger the 3, the larger this variance.

It is important to note that the function Q(u) is independent of 3, al-
though the estimate)3 depends on (3 explicitly. In other words, we can
simulate from a set of distributions 7, (x) o< e #** corresponding to differ-
ent temperature levels, as in the simulated tempering or parallel tempering,
and then use all the samples to estimate Q(u), up to a normalizing constant.
It is of interest to investigate how to optimally combine the estimates fl(u)
produced at different temperature levels. More precisely, suppose we have
Monte Carlo samples {x,(j), j=1,...,N}drawn from 7y fork = 1,... ,K;
then, an estimate of Q(u) can be

K
Qu) = ZakQBk (w) for wi—1 <u < uy,
k=1

where), o = 1 and they can be chosen to minimize the total variance.
In particular, these coefficients can be chosen differently for different u’s.
Expression (10.5) suggests that one should give low-temperature estimates
a larger weight when v is close to the minimum energy, and vice versa for
u far above the minimum energy.

With an initial estimate of the spectral density €(u), the multicanonical
sampling algorithm can be implemented as follows:

e Sample states x sufficiently long according to the current estimate
Dj (x) o< e_Sj(H(x))_

e Obtain the new estimate of the spectral density €2;(u).

e Update S;1(u) = Sj(u) — log{Q;(i) + ¢;} for u € (u;j_1,u;] and
let Sjt1(u) equal infinity (the maximum) when u is outside of the
range (ug,ux). The ¢; serves as a “prior counts” to smooth out the
estimation in Q.

Note that the estimate of Sj;;(u) is invariant when both Qj and c; are
multiplied by a constant. It is conceivable that a more robust updating
method for the last step may improve the performance of the algorithm.

10.5.2 The 1/k-ensemble method

Similar in spirit to multicanonical sampling, the 1/k-ensemble method
(Hesselbo and Stinchcombe 1995) seeks to produce a modified distribution

218 10. Multilevel Sampling and Optimization Methods

m*(x) so that the entropy variable
S = S(H(x)) = log{(H(x))}

is approximately uniform. If S is indeed uniform, then the distribution of
the energy variable U is

dlog Q(u)

g (u) o — - (10.6)

To achieve uniformity in S, Hesselbo and Stinchcombe suggested sam-
pling from

7 (x) o 1/k(H(x)), (10.7)

where k(H) is the number of configurations “with smaller or equal energy.”
This is exactly how the name of the method was coined. In our previous
notation,

k= k(H) = /H Q(H')dH'.

Thus, under 7*, the distribution of U is

Q(u) dlogk(u)

k(w) du

Pl/k(u) X

Since in many physics systems k(u) is a rapidly increasing function of en-
ergy, we have logk(u) =~ log Q(u) for a wide range of u. Hence, sampling
from (10.7) can make the entropy variable S almost uniformly distributed.

In practice, we will not be able to know the function k(u) beforehand.
The same iterative strategy as the one described in the previous subsection
is also applicable here. First, the energy range is discretized and the inte-
grals replaced by summations. Then, the current sampling distribution is
updated by reweighting using the histogram of S. Obviously, if one has a
good estimation to the spectral density function 2(u), one would be able
to get a good approximation to k(u), and vice versa.

10.5.3 Comparison of algorithms

Recently, Hansmann and Okamoto (1997) conducted a study to compare
the performances of multicanonical sampling, 1/k-sampling, and simulated
tempering for a protein folding problem. The protein segment under their
consideration is Met-enkephalin which has five amino acid residues: Tyr-
Gly-Gly-Phe-Met. The energy function they used is similar to the one in
Section 1.4 and is given by the sum of four terms: the electrostatic term,
the 12-6 Lennard-Jones potential term, the hydrogen-bond term, and the
torsion angle term.

10.6 Tempering with Dynamic Weighting 219

Repeatsx Iterations | MU 1/k ST SA
10x100,000 10 9 9)
20x50,000 18 15 16 8
50x20,000 21 22 17 10
100x10,000 28 29 20 13

TABLE 10.1. Comparison of the four annealing methods in finding minimum en-
ergy states. From left to right: multicanonical sampling; 1/k-sampling, simulated
tempering, and simulated annealing.

In their test, all three algorithms were given sufficient tuning time to
find their best settings (e.g., the weight function for both multicanonical
sampling and 1/k-sampling and the temperature ladder for simulated tem-
pering). Then, a production run of one million MC sweeps for each of the
three methods were made after a burn-in period of 10,000 sweeps. The
starts of all the runs were completely random. Hansmann and Okamoto
(1997) concluded after a careful study of their simulation results that all
the three methods do not differ much from each other, but they are all
much more efficient than traditional methods.

Hansmann and Okamoto (1997) also modified the three sampling meth-
ods to suit the global optimization task [i.e., finding the ground (minimum
energy) states]. In an annealing version of multicanonical sampling, for ex-
ample, they introduced an upper bound, Hyaj, in energy, above which the
proposed new configuration is not accepted. The weight is updated so that
the energy distribution is made flat in the interval (Hyan — AH, Hyan)-
The upper bound Hy,p is lowered once after each sweep so that Hyan =
Hy + AH, where Hy is the lowest energy found in the preceding iteration.
A simulated tempering annealing method is similar to the above proce-
dure except that the energy bounds are replaced by temperature bounds.
Their simulation experiments showed that all three methods significantly
outperformed the traditional simulated annealing. Table 10.1 summarizes
the number of times each method finds the ground states under different
settings.

10.6 Tempering with Dynamic Weighting

If a ST sampler can traverse the temperature ladder of the augmented
system freely according to the Metropolis rule, then satisfactory results will
be obtained for the “coldest” distribution. In difficult simulation problems,
however, it is not easy to achieve this goal because, as discussed as the end
of Section 10.3, one has to either employ many tempered distributions in
the augmented system, which apparently affects computational efficiency,
or suffer from repeated rejections for temperature transition proposals due
to the high-energy barriers between adjacent tempered distributions. Here,

220 10. Multilevel Sampling and Optimization Methods

we describe how to use dynamic weighting rule introduced in Section 5.7
to alleviate this difficult situation.

The new simulated tempering with dynamic weighting (STDW) algorithm
is essentially the same as the ST algorithm (Section 10.3) except that a
weighting variable w is now associated with the configuration (x,1i) and the
dynamic weighting rule is used to guide the transitions between adjacent
temperature levels. Let 0 < ap < 1 be given in advance and suppose the
current state is (x®,i®, w®) = (x,4,w). The STDW algorithm iterates
as follows.

e Draw u ~ Uniform[0,1].

o If u < o, we let it = ¢ w1 =y, and let x*+1) be a MCMC
update of x with respect to m; (this update can be a result of more
than one MCMC step).

o If u > ag, we let x{**1) = x and propose a level transition, i — 7/,
from a transition function a(i,i') (usually a nearest-neighbor simple
random walk). Conduct an R-type (or Q-type) move (with § = 1) to
update (i,w); that is,

— compute the Metropolis ratio

oy o (X)ali’ i)

— update
: . . wr(i,i")
(0, ey = § Cor D+ AU G aay

(X(t),w[wr(z', i') +1]) otherwise.

After we have obtained a set of weighted samples, (x(9),i(0), w®), from
this method, we first retain those (x*),w®) corresponding to i®) = 1,
the target distribution. Then, we estimate the quantity of interest by a
weighted average after a stratified truncation. Suppose the estimation of
p = E;p(x) of interest. First, the samples are stratified into subsets of
comparable sizes according to the value of p(x). The highest k% (usually
k =1 or 2) of the weights within each stratum are then trimmed down
to be equal to their (100 — k)th percentile of that stratum. The resulting
weights after modification are then used to produce a weighted average of
the p(x®).

For example, one may be interested in estimating the expected value of
the spontaneous magnetization u = E[p(x)] = E| Y., z;|/d?, where x = (o)
in a Ising model simulation (Section 1.3). Then, after STDW sampling, we
divide the range of p(x) into small intervals, by < by < --- < by, and
stratify the weighted samples (x®,w(®), ¢t = 1,... ,m, according to the

10.6 Tempering with Dynamic Weighting 221

values of p(x); that is, we construct S; = {(x®),w®) : p(x®) € (bj_1,b;).
The w®) in each strata S; is truncated to & = w® A w}, where w} is
the (100 — k)th percentile of the weights in S;. Finally, an estimation of u
is given by (13.19), with the w(®) replaced by the w(®).

10.6.1 Ising model simulation at sub-critical temperature

Simulating a 2-D Ising model on a large lattice space and investigating
the phase transition phenomena have always been a favorite test for a
new Monte Carlo strategy. As explained in Section 1.3, a 2-D Ising model
on a L x L lattice is defined as a Boltzmann distribution for the spin
configuration x = {z,, with s = (a,b) and 1 < a,b < L}:

1
m(x) = Z(K) exp Kz.mmj

i~ j

Here, each spin z; only takes value in {—1,1}, the notation i ~ j denotes
the nearest neighbors on the lattice, the symbol K is the coupling con-
stant (inverse temperature), and Z(K) is the partition function. Liang and
Wong (1999) obtained some interesting results on Ising model simulations
by STDW with R-type moves. The simulations were done on lattices of
sizes 322, 642, and 1282, respectively. Similar to ST, they treated the in-
verse temperature K as a dynamic variable. This variable takes values in
a set of levels uniformly spaced in the interval [0.4, 0.5] (the critical point
is known to be 0.44). The R-type moves were applied to cross various tem-
perature levels, whereas the Metropolis-type moves (heat-bath algorithm)
were used within each temperature level. In each of the three lattice sizes,
they started a single run with the configuration that all spins are +1.
The run continued until 10,000 configurations were obtained at the lowest
temperature level. Figure 10.4 plots the estimate of the expected absolute
value of the spontaneous magnetization (defined as E| 3" z;|/d?, where d
is the lattice size) at various inverse temperatures K for the different sizes
of lattices. Estimation was done by weighted averaging with the weights
stratified according to spontaneous magnetization and then truncated at
99%.

The smooth curve in Figure 10.4 is the celebrated infinite lattice result
(i.e., the “truth” when the lattice size is infinite) discovered by Onsager
(1949) and proved by Yang (1952). It is seen that the critical point (0.44)
can be estimated quite well from the STDW simulations by the crossing of
the curves for the 642 and 1282 models. A main strength of the STDW algo-
rithm is that a single run of the process can yield accurate estimates over
the entire temperature range, extending well below the critical point. In
contrast, simulated tempering encountered a serious difficulty in sampling
even the smallest, 64 x 64, lattice model (Liang and Wong 1999).

222 10. Multilevel Sampling and Optimization Methods

—— theoretical value - ,e:'?';'g
———————— 128 by 128 grids o © 8 e "o
o] -—-- 64 by 64 grids X
o —— 32 by 32 grids e o
7/
© |
o
=
=
o
N
o
< |
o

0.40 0.42 0.44 0.46 0.48 0.50

FIGURE 10.4. Ising model simulations via dynamic weighting. The expected
absolute value of the spontaneous magnetization (defined as E| Y, z;|/d?, where
d is the lattice size) is plotted against inverse temperature K, with lattices of size
322, 642, 1282, and infinite, respectively. The smooth curve corresponds to the
theoretical infinite lattice result.

10.6.2 Neural network training

The artificial neural network is a simple mathematical model motivated by
neuron functions and has been a widely used tool in learning and classi-
fication problems (Hopfield 1982, Rumelhart and McClelland 1986). The
most popular among these networks is the multi-layer perceptrons (MLP),
in which all the units (nodes) are grouped into ordered layers (typically con-
sisting of input, hidden, and output layers). The units in the lower layer
(input) only connects with the units in the one above it (Ripley 1996).
Each node in a higher layer independently processes the values fed to it by
nodes in the lower layer in the form

yr=fr | ax + E wikT; |
j~k

where the z; are inputs, and then present the output y; as an input for the
next layer. Here, we take fj as the same sigmoidal function [i.e., f(s) =
1/(1 + exp(—s))] throughout the network.

It can be shown that a neural network with a sufficient number of hid-
den units and adjustable connection weights can approximate any bounded
continuous function arbitrarily well (Cybenko 1989, Hornik, Stinchcombe
and White 1989, White 1992). Hence, it has been hoped that such a “uni-
versal approximator” can solve important prediction problems. Neural net-
work “learning” is accomplished by choosing the connection strengths w;y,

10.6 Tempering with Dynamic Weighting 223

so that the network’s outputs match the desired outputs in the training
data as closely as possible. In the last several decades, many algorithms
have been proposed to train neural networks, including conjugate gradi-
ent, back-propagation (BP) and their variants (Rumelhart, Hinton and
Williams 1986), and Bayesian methods (Buntine and Weigend 1991, Neal
1996). However, these methods can fail badly in some cases, one of which
is the two-spiral problem (Lang and Witbrock 1988). By using the STDW
algorithm, Wong and Liang (1997) treated the two-spiral problem with con-
siderable success (both the 2-25-1 and 2-14-4-1 networks have been fitted
and the results were close to be perfect, whereas the error rate for BP is
generally greater than 40%).

In training programs such as back-propagation, the total mean square
error

Hy, = Z 10, — Tp”2
2

is used as the cost function, where T, is the pth training case’s ideal output
and O, is the output of the network. We can define a target distribution
jointly for the connection strengths w;; and the temperature parameter T’
so that

m(wjg, all j,k; T) o< o(T) exp(—Hp/T).

Here, T represents a finite number of temperature levels: ¢t > to > -+ >
tr, (Wong and Liang used L = 4 for the two-spiral problem). Then, a
standard Metropolis algorithm can be used for modifying local connection
strengths at a fixed temperature, and a dynamic weighting rule is used for
temperature transition. After a reasonable configuration is obtained from
the STDW algorithm, a post-optimization procedure is applied to zoom in
for the local optimum. The often-used post-optimization methods include
steepest-gradient-decent and conjugate gradient.

Both the encoder problem (Ackley, Hinton and Sejnowski 1985) and the
parity problem (Rumelhart et al. 1986), two classic examples in the neural
network community, were considered by Wong and Liang. The input in the
encoder problem is a length-d binary sequence and the output is desired
to be identical to the input. A requirement for the network designed for
the task is that the hidden layers cannot have more than log,(d) nodes.
Obviously, a network with a hidden layer of d nodes is trivially perfect.
A three-layer network with five hidden units were trained for d = 32 (so
that this constitutes a 32-5-32 network). Note that one is dealing with
a 5 x 32 x 2=320-dimensional optimization problem in this example. The
STDW algorithm with post-optimization achieved perfect learning in about
5 minutes on a Sparc-20 Sun Workstation. With a longer running time,
perfect learning was also achieved on the more difficult 32-4-32 (there are
4 hidden units, 256 scalar parameters involved) encoder problem.

224 10. Multilevel Sampling and Optimization Methods

The input of a d-parity problem is also a binary sequence of length d. The
output is required to be 1 if the input sequence contains an odd number of
1’s, and is 0 otherwise. So this exercise is meant to show how a “black-box”
network can mimic a very nonlinear and discontinuous function. Rumelhart
et al. (1986) show that at least d hidden units are required for a three-layer
MLP to solve this problem. The STDW method had no difficulty solving
this problem with a d-d-1 (2 < d < 8) network. A perfect solution for d = 8
(a 72-dimensional optimization problem) was obtained in Liang (1997).

This is page 225
Printer: Opaque this

11

Population-Based Monte Carlo
Methods

In parallel tempering (Section 10.4), the target distribution is embedded
into a larger system which hosts a number of similar distributions differing
with each other only in a temperature parameter. Then, parallel Monte
Carlo Markov chains are conducted to sample from these distributions
simultaneously. An important step which makes PT effective and which
connects the multiple distributions in the augmented system is to propose
configuration exchanges between two adjacent sampling chains. The at-
tractiveness of this configuration-swap step can be loosely attributed to a
population-based “learning” strategy; that is, in high-temperature states,
radically different new configurations are allowed to arise, whereas in lower-
temperature states, a configuration is given opportunities to refine itself.
By making exchanges, we can retain and improve those good configura-
tions generated in the population by putting them into low-temperature
chains. However, one may feel that this “exchange” step is a rather mini-
mal interaction among the multiple chains in the “population.” More ac-
tive interactions such as those employed in a genetic algorithm might be
more helpful. In this chapter, we will follow this thought to venture into
population-based Monte Carlo strategies.

Genetic algorithm has been very successfully applied in various opti-
mization problems. Its basic principle of mutations and crossovers are so
attractive that researchers have made attempts to employ them in guiding
Markov chain Monte Carlo (MCMC) moves. However, such attempts have
met many obstacles because of the difficulties in designing Markov chain
moves that are both evolutionarily oriented (good ones live and bad ones
die) and reversible (satisfying the detailed balance). Some recent work along

226 11. Population-Based Monte Carlo Methods

the line of adaptive directional sampling (Gilks et al. 1994), multipoint
Metropolis principle (Section 5.5), and parallel tempering heuristics seems
to have opened the door for designing proper and effective population-based
MCMC algorithms (Liang and Wong 2000).

11.1 Adaptive Direction Sampling: Snooker
Algorithm

Adaptive direction sampling (ADS) is a very interesting idea first proposed
by Gilks et al. (1994). In this method, one runs multiple MCMC chains
in parallel and adapts the future movement of one chain along a direc-
tion generated by other chains. ADS is clearly a population-based method.
But its learning strategy, which is directional instead of configurational, is
quite different from that of PT. A special form of the ADS is the snooker
algorithm, which will be explained below.

At iteration ¢ of the snooker algorithm, one keeps a population of samples,
say SO = {xtD . x(tm™Y) of size m. Bach of the xgt’j) is also called
a “stream.” Then, the next-generation population SU*1) is generated as
follows:

(a) A stream x(*°) is chosen at random from S®.

(b) An anchor point x(:® is chosen at random from S® \ {x(*9)} and a
direction e is generated as e = (x(6¢) — x(t))/||x(H:e) — x(8:2)]|.

(¢) A scalar r is drawn from an appropriate distribution f(r).

(d) Update x(“+1:¢) = x(t:2) 4 re_ and leave others unchanged [i.e., we let
x(t+1aj) — X(tvj) fOrj # C].

Gilks et al. (1994) and Roberts and Gilks (1994) show that f(r) should
be of the form

f(r) « |r|d*17r(x(t’“) +re), (11.1)

where d is the dimensionality of the state space. Note that if direction e
is generated from a distribution that is independent of x(*¢) as in the
hit-and-run algorithm, then the proper distribution is for sampling r is
f(r) o< w(x0) 4 re).

To see why (11.1) is true, we need to show that at the equilibrium the
new point x(#+1:¢) i independent of the x(::9) for j # ¢ and is distributed
as m, provided that x(*©) is independent of the x(*)) for j # ¢ and follows
distribution . This fact follows from the following lemma (Liu, Liang and
Wong 2000), which is the generalization of a result of Gilks et al. (1994).

11.2 Conjugate Gradient Monte Carlo 227

Lemma 11.1.1 Suppose x ~ w andy is any fized point in a d-dimensional
space. Let e = (x —y)/||x — y|| be a unit vector. If v is drawn from distri-
bution in (11.1), then x' =y + re follows distribution ©. If y is generated
from a distribution D(y) independent of x, then x' is independent of y and
has density m(x').

Proof: Without loss of generality, we need only to show the case when
y = 0. Then, the Markovian move is of the form

x' =r*x, r*#£0,

and is a scale group transformation of x. Now, the question becomes this:
What distribution should we impose on this transformation group so that
an element r* drawn from it leaves 7 invariant? This general question is
answered by Theorem 8.3.1 in Section 8.3, which gives rise to expression
(11.1) under our current setting. &

Although ADS is a powerful framework enabling interactions among mul-
tiple chains, the method alone has not been very effective in improving
sampling efficiency. A main reason is that the direction generated in ADS
is still rather arbitrary. It is not clear why one wants to let the current
chain move in the direction of other chains. An important question is,
thus, (a) how one can select a meaningful direction e;. A related question
is (b) how to sample from f(r) in (11.1)? In the next section, we describe
a novel algorithm of Liu, Liang and Wong (2000) that combines the ADS
framework with deterministic mode finding procedures and the multipoint
method (Section 5.5).

11.2 Conjugate Gradient Monte Carlo

The main features of this algorithm are (i) the local optimality informa-
tion revealed by a deterministic local-search scheme is explicitly used for
adaptation and (ii) the companion MTM algorithm allows for a very large
step-size in searching along a “promising” direction, which partially re-
solves issue (b) raised at the end of the previous section. Some numerical
examples show that the new sampler offers significant improvement over
the traditional Metropolis sampler, especially in difficult problems (Liu,
Liang and Wong 2000).

We follow the ADS approach of evolving a population of samples, say,
S® = {x®1) . xtm) at each iteration. To update one of the samples,
say, x(t:9) we use the other samples to construct a good “anchor” point
y and then update xﬁt’c) by a multiple-try Metropolis (MTM) transition
along the direction defined by x(-¢) and y. With Lemma 11.1 proved in
the previous section, one can see that essentially any way of choosing the

228 11. Population-Based Monte Carlo Methods

anchor point y is appropriate provided that y is independent of x(:9) and
that the distribution along the line f(r) is properly adjusted. For example,
we can use a conjugate gradient search to construct the anchor point. In
summary, at iteration ¢ + 1, we do the following steps.

Conjugate Gradient Monte Carlo (CGMC)

1. Choose x(t:%) ¢ S at random. Obtain either the gradient or the
conjugate gradient direction of logw() at x; and conduct a deter-
ministic search to find a local mode of 7w or any point with a higher
density value, y. This point y is called an anchor point.

2. Choose another member x(*:¢) from S® \ {x(:*)} at random.

3. Let e = (y — x(*9)) /||y —x{49)|| and sample along the line y + re by
the MTM method; that is, we draw r € (—o0, 00) from

() o |r|*tn(y +re), (11.2)
where d is x’s dimension, and let x(t+1:¢) be y + re.

4. We can update other members in S® in the same way as we up-
date x(:©) in the previous step. However, we can also leave them
unchanged. The new population S¢+1) consists of both updated and
unchanged samples in the previous population.

The gradient/conjugate gradient procedure in Step 1 can be iterated
for any number of times and can also be replaced by any effective local
optimization method, such as the iterative conditional maximization or a
few EM steps. In all of our examples, we have used the conjugate gradient
directional method coupled with a one-dimensional minimization algorithm
taken from the Numerical Recipe (Press and Vetterling 1995). It should be
noted, however, that the generation of y cannot be dependent upon any
members in generation ¢ — 1. For example, both of the conjugate directions
in a CG search have to be generated based solely on x(t:®)

The population size m needs not be too large. In fact, we found that
having m = 2 to 5 was good enough for many of our examples. However, it
should be a worthwhile topic to study the effect of m on the convergence
of the algorithm. By using Lemma 11.1, it is not difficult to prove that the
new algorithm is proper (Liu, Liang and Wong 2000).

11.3 Evolutionary Monte Carlo
The snooker algorithm and CGMC are two useful attempts to incorporate a

population-based learning capability in Monte Carlo simulations. However,
in comparison with a typical genetic algorithm, the interactions among the

11.3 Evolutionary Monte Carlo 229

members in the population are still rather minimal and the effects of these
interactions are only modest. It is thus desirable to incorporate more power-
ful interactions, such as the crossover operations used in genetic algorithms.
A partial support for this desire is that the genetic algorithm is known to
make very efficient use of distributed information across states of a popu-
lation, which may serve as a good basis for a MCMC sampler with “learn-
ing.” But designing a useful crossover move in a MCMC sampler has been
difficult mainly because of the stringent requirement of the detailed bal-
ance condition. For example, if we propose to conduct a random crossover
between two members in the current population, we need to retain two
offsprings (otherwise one would not be able to maintain the detailed bal-
ance). Usually, however, at least one of the offsprings does not have a good
“fitness” value. Thus, when applying the Metropolis acceptance-rejection
rule to the proposal, we will almost surely reject it. In this section, we will
explain how the crossover operation can be effectively used in a tempering
framework (Liang and Wong 2000).
Suppose the target distribution of interest is, again,

m(x) o exp{—H (x)},

where x takes a value in the sample space X. Let X = {x1,X2,... ,Xn}
denote a population, where x; takes values in the original sample space
X and m is the population size. A set of N different temperatures, T =

(t1,t2,... ,tm), are given and ordered as t; > ty > - -+ > t,,. Each individ-
ual (or chromosome) x; in the population is attached to a temperature t;
for i = 1,... ,m. The fitness function of x; is defined as the “Hamiltonian”

function H(x;) given by the original target distribution. The corresponding
Gibbs distribution for the ith member in the population is

milas) = Zit,») exp{—H(x:)/t:}, (11.3)

where Z;(¢;) is the normalizing constant for the distribution; that is,

Zi(t:) = > exp{—H(xi)/t:}. (11.4)

all X;

If one lets the lowest temperature t,, = 1, then m,, corresponds to the
target distribution 7 (x). Similar to parallel tempering, one considers a
Markov chain sampler on the augmented state space defined by X =
(x1,X2,... ,Xy,)- The target distribution of this augmented system is de-
fined as the augmented Boltzmann distribution as in parallel tempering:

m(X) = ﬁexp{—.z}[(xi)/ti}, (11.5)

230 11. Population-Based Monte Carlo Methods

Z(T) =[] zi(t:). (11.6)

We now discuss how various aspects of the genetic algorithm can be incor-
porated into this framework.

11.3.1 FEvolutionary movements in binary-coded space

In this subsection, we will focus on the binary-coded state space. In other
words, our x; is defined as a vector, x; = (b;1,...,biq), where b;; is
either 0 or 1. Needless to say, many discrete problems can be coded in this
way. Even some problems with continuous components can be reduced to
a space of binary strings. Examples include the variable selection problem
(Section 11.5.3), the change-point problem, and the sequence alignment
problem in biology (Sections 1.5, 4.1.3, and 6.5).

Mutation. This operation can be achieved by a standard Metropolis
step: A “chromosome,” say Xy, is first selected at random from the current
population X . Then xj, is mutated to yj by flipping the values at some
random positions of the binary string of x;. The new population is proposed
tobe Y = {x1,...,¥k,--- ,Xn}. According to the Metropolis rule, the
proposal is accepted with probability min(1,r,,), where

rm = exp{—(H(yx) — H(xx))/tr} (11.7)

If the proposal is accepted, the current population X is replaced by Y,
otherwise, the population X is kept unchanged.

The possible choices for mutation operator include 1-point mutation and
2-point mutation. One can also consider uniform mutation, in which each
digit of x; has a probability p,, of flipping its value. All of these mutation
operators are symmetric (i.e., the transition probability from X to Y is
equal to that from Y to X).

Crossover. One chromosome pair, say x; and x; (i # j), are selected
from the current population X = {xy,...,X;,...,X;, ... ,Xy} accord-
ing to a selection procedure (e.g., roulette wheel or random selection).
The new “offsprings” y; and y; are generated by one crossover opera-
tor, which is discussed below. A new population is proposed as Y =
{X1,.-,¥is--s¥js--- ,Xn} and it is accepted with probability min(1,r.)
according to the Metropolis rule. It is not difficult to see that the Metropolis-
Hastings ratio is

H(y:) - H(x;) H(y;) - H(x;) } TV, X) (118)

Te =€Xp{ —
= exp {1V -

Here, the proposal transition is

T(X,Y) = P[(xi,%;) | X|P[(yi,¥5) | (%i,%5)],

11.3 Evolutionary Monte Carlo 231

where P[(x;,%;) | X| denotes the selection probability of (x;,x;) from the

population X and P[(y;,y;) | (xi,x;)] denotes the probability of generat-

ing (y;,y;) from the parents (x;,x;). If it is accepted, the current popula-

tion X is replaced by Y'; otherwise, the population X is kept unchanged.
The selection procedure can be a weighted sampling as

P((xi,%7) | X) o< [exp{~H(x:)/t} + exp{~H(x;) /t}], x: # x;. (1L.9)

It is not unusual to choose ¢t = 1. This sampling can be achieved by first
selecting x; with probability proportional to exp{—H(x;)/t}, and then
choosing x; independent of x;, but with the same sampling probability.
If x; = x;, then we discard them and repeat the sampling until we obtain
a distinct pair.

The possible choices for the crossover operator include 1-point crossover,
2-point crossover, and uniform crossover. It is clear that all of the above
crossover operators are symmetric (i.e., the generating probability of Y
given X is equal to that of X given Y') and the generating probability can
be canceled in Equation (11.8). The ratio of the transition probabilities in
(11.8) is reduced to that of the selection probabilities.

A new crossover operator, adaptive crossover, is also introduced (Liang
and Wong 2000). In adaptive crossover, the two offsprings are generated as
follows. If x; and x; takes the same value at their kth position of the binary
string [i.e., x;(k) = x;(k)], then offsprings y; and y; copy that value and
independently inherit that value with probability po (and flip to the oppo-
site with probability 1 — pg). If x; and x; have different values at position
k, then y;(k) inherits x;(k) with probability p; and y;(k) inherits x;(k)
with probability ps, all independently. In this way, different genes in one
chromosome have different probabilities to be inherited by the offsprings
and the same gene also has a different inheritance probability in different
generations. The adaptation is determined by the genes of the parent chro-
mosomes. The adaptive crossover has a tendency to keep the better genes
found in the early simulation.

Exchange. This operation is same as that introduced in parallel tem-
pering/exchange Monte Carlo (Geyer 1991, Hukushima and Nemoto 1996).
Given the current population X, the proposed new configuration Y only
differs from X by an exchange between x; and x;. The new population is
accepted or rejected according to the Metropolis rule (Section 10.4)

11.3.2 FEvolutionary movements in continuous space

Suppose x = (x1,...,x4) is defined in a d-dimensional Euclidean space,
and the tempered population is still defined as in the previous section; that
is, we define a system on X = (xy,... ,xy) with an augmented Boltzmann
distribution as in (11.5). A mutation operation can still be any kind of
Metropolis-Hastings move independently for each chain. A convenient one
is perhaps the random-walk-type Metropolis move.

232 11. Population-Based Monte Carlo Methods

In the crossover step, one randomly picks a pair of “chromosomes,” x;
and x;, from the current population and mate them to produce a new
pair, y; and y;. The new pair is then subjected to acceptance-rejection
decision based on the usual Metropolis-Hastings rule. Liang and Wong
(2001) discussed two choices of the crossover operator. In a real crossover
operator, the pair x; and x; exchange their components (digits) in the same
way as that for binary-coded space described in the previous section. As
a consequence, every component of an offspring, say y;(k), has a certain
probability to be x;(k) and the remaining probability to be x; (k). Another
operator, the snooker crossover, is based on the algorithm described in
Section 11.1 and can be implemented as follows.

e Select one chromosome, say x;, at random from the current popula-
tion X.

e Select another chromosome x; from the remaining population with
probability proportional to w; = exp{—H(x;)/ts}, its "Boltzmann
weight,” where t, is called a selection temperature. The selected x;
is called the anchor chromosome.

o Let e = (x; — x;)/||x; — x4||, and y; = x; + re , where r € (—00, 00)
is a random variable sampled from the density

f(r) o 7|t (x; + re). (11.10)

e Construct a new population by replacing x; with the “offspring” y;.

Note that the sampling of f(r) can be replaced by a number of Metropolis-
Hastings moves or a multiple-try Metropolis move as discussed in Sec-
tions 5.5. The selected anchor chromosome can also be updated by some
local optimization procedure, as in CGMC (Section 11.2). In summary, the
evolutionary Monte Carlo algorithm works as follows:

1. Choose the population size m and the population temperatures T =
{t1,... ,tm}. Initialize the population X at random.

2. Calculate the fitness of each chromosome.

3. Apply either a mutation or a crossover operator to the current pop-
ulation with probabilities ¢ and 1 — gq.

4. Apply the exchange step. A chromosome x; is chosen at random and
is subjected to the proposal of a configuration swap with one of its
neighbors (see Section 10.4).

5. The algorithm stops if a termination criteria is met. Otherwise, go to
Step 3.

11.4 Some Further Thoughts 233

There are three user-set parameters in the algorithm, namely m, T', and
g. The mutation rate ¢ can be chosen to achieve a good trade-off between
exploration and convergence of the algorithm. For a problem with a small
population, ¢ should be large in order to provide better chance to explore
the sample space. For example, setting the mutation rate g=1 is equivalent
to parallel tempering. However, for a problem with a large population, ¢
can be set to a small value to get a fast convergence. Liang and Wong
(2001) set ¢ to around 0.2 for a problem with population size less than 50.
The population size m and temperature ladder T can be set as in simulated
tempering and parallel tempering (Marinari and Parisi 1992, Geyer 1991,
Hukushima and Nemoto 1996). Roughly speaking, #; should be set such
that

var{H(x;)}6*> = O(1), (11.11)

where 6 = 1/t;11 —1/t; and the variance is taken with respect to the target
distribution. A key measurement is the acceptance ratio for the exchange
operations, which should be kept at about 50%. This condition of § is
equivalent to requiring that the histograms of H(x;) and H(x;1) overlap
substantially.

Clearly, all evolutionary Monte Carlo (EMC) operators including muta-
tion, crossover, and exchange satisfy detailed balance. Hence, EMC sampler
possesses the necessary properties of a MCMC sampler. Inference and es-
timation for each distribution m;(x;) can be made with the samples at the
corresponding temperature level.

11.4 Some Further Thoughts

The EMC has been shown effective in many difficult problems (Liang and
Wong 2000, Liang and Wong 2001). Careful examinations of these algo-
rithms, however, still reveal some less satisfactory features. For example,
the crossover operator is arguably the most important feature of the genetic
algorithm that has not been previously incorporated into Monte Carlo com-
putation. This operator still performs less satisfactorily in EMC because
of the the reversibility constraint in the MCMC design. For example, in
the current setting, the crossover proposal forces the offsprings produced
after mating to completely replace the parental chromosomes. As a conse-
quence, such a move is not easily accepted because the fitness of the new
offsprings are usually not comparable to their parents. Occasionally, a good
offspring (or a pair of good ones) is produced from the mating between a
good parent and a not-so-good parent. Then, the acceptance of the new
generation means that the good parental chromosome will perish, which is
not a desirable feature in difficult simulation problems. Here, we describe
a potentially useful idea to improve the performance of crossover operator.

234 11. Population-Based Monte Carlo Methods

In addition to the current temperature ladder T' = {t1,... ,tm}, we can
add a new “infinite temperature” level to = oo at the bottom of the tem-
perature ladder. The new (single) offspring obtained by a random mating
of the current population is automatically “stored” at level ¢g (as xq) with-
out subjecting it to any acceptance-rejection criterion. With the use of the
exchange operator, the new configuration, if it is a good one, can then rise
along the temperature ladder, as in the usual parallel tempering setting. In
particular, when an exchange of x¢ with x; is proposed (note that tg = 00),
we accept the proposal with probability

win {1, o { Z0 =1}

Because the offspring produced by random mating is stored without
being properly “adjusted,” this procedure will not produce properly dis-
tributed Monte Carlo samples (with respect to the target distribution).
Instead, when using this new crossover procedure, the distribution of the
samples at each temperature level shows a slight bias toward the “random
mating” distribution (i.e., the distribution of x that is produced by ran-
domly mating two members in a stationary population). The hope is that
this bias is moderate and will have little effect in optimization problems.
Note that this procedure would have been proper if the distribution of xq
was indeed uniform. Histograms of the distributions at all levels demon-
strated this slight bias.

A way of alleviating the random mating bias is to employ the idea of
histogram reweighting (i.e., the ideas in Chapter 10.5) as follows. Imagine
that the system is indeed in equilibrium with respect to the proper target
distributions [i.e., each x; follows distribution m;(x) o« exp{—H (x)/t;}]-
Let a daughter chromosome xy be produced by mating two randomly cho-
sen members in the population. Then, xo must have its distribution. We
assume, without much theoretical basis, that this distribution is of the form

mo(x) o< exp{—g(H (x))}. (11.12)

Indeed, the accuracy of this method can be further improved if we assume
a more refined form of my [e.g., mo(x) ox exp{—g(H(x), M (x))}, where
M(x) is another “summary statistics,” such as the total magnetization,
of the system x]. With these assumptions, we can iteratively estimate the
unknown function g().

Now we describe an algorithm when form (11.12) is assumed. Let Wy =
H(x¢) and Wy = H(x3). Then, the distribution of W is of the form

po(w) o< N(w) exp{—g(w)}
and W; is of the form

p1(w) o< N(w)e /4

11.5 Numerical Examples 235
Hence, we have

po(w)/p1(w) < exp{—g(w) +w/t1}.

This implies that if we have good histogram estimates, p1 (w) and p(w), of
p1(w) and po(w), we can approximate the unknown function g well. Thus,
when the exchange of x¢ and x; is proposed, we can accept the proposal
with

— {1 Po(H (1)1 (H (x0)) }
" o (B (x0))pn (H(x1)) |

11.5 Numerical Examples

11.5.1 Simulating from a bimodal distribution

Consider a two-dimensional mixture Gaussian target distribution

O.34xN2(0,Iz)+0.33xN2{< :2)(Oé 0'?)}

s {(1).(Lab)}

Here, the covariance matrices in the three components are identical to those
in Gilks, Roberts and Sahu (1998),

but the mean vectors are separated by a larger distance in each dimen-
sion.

We started two independent Metropolis samplers with starting points
drawn from Uniform[—0.5,0.5]>. A spherical proposal function was em-
ployed: A direction was generated uniformly and then the radius drawn
from Uniform[0, a], where a (which is equal to 4 in our case) is calibrated so
that the Metropolis sampler had an acceptance rate of about 0.23 (Gelman,
Roberts and Gilks 1995). A total of 200,000 iterations of the Metropolis
step was conducted for each sampler, which took about 28 seconds of CPU
time from a Sun Ultra 2 workstation. In Figure 11.1, we plotted the his-
tograms and autocorrelations for one of the variables (left panels). It is seen
that the Metropolis sampler moves very slowly due to the low-probability
barriers between the modes, and the mixture proportions were very poorly
estimated.

The CGMC method was applied to this problem with m=2 streams and
20,000 iterations for each. Each iteration consists of two Metropolis steps
and one adaptation step. Thus, a total of 100,000 random draws from 7,
which took about 27 seconds of CPU time from the same computer, were
produced as the program ended. The proposal function for the Metropolis
step was the same spherical distribution as in the previous case but with

236 11. Population-Based Monte Carlo Methods

Histogram of Metropolis samples Histogram of CGMC samples
o
o o
o o
5 8
8 =
S S
S S
(=] o
8 S
o o
-10 -5 (o] 5 -10 -5 o 5
Autocorrelation: Metropolis Autocorrelation: CGMC
o o
— —
© ©
= o
© ©
LS o
o O«
o~ o~
S S
= =
o 200 400 600 800 1000 o 200 400 600 800 1000

Lag/4 Lag

FIGURE 11.1. A comparison of results obtained by the Metropolis sampler and
by the CGMC. The autocorrelation plot of the Metropolis samples has taken the
computational cost into account.

a narrower range for the radius: [0,2.5] (corresponding to an acceptance
rate of 0.37). For the CGMC, a small Metropolis step is beneficial for
the purpose of exploring local features. The line sampling proposal was
a univariate Gaussian with variance = 10? and the number of tries k =
5. This corresponds to an acceptance rate of 0.47. Our experience shows
that an acceptance rate between 0.4 and 0.5 for the multiple-try step is
appropriate. In Figure 11.1, we plotted the histograms and autocorrelations
for one of the variables in one stream (right panels).

Using the heuristic of integrated autocorrelation time (IAT), which equals
the sum of all lag autocorrelations, we can estimate that with the same
amount of CPU time, the IAT for the Metropolis algorithm is about 249
after adjusting for the computational cost (4 to 1 ratio), whereas for each
stream of the CGMC, the IAT is about 34. This translates to a seven-fold
improvement.

11.5.2 Comparing algorithms for a multimodal example

To compare performances of different algorithms (e.g., EMC with real
crossover, EMC with snooker crossover, and parallel tempering), Liang
and Wong (2001) consider the simulation from a two-dimensional mixture
Gaussian distribution:

1 20 1 ,
m(x) = o izzlwieXp{—W(X—ui) (X—Nz')} ;

11.5 Numerical Examples 237

o0 =01, wy =--- = wy = 0.05. The mean vectors ft{, Ly, -.., Uy are
drawn uniformly from the rectangle [0, 10] x [0,10]. Among these centers,
components 2, 4, and 15 are well separated from other components.

In their computer experiment, the technical settings were kept the same
for all the algorithms: A population size of 20 was used; the highest temper-
ature was 5.0, the lowest, 1.0, and the intermediate ones equally spaced in
between; and all the chains were initiated with a vector uniformly drawn
from [0,1] x [0,1]. The EMC algorithm was run until 100,000 iterations
were generated. It took slightly longer (30% more) for parallel tempering
to generate the same amount of random draws. Figure 11.2 displays the
scatterplots of Monte Carlo samples obtained from the first 100,000 it-
erations of both the real-coded EMC and parallel tempering. The EMC
algorithm successfully sampled all 20 components with correct proportion
of times, whereas parallel tempering completely missed the two corner clus-
ters (northeast and southeast) represented by components 2, 4, and 15.

(a) evolutionary sampling (b) parallel tempering
s) - s
L *
_ “ : & E 3 _ “ - 4
B - B -
* * - *®
* - #
S S

o 2 a 6 8 10 o 2 a 6 El 10

FIGURE 11.2. Scatterplots of the first 100,000 iterations of (a) the EMC algo-
rithm and (b) parallel tempering.

Suppose one is interested in estimating the mean vector, (u1, us), and
the covariance terms, 02,02, and 012, of 7. Then, the estimation accuracy
of the three algorithms can also be compared. From Table 11.1, we ob-
serve that the snooker crossover made a significant improvement over the
real crossover in accelerating the mixing of the system and that parallel
tempering failed the test completely.

11.5.83 Variable selection with binary-coded EMC

Linear regression models have been used extensively in many application ar-
eas for fitting the data and for making predictions. Although linear models
have been studied extensively in the past few decades, the variable selec-
tion problem (i.e., how to select a subset of good predictors from a set of
potential explanatory variables) remains an intriguing and important topic
in statistical research. For example, one may be interested in predicting

238 11. Population-Based Monte Carlo Methods

EMC-SC EMC-RC PT

Estimate S.E. [Estimate S.E. [Estimate S.E.
I 4.478 4.481 0.0043] 4.444 0.0259 3.781 0.0316
2 4.905 4.909 0.0076/ 4.862 0.0230, 4.337 0.0435
o? 5.5562 5.549 0.0062| 5.544 0.0507| 3.656 0.1114
o3 0.861 9.841 0.0097| 9.775 0.0481] 8.546 0.0485
o2, [2.605 2.591 0.0105 2.580 0.0434| 1.294 0.0839

parametentruth|

TABLE 11.1. Parameter estimation based on the samples over 20 independent
runs. SD denotes the standard deviation of the estimate. EMC-SC: with the real
crossover and the snooker crossover; EMC-RC: with only the real crossover; PT:
parallel tempering.

the future performance of a company’s stock price and is faced with many
potential predictors such as the global economic indicator, currency ex-
change rate, industrial indicators, the company’s size, its profit margin, its
R&D budget, its stock price history, its trading volume history, its earning
history, its insider trading records, who the president of the United States
is, who won last year’s Superbowl, whether there is a flood somewhere in
China, etc. It is of interest to select among these alleged predictors the truly
useful ones. A statistical formulation of the variable selection problem is as
follows.

Let observations be of the form (y;;214,-.-,2ki), ¢ = 1,... ,n, where
y; is the response variable and zy;, ... ,2k; are K potential predictors. A
linear regression model is

yi = Po + P1z1: + -+ + Bk 2ki + €,

where €; ~ N(0,0%) and the 3; and o? are unknown. We further assume
that there is only a subset of the coefficients, 31, ... , Bk, that are nonzero.
Thus, the actual model can be reduced to

y=PB0Y Bizite

€S

where S is a subset of {1,...,K}. In order to select a good subset of
predictors, Mallows (1973) proposed a C,, statistics defined as

Cp= % +2p—mn, (11.13)

where p is the number of variables included in the prediction equation,
RSS, is the residual sum of squares of a submodel with p predictors, 62 is
the estimated error variance calculated from the full model, and n is the
number of observations. Mallows (1973) suggested that good models have
Cp = p. However, searching for a subset with good C), is a nondeterministic
polynomial time (NP)-hard problem.

11.5 Numerical Examples 239

We can reformulate the optimization problem as a simulation problem;
that is, one can simulate from a nominal distribution defined on the space
of subsets models

7m(m) x exp{—Cp(m)/t}, (11.14)

where Cp,(m) is the C}, value of model m, Z(t) =) exp{—Cp(m)/t}. It
can be shown that distribution (11.14) with ¢ = 2 can be used to approx-
imate a Bayesian posterior distribution of m (Liang, Truong and Wong
2001). Other distributions derived from a Bayesian formulation (Chen and
Liu 1996, George and McCulloch 1997) can also be used in the place of
(11.14). Since each model configuration m can be coded by a 0-1 string
of length N, the binary-coded EMC algorithm can be applied to simulate
from this model. A “1” at position k& of the binary model vector indicates
that the variable z is included in the model, and a “0” otherwise.

With population sizes of 5 and 20, respectively, and temperature range
from T =1 to T = 5 in each experiment, two comparison tests between
the EMC and parallel tempering were conducted for the highway dataset
of Weisberg (1985), where there are 10 potential variables. In this example,
one can afford to use an exhaustive search method (a total of 2'° possible
subset models) to get the ground truth.

Figures 11.3(c) and 11.3(d) compare the convergence performances of
parallel tempering and the EMC for population sizes 5 and 20, respectively,
where the y axis is the L? distance between the estimated frequency and the
true distribution of Cp. In the two figures, EMC samples have been adjusted
to have the same time scale as parallel tempering. Parallel tempering was
also ran until it converged, defined by a distance measure below 0.01, and
it took three times longer than that of the EMC in both cases. A few more
difficult examples have also been examined by Liang and Wong (2000), and
in every case, the EMC approach was shown to significantly outperform
simulated tempering.

11.5.4 Bayesian neural network training

Suppose we observe D = {(y1,21), (y2,22),--- , (Yn, Zn)} from a model

yr = f(2e) + e, (11.15)

where y; € R, z, € RP, ¢, ~ N(0,02) for t = 1,...,n. Our task is to
estimate f() and to make predictions of y for a future explanatory variable
z. In the following, we assume that z has included the constant term zy = 1.

In parametric approaches (e.g., linear and logistic regressions), we as-
sume that f() takes a parametric form known up to a finite number of
tuning parameters (e.g., unknown coefficients in a linear regression model).
Then, we use the observed data to estimate (or “train”) the model. In non-
parametric approaches, we do not not assume any particular form for f()

240 11. Population-Based Monte Carlo Methods

(a) Distribution of Cp (b) Histogram of EMC samples

0.15
2000

0.10

0.05
=
=
=
=
=
=
=
g
=3
=
3
b

0 500 1000

e
<)
0 2 4 6 8 10 0 2 4 6 8 10
Cp Cp
(c) Population size N=5 (d) Population size N=20
0 0
b o1
o -~ Parallel tempering o B -~ Parallel tempering
—— EMC sampling —— EMC sampling
o o %
@ — [0} —
o o o o
= c
8 8
2 10 2 10
T o T o
[} [}
o o
o o
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000
iteration time iteration time

FIGURE 11.3. Comparison of EMC sampler and parallel tempering for a variable
selection problem. (Courtesy of Professor Faming Liang.)

and use methods such as window smoothing or smoothing spline to esti-
mate f() (Green and Silverman 1994). Nonparametric methods become
ineffective when dimensionality of the explanatory variable z is high.

Here, we take a parametric approach, but with a more complex neural
network (NN) model. Suppose f() can be approximated by a feed-forward
neural network with one hidden-layer (Section 10.6.2):

M
fz) = Zﬂj%b(z,'s’)’j)a (11.16)

where M denotes the number of the hidden units, 8; € R, the connection
weights from the hidden unit j to the output unit, and v; € RP, the con-
nection weights from the input units to the hidden unit j. The activation
function #(-) is a tanh function,

exp(z) — exp(—2
o) D) —exp(=2)
exp(z) + exp(—2)
A Bayesian method (Buntine and Weigend 1991, Neal 1996) is used to
estimate unknown parameters in this model (or train the network).

Similar to the approach we took in Section 9.6.1, the NN model (11.16)
is augmented by an error term and the NN training problem is viewed as

(11.17)

11.5 Numerical Examples 241

a nonlinear regression of response y on the covariates z:

M
v =S Bi(Ey) + e, (11.18)

=1

where ¢, ~ N(0,0%) for t = 1,... ,n. The prior distributions for the pa-
rameters are, respectively, 8; ~ N(0,03), v; ~ N(0,031I) for j =1,... , M,
and 02 ~ Gamma(v,§). We can then derive the log-posterior of the pa-
rameters (up to an additive constant):

logn(B,v,0 2|D) = C— (g +v-— 1) log(c?) (11.19)
1 n M 2
552 {20+ S v =D Biv(ziy)
o t=1 j=1
M
Vi
—Zé—zz o (11.20)
j=1 1i=0

This posterior distribution is difficult to simulate from for two main
reasons: nonlinearity and multimodality. For example, the posterior distri-
bution is invariant with respect to an arbitrary relabeling of the hidden
units. Since ¢(—z) = —¢(z), the distribution is also invariant with respect
to the simultaneous negation of both §; and ;. To avoid this multimodal-
ity, one may impose a constraint on the parameter space [e.g., 0 < 711 <
Y21 < -+ < yp; see Miiller and Insua (1998)]. No such constraints were
given, however, in the following study so as to fully examine the capability
of EMC in the presence of multimodality and nonlinearity.

Under the Bayesian framework, the point prediction can be obtained by
integrating out the nuisance parameters; that is,

Unew = ynew | Znew Data)

- /// Zﬂa (x}7v;) | (B,v,072 | Data)dBdydo2. (11.21)

When z,ey is not fully available (e.g.,such as a time series with missing
observations), one may have to impute it based on the model. Note that
the posterior mean in (11.21) is not affected by the unidentifiability of the
hidden units and the multimodality of the posterior density.

To test the EMC algorithm, Liang and Wong (2001) simulated y1, . . . , Y100
from Equation (11.18) with M = 2, 1 = (y10,711) = (2,=1), 72 =
(7v20,721) = (1,1.5), 8 = (20,10), o = 0.1, and the input variable z; =
(1,2), where 2z, = t* 0.1 for t = 1,2,...,100. The simulated data are
shown in Figure 11.4. A NN model with the same structure is fit to the data

242 11. Population-Based Monte Carlo Methods

Original data
—— Fitted regression line

20

10

-10

o 2 4 6 8 10
X

FIGURE 11.4. The original data overlayed by the MAP estimate (found by the
EMC algorithm) of the unknown function.

by the Bayesian method outlined above [thus, the approximation model
(11.16) has the identical structure as the “true” model]. The purpose of
this exercise is to test EMC’s ability in fitting highly nonlinear curves.

With the same amount of computing time, the EMC algorithm with both
real and snooker crossovers outperformed parallel tempering significantly.
All of the five independent EMC runs found and settled at the region of
global maximum of the posterior, whereas all of the five parallel tempering
runs got stuck in local maxima. Figure 11.5 depicts the comparison of
two methods. One can also see from the figure that the mean square errors
between fitted and observed values of the yj converge to zero rather rapidly
for the EMC.

11.6 Problems

1. Directly prove Lemma 11.1 by reparameterizing the state space.
2. Show that the CGMC algorithm is proper.

3. Implement both the snooker algorithm and the CGMC for the mul-
timodal examples in Section 11.5.1.

4. Prove that the EMC algorithm for both continuous and binary-coded
spaces satisfy the detailed balance.

5. Discuss why in CGMC the derivation of the anchor point can only
depend on the current generation, but not on, say, S¢=1.

6. Discuss why it is important to use tempered distributions for the
population construction in EMC.

11.6 Problems 243

@ (b)
o
b
S
o
«© —— Evolutionary samplin —— Evolutionary sampling|
- Parallel tempering - Parallel tempering
©
QL <
o o
=3
s
= - w 3
S gs
=
S8
B
<
<
o S
<
-
o
— S
[0} 200 400 600 800 1000 (o] 200 400 600 800 1000
Iteration Iteration

FIGURE 11.5. Comparison between EMC and parallel tempering. (a) The nega-
tive of log-posterior values of the samples versus computing time. (b) The mean
square errors between the fitted and the observed values for each Monte Carlo
sample of the NN parameters.

244 11. Population-Based Monte Carlo Methods

12

Markov Chains and Their Convergence

12.1 Basic Properties of a Markov Chain

When running a MCMC sampler, one is often fascinated by the fact that
the sampler can produce desirable random samples from a target distribu-
tion by making a series of local changes to an arbitrary initial state. It is
therefore a natural question to ask: What makes this operation work? Why
can we obtain “typical samples” from a target distribution by conducting
a series of local moves? A basic tool for studying theoretical properties of
these Monte Carlo algorithms is the Markov chain theory.

Consider here a sequence of random variables x(© x() ... defined on
a finite state space X'. This sequence is called a Markov chain if it satisfies
the Markov property:

P(X(t+1) =y| x =x,...,x® = z) = P(x(t'H) =y| x(t) = x); (12.1)

that is, the value of x(**1) is dependent on its history only through its
nearest past, x(). If the form of the transition probability P(x(**+1) =y |
x(®) = x) is time homogeneous (i.e., it does not change with t), then it
is often expressed as a transition function, A(x,y). Therefore, the simple
property of any transition function is

ZA(x,y) =1 for all x.
y

The first consequence of (12.1) is that for any time s > 0,
P =y |x® =x,... ,xO =2) = P =y | xB =x). (12.2)

This is page 245
Printer: Opaque this

246 12. Markov Chains and Their Convergence

We leave it to the reader to check the correctness of (12.2) (Hint: by induc-
tion). When the state space X is continuous (as in many examples of the
previous chapters), the above transition probability function is replaced by
the transition density function and summations replaced by integrations.

Example 1. Simple random walk on a line. Suppose the Z,, are i.i.d.
Bernoulli random variables (coin tosses), with P(Z; = 1) = 1 - P(Z; =
—1) =p. Let S© =0 and let S = Z; + --- + Z; (the deference between
the number of heads and the number of tails of ¢ coin tosses). Then, S,
t =0,1,..., forms a Markov chain. As ¢ — oo, however, S® does not
“converge” to a stable distribution and will drift to oo (according to
whether p < 0.5, = 0.5, or > 0.5).

Example 2. Let x(®) = (—1,—1,..., —1) be a vector of length d. We let
x(t*+1) be generated recursively as follows: Randomly pick a coordinate of
x® and negate its current value. Then, the sequence x(©, x(1) ... forms
a Markov chain. If we write two consecutive states as x = (x1,... ,z4) and
y = (y1,--- ,Yq), then the transition function for this chain is

A(x,y) =d~' if x; =y; for all but one component.

This chain is often referred to as the simple random walk on a d-dimensional
cube, Z4. For example, when d = 3, all the possible configurations this chain
is allowed to visit correspond to the eight vertices of a three-dimensional
cube). Many examples of Markov chains are constructed similarly: A new
configuration x(*+1) is generated from the previous one, x(*), by a random
local perturbation.

As t — oo, the simple-random-walk chain stabilizes to the uniform dis-
tribution. In other words, when ¢ is large enough, the chance that you will
guess correctly which vertex of the cube is occupied by x(*) is roughly 2—¢
(if T only tell you that ¢ is greater than a certain large number but do not
tell you whether ¢ is even or odd). There is, however, one problem — the
chain is periodic; that is, when ¢ is odd, we are sure that x® differs from
x(® with only an odd number of +1’s; whereas when ¢ is even, the differ-
ence in the number of +1’s has to be even. Thus, no matter how large ¢ is,
we still know something that relates x® with x(©).

To overcome this parity problem, we can incorporate a small “holding”
probability in the Markov chain’s transition rule. The modified rule is are
follows: Pick a component argt) of x() at random; negate its value with
probability 1 — € and leave it unchanged with probability e. With this new
transition rule, the theorem to be stated in Section 12.3 guarantees that
the chain converges to a stable distribution, a uniform distribution in this
case, and the realized value of x® is becoming independent of the starting
configuration x(©).

Example 3. Random-to-top shuffling (Diaconis 1988). Suppose n cards
are placed as a pile on a table. We consider the following slow card shuffling

12.1 Basic Properties of a Markov Chain 247

procedure: Pick a card from the deck at random and place it on the top
of the deck. It is easier to describe the procedure than to implement it
manually because most people have a tendency to pick a card more “inside”
the deck instead of giving all the cards equal probabilities. It is easy to verify
that this is a Markov chain. State configurations of the chain are the set of
all permutations on {1,...,n}, also called the permutation group.

Example 4. The Metropolis-type algorithms and Gibbs sampling algo-
rithms described in the previous sections are all Markov chains.

12.1.1 Chapman-Kolmogorov equation

The most useful feature of a “good” Markov chain is its fast forgetfulness
of its past; that is, after the Markov chain has evolved for a period of time,
the realized value of the current state of the chain, x(¥) becomes nearly
independent of starting state x(®). This is precisely the reason why people
shuffle the cards a number of times before they play another card game.
Heuristically, this feature occurs in the same way as that in an analogous
deterministic iterative system: If the system has a fixed point and if there is
a “force” to drive the system toward that fixed point, then, with a sufficient
number of iterations, the system will converge to (or be trapped in) that
point regardless of what the starting configuration of the system is. In a
stochastic system such as a Markov chain, the “fixed point” is a probability
distribution, the so-called invariant or equilibrium distribution, and the
“force” that drives the process toward this distribution is an appropriate
transition rule. Several excellent books (Asmussen 1987, Ethier and Kurtz
1986, Nummelin 1984) explain this phenomenon rigorously.

Let A™(x,y) denote the n-step transition function of a Markov chain:

AM(x,y) = P(x™ =y | x0 =x).

Then, with A (x,y) = A(x,y), the Chapman-Kolmogorov equations take
the following form:

A (xy) = / A™ (x, 2)p'™ (2, y)dx,

for any n,m > 0.

If the state space is countable, say, X = {1,2,..., N}, then the transition
matrix can be written as a matrix A = (a;;), where q;; is the transition
probability from state ¢ to state j. The Chapman-Kolmogorov equation
takes the form

N
AT (i,) = 3 A™ G, k) AT (k,).

k=1

248 12. Markov Chains and Their Convergence

This expression coincides perfectly with a matrix operation and is easy to
verify from the Markov property (12.2):

N

P = j1x© =) = Z P = x(W = k| x(O =)

k=1

N

= Y A™ (G, k) AT (k,).
k=1

In summary, we have
AlmAn) _ g(m) g(n) — gmn_
In the later part of this book, we use A and A" interchangeably, with

the former emphasizing on the conditional probability aspect and latter on
the matrix aspect of the n-step transition function of A.

12.1.2 Conwvergence to stationarity

Let p, be the distribution of x(9) | which can be degenerate at a point mass
x. A nearly rigorous way to understand why a Markov chain converges is
to analyze its transition matrix A directly. It is easy to see that because
Zle a;; = 1 for all 4, A has an eigenvalue 1. Consider now an arbitrary
function hg on the state space X. Because of the discreteness of X, this
function can be written as a vector hg. Then, the new vector h; = Ahyg is
simply the conditional expectation function

I (x) = Blh(x®) | x* = x]
for x running through X'. Because
var{ E[h(xM) | x© = x]} < var{h(xV)},

we see that all of A’s eigenvalues have to be smaller or equal to 1 in
absolute value. Additionally, theory for positive matrices (Berman and
Plemmons 1994) indicates that all of A’s eigenvalues are real and A can be
diagonalized; that is, we have the expression

A= BAB™,
where A = diag(1, A2,... , Ax) with 1 > |Ag| > -+ > |Ag|. Hence, as n — oo,
1 0 0 1 0 0
0 A 00
A" =B _ B' "= B _ B!

0 AR 0 0

12.1 Basic Properties of a Markov Chain 249

if and only if |A2| < 1. Because mA™ = 7 and the limit of A™ is of rank 1,
every row of the limiting matrix A* must be the same as .

The above argument loosely shows that the chain will converge to its
unique invariant distribution if and only if matrix A’s second largest eigen-
value in modular is strictly less than 1. It also shows that in the finite state-
space case, the convergence rate is geometric (i.e., the “distance” between
the distribution of x® and the target distribution decreases geometrically).

The most commonly used distance measure between two probability mea-
sures P and Q is the variation distance or the L'-distance defined as

1P = Qllvar = sup |P(S) — Q(S)|
Sex

2 1Pe) - Q)|

xXEX

1P —QlL:- (12.3)

N =

When the two distribution have density functions, p(x) and ¢(x), the above
distance can be re-expressed as

1P = Qllver = %/|p(x) _ g(x)|dx.

Another useful distance is the x2-distance defined as

IP = QI3 = varp{Qx)/P(x)} = D |Q(x) — P(x)[*/P(x). (12.4)

XEX

It can be shown that the x2-distance is “stronger” than the previous two
ones; that is, if the chain converges to the target distribution geometrically
in y2-distance, it will also converge geometrically in variation distance. See
Diaconis and Stroock (1991) for more details. The geometric convergence
property of a Markov chain can be precisely expressed as follows: There
exists a constant ¢ and |Az| < 1 such that

A @,) = ()llpe < elof™

For a finite state space, geometric convergence holds for both L!- and x?-
distances (k=1 or 2).

However, it is not so easy to show algebraically that A’s second largest
eigenvalue in modular is strictly less than 1. Classical Markov chain theory
offers an attractive solution to this problem from a probabilistic argument.
The following two basic properties are important for a Markov chain’s
asymptotic behavior.

Definition 12.1.1 A state x € X is said to be irreducible if under the
transition rule one has nonzero probability of moving from x to any other
state and then coming back in o finite number of steps. A state x € X is
said to be aperiodic if the greatest common divider of {n : Alm) (x,x) > 0}
s 1.

250 12. Markov Chains and Their Convergence

Clearly, if one state in X is irreducible, then all the states in X must also
be. The aperiodicity basically means that there are no parity problems.
Clearly, if a state x is aperiodic and the chain is irreducible, then every
state in X' must be aperiodic. If a finite-state Markov chain is irreducible
and aperiodic, then it converges to the stationary distribution exponentially
fast — this is a classical result which will be proved in Section 12.3. Before
we get into the serious theorem-proof mode, we digress to illustrate the
“coupling” method, one of the most useful and elegant probabilistic tools,
through two simple examples.

12.2 Coupling Method for Card Shuffling

12.2.1 Random-to-top shuffling

The coupling method can be applied elegantly to analyze the card shuffling
scheme described in Example 3 of Section 12.1. Imagine that we have two
decks of n playing cards. The x deck starts with a special configuration
x(© (all ordered, say), whereas the y deck has been thoroughly shuffled
(i.e., it is a random sample from the population of n! permutations). We
can implement the following procedure to “couple” the two decks of cards.
Suppose at the tth step, a random card in the x deck, say, the six of hearts,
is chosen and placed at the top of the deck. We can also choose the same
card, the six of hearts, in the y deck and put it also at the top of the
deck. Note that although the physical process of choosing this card in the
y deck is a bit different from that in the x deck, this six of hearts is indeed
a card selected at random (i.e., having equal probability of being any of
the n cards). Thus, this process does not disturb the stationarity of the
y deck; that is, the y deck is still well shuffled after this move. Now, all
the cards that have been touched up to time ¢ are in identical positions in
both decks. Therefore, time T' when all the cards in the x deck have been
touched according to the random-to-top process is the time the x deck and
the y deck become identical in order.

Since the y deck starts from the equilibrium distribution and each move
does not disturb its stationarity, the y deck still follows the stationary
distribution (i.e., the uniform distribution in this case) at and after the
“coupling time” T'. Because of the coupling, the x deck also follows its
stationary distribution at and after time T'. Now, the problem is reduced
to the coupon collector’s problem in elementary probability: How many
times do we have to draw the card in order to touch all of them? It is easy
to see that

1 1
n n-—1

+---+1}wnlogn,

12.2 Coupling Method for Card Shuffling 251

and var(T) & 0.72n. So the answer is: it will take about n(log n+c) random-
to-top shuffles to completely mix a deck of n cards.

12.2.2 Riffle shuffling

How many ordinary riffle shuffles are needed to bring a deck of cards close
to random? The answer is 7 times for the regular deck (52) of playing
cards. This result of Diaconis and co-workers (Diaconis 1988) is one of the
most elegant convergence results in modern Markov chain theory. Here, we
describe an easier argument of Reeds (1981), which gives us a slightly worse
result (about 11 times).

To prove mathematical results for riffle shuffling, we need a statistical
model to describe the process. One reasonable model assumes that a deck
of n cards is first cut into two piles according to the Bionom(n, 1/2) dis-
tribution. Suppose k cards are cut off and held in the left hand and the
remaining n — k cards are held in the right hand. Drop cards with proba-
bility proportional to packet size. For example, if a deck of 52 cards is cut
to kK = 20 and n — k = 32. The probability that the first card drops from
the left hand is 20/52. As shown by a data analysis carried out by Diaconis
and co-workers, this statistical model seems to be a reasonable approxi-
mation to real-life card shuffling, at least for ordinary people (shuffles of
professional dealers are “neater”).

It can be shown that the foregoing model is, in fact, mathematically
equivalent to another model, the inverse shuffling model: Label the back of
each card by 0 or 1 according to an independent fair coin toss; remove all
cards labeled 0 and place them on top of the deck, keeping other relative
orders unchanged.

The inverse shuffling model lends us some more insight into the analysis.
After one inverse shuffle, all the cards labeled 0 must be above all those
labeled 1. We can imagine that the effect of the second shuffle is to add a
random 0 or 1 label to the left of the previous label on each card. Thus, all
the cards with label 00 must be above those with 01, and then above those
with 10, and then 11. After ¢ shuffles, every card is associated with a random
binary sequence of length ¢. At time 7" when all such randomly generated
binary sequences of length T are distinct, the deck becomes completely
random (i.e., all the cards are sorted according to a randomly generated
order). It is easy to see that P(T < t) is the same as the probability that n
balls are dropped into 2¢ boxes and there are not two or more balls in one
box. Thus,

P(T>t):1—ﬁ(1—2%). (12.5)

252 12. Markov Chains and Their Convergence

A stopping T is called strong uniform time by Aldous and Diaconis (1987)
if
Px;eS|T=t)=U(S), Vtand S, (12.6)
where U is the uniform probability measure on X. It is easy to show from
(12.6) and the Markov property that P(xiys € S | T =t) = U(S) for all
s > 1. The coupling time T for random-to-top shuffling is clearly a strong
uniform time.

Let @ be the distribution of the card ordering after ¢ shuffles. Then, for
a strong uniform time 7', we have

1Qs — Ullvar = sup |P(x¢ € S| T < {)P(T < 1)
S

+P({x; € S}N{T >t} = U(S)|
Z |P(x; € S| T > t)P(T > t) — n(S)P(T > t)]
S

< P(T>1). (12.7)

Combining (12.5) and (12.7) gives us a bound for how fast the card shuffling
process convergences.

12.3 Convergence Theorem for Finite-State
Markov Chains

The following theorem is one of the most well-known classical results, for
which we provide a proof based on the coupling method.

Theorem 12.3.1 Suppose the state space X of a Markov chain is finite.
The transition function of this chain is irreducible and aperiodic; then,
A (xg,y) = P(x{™ =y | x(©) = x¢) as a probability measure on y con-
verges to its invariant distribution w(y) geometrically in variation distance;
that is, there exists a 0 <r <1 and ¢ > 0 such such

1AM @,) = 7llvar < er™

Proof: First, it can be seen that the irreducibility and aperiodicity condi-
tions guarantee the existence of an integer ng such that A()(x,y) > 0 for
all x,y € X; that is, we are able to find a large enough ng so that it is
possible to travel from any state to any other one in ng steps. Therefore,
we can imagine having another Markov chain whose one-step transition is
the same as the ng-step transition in the original chain. If we can prove the
convergence result for the new chain, we also have a similar convergence

12.3 Convergence Theorem for Finite-State Markov Chains 253

result for the original chain. Thus, it is sufficient for us to prove that the
convergence result holds for a Markov chain with a transition matrix A that
has all nonzero entries. From now on, we simply assume that A(x,y) > 0
for all x,y € X.

Because the state space is finite, we can find a small enough number
€ > 0 such that

A(x,y) 2 en(y)

for all x,y € X. Let II be a |X| x |X| matrix with each of its row vectors
being 7. Then, II can be regarded as the transition matrix that generates
independent draws from distribution 7 [i.e., II(x,y) = 7(y)]. We then has
the following simple identity:

A=(1-¢eA* +ll, (12.8)

where A* = (A — €Il)/(1 — €) is clearly another transition function (i.e.,
all of its entries are non-negative and every of its rows adds up to 1).
An “operational” interpretation of (12.8) is as follows: We can implement
the transition rule by first tossing an e-coin (i.e., the one that shows head
with probability € and tail with probability 1 — ¢); if the coin shows head,
the next state is generated by II, whereas if the coin shows tail, the next
state is generated by A*. This probabilistic mixture of transitions is clearly
equivalent to A.

Now, our basic setups are mostly in place and we can use the coupling
argument to prove convergence. Imagine that we start two Markov chains
x©,x(M . and y©@,y® ... both evolving according to the transition
function A. The first chain is started with x(©) = xg, and the second chain
is started from the equilibrium distribution (i.e., y(©@ ~ m). Thus, because
of the Markov property, the y chain is always in stationarity (i.e., y®) ~
for all t). Therefore, if we can link the evolvement of the two processes and
can find a “coupling time” when the two chains become identical, then the
x chain becomes stationary after the coupling time.

In order to couple the two chains, we evolve them jointly by using the
mixture interpretation of (12.8). At every step ¢t we first toss an e-coin.
If a tail shows up, x® and y® are evolved separately according to A*
to their corresponding next configurations. If a head shows up, we update
both the x chain and the y chain by a common z drawn from . In this
latter case, the two chains are “coupled” and they will be always coupled
thereafter. Let T denote this coupling time. Since we start the y chain from
the stationary distribution, we know that the x chain is also in stationarity
once the coupling event occurs; that is, for any S C X,

P(xT e s) = iP(y(“ €S|T=t)P(T =t)=n(S).
t=1

254 12. Markov Chains and Their Convergence

The last equality follows because the occurrence of the coupling event
(based on a coin toss) is independent of the state variable.
Furthermore, we have

PT>t)=e{(l—ef+(1—-e) +...} =(1-¢).
Thus, for any set S C X, we have
|P(x) € §) —m(9)| = |P(x" € 5) - Py" e 9)
< P(x #£yW)y = P(T > t) = (1-¢).

This means that the variation distance between the distribution of x(*) and
the stationarity distribution converges to zero geometrically. ¢

It needs a bit of thought to convince oneself that the foregoing coupling
prescription is a valid operation; that is, the operation does not violate the
transition rule for both the x chain and the y chain.

Once we have shown the convergence of a finite-state Markov chain to
its unique stationary distribution, we can now go back to use the algebraic
method to see that the convergence rate is actually governed by |A2|. The
coupling argument similar to the above is also very useful for analyzing
the infinite-state case and has been used extensively for studying Markov
chains with a continuous state space (Nummelin 1984).

12.4 Coupling Method for General Markov Chain

As demonstrated by a number of researchers (Athreya and Ney 1978,
Asmussen 1987, Mykland, Tierney and Yu 1995, Nummelin 1984, Num-
melin and Tweedie 1978, Rosenthal 1995, Roberts and Rosenthal 1998,
Murdoch and Green 1998) in the past decade, a very useful concept in
studying an infinite-state Markov chain is that of the small set, or mi-
norisation condition. This condition requires the existence of a set C C X
of which all the states have a common component. As with the previous
sections, we let A(™)(x,y) be the n-step transition function:

A (x,y) = /// AQ, x DY A YD) < D).

Clearly, A (x,-) is a probability measure (density or distribution func-
tion) on X. A main goal of all the convergence analyses is to provide a
quantitative or qualitative guide on how fast this probability measure con-
verges to the target distribution 7. The following two definitions are crucial
in the later analysis.

Definition 12.4.1 A subset C C X is small if there exists an integer
ng > 0, € > 0, and a probability measure v(-) on X such that

A (x,.) > ev(:), VxeC.

12.4 Coupling Method for General Markov Chain 255

It is worthwhile to note here that when X is finite and the chain is
irreducible, the whole space X is a small set. The coupling approach used
in the proof of Theorem 12.3.1 relies heavily on the irreducibility condition
which guarantees the existence of an ng such that A" (x, -) has a common
component for all x € X. With the small set, we can now contemplate a
similar coupling argument for the general Markov chain.

Consider initiating two Markov chains: x(%) is drawn from an arbitrary
initial distribution and y© is drawn from the equilibrium distribution 7.
Without loss of much generality, we suppose ng = 1 for the small set C.
Then, we can couple the two chains as follows. (A) If at time ¢, both x(*)
and y are in C, we toss an e-coin. If it shows head, then we draw x ~ v(-)
and let x(t+1) = y(t+1) = x. if it shows tail, we update x(**+1) and y{+1)
independently according to the “complementary” measures, {A(x(®),.) —
ev(:)}/(1 =€) and (A(y®,-) — ev(-))/(1 =€), respectively. (B) If x*) and
y® are not all in C, we simply update them independently according to
A(x®,-) and A(y®,-), respectively. Once the two chains are coupled, they
will be identical thereafter. Since the y chain starts from equilibrium, we
have

IAO®,) =7 ()llar < P #y9) < P(T > 1),

where T is the coupling time.

Each time both x® and y® are in C together, there is a probability of
e of coupling. Let N; be the number of times both x(*) and y(®) are in C
for 1 < s <t. Then,

P(T>t) = P(T>tand N; > j)+ P(T >t and N; < j)

< (1-€) + P(N; < j).

We now need only to address the following question: How frequently will
the x chain and the y chain visit C' together? Clearly, if the small set C'
is physically large (e.g., C = X), then N; is large and P(N; < j) is small
for j ~ O(t). When the common component is also “big” (i.e., € big), the
chain converges to its stationary distribution quickly. In many cases, one
can directly studies the behavior of the chain to get a bound on quantity
P(N¢ < j), which reflects the “attractiveness” of the small set C.

In order to obtain a convergence bound for a general Markov chain, Meyn
and Tweedie (1994) introduced the following drift condition.

Definition 12.4.2 The chain is said to satisfy a geometric drift condition
for the small set C if there is a 7w-almost everywhere finite function V(x) >
1, constant A < 1, and constant b < oo, such that

Ewwmnﬂm=ﬂs/wwawwsxww+Mdn

where 1¢(x) is equal to 1 when x € C and 0 otherwise.

256 12. Markov Chains and Their Convergence

With this condition, Meyn and Tweedie (1994) showed that
A" = 7llzs < p"F/(p =), Y p >0,

where 9 =1— M,

1

My = a0 [1=A+b+b + (a(b(l—X) +0%)],
and
(o = sup i[Am(a,a) — A" Y, a))2™|.
|z|<1 m=0

Under a slightly different drift condition: 3 V(:) > 0, A < 1, b < o0,
d > 0, and the small set C = {x: V(x) < d}, such that

E[V(Y) | x© =x] < AV(x) + b,

Rosenthal (1995) showed that for any 0 < r < 1 and M > 0,

147,) — 7Yz < (1 - 05 4 Coa) (@A) (a0 ar)",

where
1+2Mb+ AMd
1 —
= 1 ad A=14+2(Ad+b)M,
and
Mb
Co(M)=1+m+MV(X(O)).

In practice, finding an appropriate test function V'(-) is often difficult.

12.5 Geometric Inequalities

Over the past two decades, probabilists and computer theorists have found
that a number of elementary inequalities in differential geometry are very
useful for bounding eigenvalues of the transition matrix of a Markov chain.
In this section, we follow Diaconis and Stroock (1991) to introduce a few
techniques such as the Poincaré inequalities and Cheeger’s inequality for
analyzing a finite-state Markov chain. The central idea of these techniques
is to relate the Markov chain convergence rate to a measure of “bottlenecks”
in the Markov transition graph.

12.5 Geometric Inequalities 257

12.5.1 Basic setup

Let A(x,y) be an irreducible Markov transition function on a finite state
space X. We assume in this section that A(x,y) satisfies the detailed bal-
ance with respect to its invariant probability measure 7 and define

Qx,y) =m(x)A(x,y) = 7(y)A(y,%)-

Such a Markov chain is often called reversible in the literature.
As we have discussed earlier, A has a set of eigenvalues

1=00>p1> > PBm-1>—-1, wherem =|X|.
It is sometimes more convenient to consider a related matrix, the Laplacian
L =1 — A, because its eigenvalues, \; =1—3;,7i=0,... ,m — 1, are easier

to characterize by a minimax argument; that is, we have the relationship
(Horn and Johnson 1985)

M = inf {‘ig‘f(i’)) var(¢) > o}, (12.9)
where var(¢) = E,[¢(x)?] — E2[¢(x)] is the variance with respect to 7 and
£9.6) = 5 Y I8) - @I Qx.Y) (12.10)

x,y
For historical reasons, this is also called the quadratic form of Laplacian L.
A finite-state Markov chain naturally induces a “connection” graph G =
(X, E), where the set of vertices is the whole space and the set of edges
consists of all the pairs of states with nonzero transition probabilities:

E ={(x,y): ifandonlyif Q(x,y)> 0}

For each distinct pair of states x and y in X', we can choose one path -,
that leads from x to y. (At least one such path exists because the chain is
irreducible.) Let T' be the collection of all the paths we have chosen (one
for each ordered pair x and y). We define the “length” of the path 7., as

”'Yzy” = Z Q(e)_la
€EYay

where the sum is over all the edges in the path and the edge weight Q(e)
is equal to Q(et,e™), where e™ and e~ are the two vertices connected by
edge e.

12.5.2 Poincaré inequality

An important geometric quantity that measures how well all the states in
X are “connected” is defined as

= £(I') = max Y Ieyllr)a(y), (12.11)

Yzy D€

258 12. Markov Chains and Their Convergence

where the maximum is taken over all the directed edges in the graph and
the sum is over all paths which traverse e. Clearly, k will be very large if
there is an edge e which has a small @(e) but is used heavily by many paths
in the graph (like the usual cause of a traffic jam). With these notations,
we have the following theorem.

Theorem 12.5.1 (Poincaré inequality) The second largest eigenvalue
of an irreducible Markov chain A satisfies

/Bl < 1_14771;

where K is defined by (12.11).

Proof: Because of (12.9), we need only to show that var(¢) < vE(¢,).
Define for any edge ¢(e) = ¢(w) — ¢(v), where e is the directed edge
connecting from v to w. Then,

i) = 5 Y 1969 — 6P r(0n(y)
R N NN x
3 X [(89) #@| mwne)

x,yEX _CE’Yzy

<3 YR T Q@ X e pron(y)
X, yEX L e€Yay €€Yay

= 2 Y Ihellnton) 3 Qe)te?
x,y€EX eEYay

= 2300 Y Ihesln@n(y) < w€(6,9).
e YazySe€

The inequality follows from the Cauchy-Schwartz; the last equality is due
to the exchange of the two summation signs. ¢

Instead of using the inequality in the foregoing proof, we can apply the
Cauchy-Schwartz inequality slightly differently to obtain another Poincaré

12.5 Geometric Inequalities 259

inequality:
2
1
var() = 5 3 m(x)7(y)
X, yEX ee'me
<5 > 1pa)n(y)
,yEX eE'ymy €Yy
1 2 -1
= 5 ¢(e)” p Q€)™ [raylm(x)7(y)
x,yeX eE’ymy
= ZQ e)¢ e Z Q 6 71|’Yzy|7r(x)7r(}’)a
e Yay D€

where |vzy| is the number of edges in 7,,. Therefore, we have

Var(¢) < Kg(¢7 ¢)7

where

K =max{ Q)™ Y [y lr(x)m(y) ¢ - (12.12)
Yay D€

Sometimes this newer version of the Poincaré inequality is better than
the one stated in the theorem and sometimes vice versa (Diaconis and
Stroock 1991, Fill 1991).

A similar technique can also be used to bound the smallest eigenvalue
and is omitted here (Diaconis and Stroock 1991). It can be seen from the
definition that ||v,y|| can be very large, which gives rise to a very large &
and a bad convergence bound, when the target distribution 7 is very non-
uniform (i.e., having a very small probability of visiting certain states).
Cheeger’s inequality to be discussed later is useful to get around this tech-
nical difficulty.

12.5.83 Ezample: Simple random walk on a graph

Let G = (V, E) be a undirected graph where V is the vertex set and E is
the edge set. A nearest-neighbor random walk on G can be described as
follows: Suppose the walker is at a vertex x at time ¢. Then, at time ¢ + 1,
he chooses at random to visit one of its nearest neighbors (i.e., the set of
all vertices that are connected with x by an edge). The degree of a vertex,
d(x), is just the number of its nearest neighbors:

dx)=#{y e X¥: {x,y}€E}

260 12. Markov Chains and Their Convergence

Thus, the transition function A(x,y) is equal to 1/d(x) if y is a neigh-
bor of x and is zero otherwise. It is not difficult to see that the invariant
distribution of this chain is

m(x) = d(x)/2|El,

where |E| is the total number of edges, and Q(x,y) = 1/2|E| if (x,y) € E
and 0 otherwise. For any given path, we have

eyl = 172yl /21 E| < 74 /2|E],

where || is the number of edges in a path v and 7. is the length of the
longest path.
It is trivial to verify that

d 2
< o .
o) < () 2B

where d, = maxd(x) and b measures how busy the “busiest” street is:
b=max#{yel: y>e}.
e

A direct application of the Poincaré inequality gives rise to the following
result.

Corollary 12.5.1 For the simple random walk on a connected graph G =
(V, E), the second largest eigenvalue is bounded by

2|E|
<1-
b s d2,b’

where dy, v«, and b are as defined earlier.

Simple random walk on a cube. A cube on an d-dimensional space
(denoted as Z¢) can be coded by the set of all 2¢ binary strings of length
d, x = (21,... ,24), where ; = 0 or 1. A simple random walk on it can
be implemented as follows: Randomly pick a coordinate z; and change its
current value to 1 — z;. The graph for this Markov chain has 2¢ vertices
and d2%! edges. Every vertex has the same degree, d. The length of the
longest path is also d. For any pair X,y € Z$¢, we can define a path from x
to y by changing every coordinate of x to the corresponding coordinate of
y, from left to right. For this choice of T, b = 2¢~!. Thus, we get a bound

B <1-2/d°.

This is a very reasonable bound, but is not exactly the “correct answer.”
From other analyses, it is in fact known that 8; = 1 —2/d (Diaconis 1988).

12.5 Geometric Inequalities 261

Thus, the bound we obtained is off by a factor of d. Diaconis and Stroock
(1991) noticed that the correct answer can be obtained if we project the cor-
responding random walk on Z¢ to the Ehrenfest chain [i.e., a Markov chain
that counts the “distance” from origin (the number of 1’s in the vertex)].
For this chain, the corresponding states are {0,1,...,d}, the transition
probability is A(j,7 +1) = A(j,j — 1) = 1 —j/d, and the stationary distri-
bution is 7 (j) = (j) /2%. The reader can verify that the worst edge is the
middle edge, which gives

1
K= Zdlogd(l-l—o(l)) and K =4d/2,

where £ and K are as defined in (12.11) and (12.12). Thus, the correct
bound can be obtained by using the second version of the Poincaré in-
equality.

12.5.4 Cheeger’s inequality

In late 1980s, researchers (Jerrum and Sinclair 1989, Holley and Stroock
1988) discovered that the Cheeger’s inequality can be used effectively to
bound a Markov chain’s convergence rate. A successful example is Jerrum
and Sinclair’s analyses of a Markov chain Monte Carlo algorithm for com-
puting the permanent of a 0-1 matrix.

For any subset S € X, we define S = X'\ S and

QS5 =33 Qx.y).

xeSy€ESe
The conductance of the chain is defined as

— min 9559
h= S: WI(I.g)nSl/2 F(S))

The quantity Q(S, S°¢)/n(S) measures the relative flow out of S when the
chain is in stationarity. If this is large for all S, then there are no bottlenecks
and the chain should converge fast.

Theorem 12.5.2 (Cheeger’s inequality) Let 81 be the second largest
eigenvalue of the Markov chain transition matriz A. Then,

h2
1-2h<p1<1- -

Since the proof of the theorem is a bit complicated, we refer the interested
reader to Diaconis and Stroock (1991) for more details. We give here a few
examples for using the inequality to bound Markov chain convergence.

Simple random walk on a cube. As discussed in the previous sub-
section, the state space of this Markov chain has |X| = 2¢ vertices and the

262 12. Markov Chains and Their Convergence

stationary distribution is 7(x) = 27¢. For any subset S € X, 7(S) = |S|/2¢,
where |S| denotes the size of set S. Moreover, it is not difficult to see that
Q(S,S5°)/n(S) = |0S]| x ﬁ, where |0S] is the number of “boundary links,”
or “outward connections,” S has. An induction argument (on dimension-
ality) shows that |9S|/|S| > 1 for |S| < 2¢7! and the equality is achieved
if welet S = {x: z; =0} (corresponding to one-half of a cube). Thus, we

have h = 1/d, which gives us the bounds

2 1
1- P <p<1- 2B
Note that the true answer is §; = 1—2/d. Thus, the Cheeger’s lower bound
is tight, whereas the upper bound is slightly worse than that obtained by
the Poincaré inequality.

To show that h = 1/d for Z4, we first verify that when d = 1, the lower
bound of |0S|/|S] is one. Suppose the lower bound of |0S|/|S] is also one
for d = 1 — 1. For d = I, we assume that the lower bound for |0S5]/|S] is
achieved by a set S!. We can further divide S! into S} = {x € S',z1 = 0}
and S! = S'\ S). Because |S!| < 271, we assume, without loss of any
generality, that |Si| < 2'~2. By the induction assumption, set S} has at
least |S'(0)| “horizontal outward links” on the half-cube {x : z; = 0}. If
ISt < 212 as well, we can easily show that

85" = [0(So L S1)| > [So] + 17| = 15"
On the other hand, if | S| > 2!=2, then S! has at least 2/~ —|S!| horizontal
outward links and |S!| — |S§| vertical ones. Hence, we have
05" > |S5] + (ISi] — 1So]) + (2"~ — |S1]) = 2"

Hence, we showed that |[0S!| > |S!|.
It seems rather difficult to find the exact value of h for a general problem.
Jerrum and Sinclair (1989) introduces an elegant geometric argument to

give a bound on h. First, they noticed that for any subset S € X with
m(S) <1/2,

W =x(S)n(S°) > n(S)/2.

Second, they introduce a “canonical path” ~,, for every pair of vertices
x,y € X. Moreover,

W = Z Z m(x)m(y) < Z Z m(x)7(y),
xeSyese R e

where the first summation after the inequality sign is over all the cutting
edges between S and S°. Let

n = maxQ(e) ™! > a(x)w(y) (12.13)

YzyDe

12.6 Functional Analysis for Markov Chains 263

We can easily show that

W <n Y Qe) =nQ(S,S5°).

ecdsS

Hence, we have h > 1/2n and the following theorem.

Theorem 12.5.3 (Jerrum and Sinclair) The second largest eigenvalue
of a finite-state reversible and irreducible Markov chain satisfies

B <1-1/877, (12.14)

where 1 is defined in (12.13).

For the simple random walk on Z¢, we can define a path from x =
(z1,...,24) toy = (y1,-..,yq) as the one that changes one coordinate of
x a time from left to right:

(1,22, ... y,xq) = (Y1,%2,-.- ,2a) = (Y1,Y2,23,--- ,Td) —> -~

2d—1

For any edge in the graph, there are such paths that use the edge.

Thus,

1\ 1 1 d
= (=) 2012 x_— =2
K (d2d> 94 X 31 = 3

By using (12.14), we obtain the same upper bound for §; as the one that
uses the exact value of h.

Both the Poincaré and Cheeger inequalities are very powerful tools and,
if used properly, can provide us a great deal of insights into the convergence
issue of a Markov chain. However, so far, most of the success stories of these
geometric techniques are for random-walk-type Markov chains where the
target distribution is by and large a uniform distribution. Although the
path arguments have been extended to deal with some infinite state spaces
and special nonuniform distributions (Rosenthal 1996), their usefulness in
analyzing general Monte Carlo Markov chains still needs further demon-
strations from interested researchers.

12.6 Functional Analysis for Markov Chains

Suppose X(O),X(l),... are consecutive states from a stationary Markov
chain with equilibrium distribution 7(x) and transition function A(x,y).
This section introduces a few basic concepts in functional analysis that
have been used to analyze a Markov chain.

264 12. Markov Chains and Their Convergence

12.6.1 Forward and backward operators

Definition 12.6.1 Let the space of all mean zero and finite variance func-
tions (with respect to w) be denoted as

Li(r { /h2 x)dx < oo and /h)dx=0}.

This is a Hilbert space when equipped with an inner product

(h(x),9(x)) = Ex{h(x) - s(x)}. (12.15)

Two operators F' and B, where F stands for “ forward” and B stands for
“backward,” that map L(m) to itself can be defined as:

= /h A(x,y)dy = E{t(x") | x© = x}, (12.16)
)%g/Mﬂ—jﬁﬁEMx=Ew@@me:y}uzn)

The norm of an operator F is defined as

V= max [1FhI, where [[o]* = (b, B),

and the spectral radius of F is

rp = lim ||F™|/™.
n— 00

By the Markov property we see that F' and B are adjoint to each other:
(Fh,g) = (h, Bg),
and
F'h(x) = E{h(x™)[x© =x),
Bhy) = B{h(x®)|x™ =y}
Using inequality
var[E{h(x") | x©}] < var{n(x")},

we easily show that the norms of the two operators are all bounded above
by 1. When the Markov chain is defined on a finite state space, F' is just a
matrix and rp is simply the largest eigenvalue in norm of F'. A useful link
between the covariance structure of a Markov chain with the two operators
is proved as follows.

12.6 Functional Analysis for Markov Chains 265

Lemma 12.6.1 Suppose x(©) ~ 7. For any h,g € L3(r), we have
cov(h(x™), g(x?)) = cov{F* h(x), B" ¥ g(x)} (12.18)
for any 0 < k <n.
Proof: Since E h(x) = E,g(x) = 0, we have
cov(h(x™, g(x¥) = E{h(x()g(x®)}
= E[E{h(x")g(x*)|x"~1}]
= E[E{h(x™)x" D} B{g(x)x" V}]
— B{Fh(x""). B*1g(x")}
= cov {F h(x), B" 'g(x)}.

The last equality holds because x("~1) follows the stationary distribution
7. An induction argument leads to the conclusion of the lemma. Letting
n =1 in the lemma shows that F' and B are self-adjoint operators. &

The following lemma proves another equivalent relationship.
Lemma 12.6.2 If the Markov chain is reversible, then F = B.

Proof: Since the reversibility of a Markov chain implies the detailed balance
condition, 7(x)A(x,y) = 7(y)A(y,x), we have

Bi) = [™Y

= /h(x)A(y,x)dx = Fh(y).

dx

Hence, operators F' and B are equal and self-adjoint. ¢

Theorem 12.6.1 For a reversible Markov chain, if x© ~ m, thenV g €
Li(m),

cov{g(x(?), g(x>™)}

E[{F"g(x)}’] = E[(B™g(x))’]
var[E[- -- B[E{g(x®) | x} | x®7] | --- | x(™)]].

Hence it is a non-negative monotone decreasing function of m. Further-
more,

|COV{g(X(o))7 g(x(2m+1))}| < Cov{g(x(O)L t(x(zm))}_

Proof: The first conclusion follows from lemma 12.6.1 with & = m and
lemma, 12.6.2. The monotonicity of even-lag autocorrelations follows from
inequality

var[E{g(x) | y}] < var{g(x)}.

266 12. Markov Chains and Their Convergence

The last inequality follows from the Holder inequality:

lcov{g(x(?),g(x®™)}| = |cov(F™g(x), F"+g(x))|

< VNar(Frg)} -var(Fig(x)}
< var{F™g(x)} = cov{g(x(®), g(x>™)).

<

12.6.2 Convergence rate of Markov chains

The concept of y2-distance (12.4) can be linked with the norm and spec-
tral radius of a forward operator. Let E,{h(x)} denote the expectation
taken under the measure P(™ (dx) of the nth-step evolution from an initial
distribution P(%)(dx), then

s

IRIP1 P — 3.

=
™

|En{h(x)} — Ex{h(x)}|"

IN

P(™ (dx)
) m(dx)

IN

Taking h = Ig—n(S) for 7(S) < 1/2, the indicator function of a measurable
set A, we see that

1
PO(S) = a(S)] < SIPE]2,

implying that the variation distribution is bounded above by x? distance.
Suppose the starting distribution must have finite y2-distance from =

Condition (A). The density P(®)(dx) satisfies the condition
2 _ / Py (dx)

cy = W(dx)—1<oo.

We have the following simple result.

Lemma 12.6.3 The spectral radius of operators F' and B are equal. If this
radius is less than 1, then the chain converges to its stationary distribution
geometrically in x2-distance, provided that the starting density Py(dx) has
a finite x2-distance from the stationary distribution .

Proof: It is well known that the adjoint operators in a Hilbert space have
the same norms and spectral radii (i.e., equality ||[F™| = ||B"|| holds for
all n). Hence, we have the equality between the two spectral radii:

rg = lim || F" ||*= lim || B"||*=rg. (12.19)
n—oo n—oo

12.6 Functional Analysis for Markov Chains 267

Furthermore, there exists a ng such that || F™° ||< 1. By using Lemma 12.6.1
and writing go(x) = P (dx)/n(dx), we can convert the convergence rate
problem into a covariance problem:

_E.h(x)| = nix.dy) | F0@)]
B(x) = Be)] = | [n)an ey [240]
jcovs (h(x), g0 (<)}
|COV7r{Fn h(X),go(X)}l

co [E™ [I- 1l A 1l -llgoll-

IA

Combining this with (12.19) and the condition that ||go|| < oo, we proved
the result. ©

12.6.3 Mazimal correlation

As indicated in Lemma 12.6.3, the convergence rate of a Markov chain
is closely related to how correlated the two states of the chain, x(©) and
x(") are. To explore this connection, we define a general notion of mazimal
correlation between two random variables.

Definition 12.6.2 Suppose random variables x and y have the joint dis-
tribution w(x,y). Let L2(r) = {f(x) : varg{f(x)} < oo}, L2(7) = {g(y)
var{g(y)} < oo}; the mazimal correlation v between x andy is defined as

v = sup corr{ f(x), 9(y)}- (12.20)
FeL2(x),ge L2 (x)

The concept of maximal correlation has been developed since the 1930s.
For (x,y) to be bivariate normal, several pioneer researchers (Maung 1941,
Lancaster 1958) proved that the maximal correlation is exactly the same
as the absolute value of its ordinary correlation. Some works on general
bivariate random variables were done by Lancaster (1958), Cséki and Fis-
cher (1960), Renyi (1959), and Sarmanov (1958). Breiman and Friedman
(1985) also make use of the maximal correlation concept in proving prop-
erties for their ACE algorithm. It is not difficult to verify that the maximal
correlation can be expressed another way (Liu 1991):

v = Z var[E{h(x) | y}] (12.21)

E(h)=0,var(h)=1

This implies that «y is the largest eigenvalue of the conditional expectation
operator defined on the space of mean zero functions.

With Lemma 12.6.3, we can set up a duality between convergence rate
and correlation structure. More precisely, it follows from Lemma 12.6.3
that the following result is true.

268 12. Markov Chains and Their Convergence

Lemma 12.6.4
I F™ [|=I| B" [|= yn,
where v, is the lag-n maximal correlation:

o= sup corr{g(x?), h(x(™)}, (12.22)
g,heL?(m)

where x© and x(™ are n-lag apart in o stationary Markov chain.

If the mean-zero function h(x) is an eigenfunction of operator F' corre-
sponding to eigenvalue A, then from Lemma 12.6.4 we have

IX*[lIAll = [CF™h,)] < [|F™]] - [|A]l,

which implies that |A\"| < 7,. On the other hand, we also know that
lim,, 00 (7,)'/™ is equal to the spectral radius of F.

Suppose F for a reversible Markov chain is a compact operator (for
those who are not familiar with functional analysis, just treat F' as a finite
symmetric matrix). Thus, F' has a set of discrete eigenvalues |A;| > [A2| >
-- -, with the corresponding orthonormal eigenfunctions a; (x), az2(x), ... ,.
These eigenfunctions form a basis of the space. Since F' is self-adjoint in
this case, we have the equality

Yo =71 = |Ad]™
For any h(x) € L(r), we can express it in a spectral decomposition form:
h(x) = cra1(x) + coaa(x) + - - .
Hence, for any n,
F™h(x) = ciAToq (x) + coAJaa(x) + -+ - .
It is seen that

(F"h(x),h(x)) _ cIAT + A3 +---

pn(h) =cort{ F"h(x), h(x)} = (h(x),h(x)) ~ E+E+---

Provided that ¢; # 0, we have
lim {|pn(R)[}'/™ = |Aul.
n—oo
This ties in with the autocorrelation analysis in Section 5.8, suggesting

that monitoring autocorrelation curves in a MCMC sampler are a useful
diagnostics on the sampler’s speed of convergence.

12.7 Behavior of the Averages 269
12.7 Behavior of the Averages

After all the dust settles, we need to go back to our original purpose of run-
ning the Monte Carlo Markov chain: We want to estimate certain “averge”
of the system. Suppose x(@, x(1 ... x(™ is the realization of a single
long run of the Markov chain. Most practitioners use

_ 1

B == h(x9)
=
to estimate the expectation u = E[h(x)]. We know that the laws of large
numbers and the central limit theorem (see the Appendix) hold for h,, if
the x(9) are i.i.d. random variables with a finite second moment. A natu-
ral question is, then, whether the Markovian relationship among the x(?)
changes the overall behavior of such an average. Fortunately, the answer is
no for most real problems.

In order to make the argument rigorous in an infinite state-space, one has
to introduce a number of subtle concepts, definitions, and lemmas that are
beyond the scope of this book. The interested reader is referred to Ethier
and Kurtz (1986), Nummelin (1984), and Tierney (1994). Here, we only
state two theorems for the finite-state Markov chain.

Theorem 12.7.1 Suppose the finite-state Markov chain x(O x(M s
irreducible and aperiodic, then h,, — E.(h) almost surely for any initial
distribution on x(9),

Theorem 12.7.2 Under the same conditions as in Theorem 12.7.1,
vm[hy — Ex(h)] = N[0,0(h)?]
weakly (i.e., in distribution) for any initial distribution on x(©).

In practice, the variance term o(h)? needs to be estimated from the
Monte Carlo samples based on (5.13) of page 125; that is

o(h)?> =0? |1+2 Z pi | = 27ing(h)o?,
=1

where 02 = varg[h(x)], p; = corr{h(x(")), h(x\FV))}, and Tin(h) is the
integrated autocorrelation time.

270 12. Markov Chains and Their Convergence

This is page 271
Printer: Opaque this

13
Selected Theoretical Topics

Topics in this chapter include the covariance analysis of iterative condi-
tional sampling; the comparison of Metropolis algorithms based on Peskun’s
theorem; the eigen-analysis of the independence sampler; perfect simula-
tion, convergence diagnostics, and a theory for dynamic weighting. The
interested reader is encouraged to read the related literature for more de-
tailed analyses.

13.1 MCMC Convergence and Convergence
Diagnostics

When the state space of the MCMC sampler is finite, theorems in Chap-
ter 12 can be used to judge their convergence. Two key concepts are the
irreducibility and aperiodicity. These two concepts can be generalized to
continuous state spaces and be used to prove convergence. One of such the-
orem is described in (Tierney 1994), who used the techniques developed in
Nummelin (1984) for the proof.

Theorem 13.1.1 (Tierney) Suppose A is w-irreducible and A = 7.
Then A is positive recurrent and 7 is the unique invariant distribution
of A. If A is also aperiodic, then, for all x but a subset whose measure
under is zero (i.e., w-almost all x),

|A™) (x,-) = 7||var = O, (13.1)

where || - ||var denote the total variation distance.

272 13. Selected Theoretical Topics

Clearly, all the MCMC algorithms covered in this book have an invariant
measure 7. In most cases they are also w-irreducible and aperiodic. Hence,
their convergence can be “assured,” except that we still have no idea how
fast they converge.

Our view on the convergence diagnosis issue concurs with that of Cowles
and Carlin (1996): A combination of Gelman and Rubin (1992) and Geyer
(1992) can usually provide an effective, yet simple, method for monitoring
convergence in MCMC sampling. Many other approaches, which typically
consume a few times more computing resources, can only provide marginal
improvements. The coupling from the past (CFTP) algorithm described
in Section 13.5 is an exciting theoretical breakthrough and its value in
assessing convergence of MCMC schemes has been noticed. However, the
method is still not quite ready for a routine use in MCMC computation.
Interested reader may find Mengersen, Robert and Cuihenneuc-Jouyaux
(1999) a useful reference, which provided an extensive study on convergence
diagnostics.

Based on a normal theory approximation to the target distribution m(x),
Gelman and Rubin (1992) propose a method that involves the following few
steps:

1. Before sampling begins, obtain a simple “trial” distribution f(x)
which is overdispersed relatively to the target distribution 7. Gen-
erate m (say, 10) i.i.d. samples from f(x). A side note is that in
high-dimensional problems, it is often not so easy to find a suitable
over-dispersed starting distribution.

2. Start m independent samplers with their respective initial states be-
ing the ones obtained in Step 1. Run each chain for 2n iterations.

3. For a scalar quantity of interest (after appropriate transformation to
approximate normality), say § = 6(x), we use the sample from the last
n iterations to compute W, the average of m within-chain variances,
and B, the variance between the means 6 from the m parallel chains.

4. Compute the “shrink factor”

\/EZ\/(n;1+m+lB> df

mn W) df —2

Here df refers to the degree of freedom in a ¢-distribution approxima-
tion to the empirical distribution of 6.

Gelman and Rubin (1992) suggested using § = logn(x) as a general
diagnosis benchmark. Other choices of § have been reviewed in Cowles
and Carlin (1996). Geyer’s (1992) main criticism to Gelman and Rubin’s
approach is that for difficult MCMC computation, one should concentrate
all the resources to a single chain iteration: The latter 9000 samples from

13.2 Iterative Conditional Sampling 273

a single run of 10,000 iterations are much more likely to come from the
target distribution 7w than those samples from 10 parallel runs of 1000
iterations. In addition, good convergence criterion such as the integrated
autocorrelation time (Section 5.8) used in physics can be produced with a
single chain.

Concerning the generic use of MCMC methods, we advocate a variety of
diagnostic tools rather than any single plot or statistic. In our own work,
we often run a few (three to five) parallel chains with relatively scattered
starting states. Then, we inspect these chains by comparing many of their
aspects, such as the histogram of some parameters, autocorrelation plots,
and Gelman and Rubin’s R.

13.2 Tterative Conditional Sampling

13.2.1 Data augmentation

It has been shown in Sections 6.4 and 6.6.1 that data augmentation (DA)
can be viewed as a two-component Gibbs sampler with a deterministic
scan. The transition function from x(© to x(!) in DA is, then,

A xD) = 72 | 2w (2D | 2), (13.2)

where x(*) = (mgt),mét)). An important result proved in Section 6.6.1 is
the expression (6.6) for the one-lag autocovariance of DA. Here we present
more details about the theory developed in Liu, Wong, and Kong (1994,
1995).

From Figure 6.2 and the proof of Theorem 6.6.1, we make the following
two observations:

(i) The marginal chains, {xgt),t =1,2,...,} and {xgt),t =12,...,}
are all reversible Markov chains. In particular, the transition function
for, say, the first chain is

Aol 5) = [al |o)n |20 (33)
(ii) The two marginal chains have the interleaving Markov property de-

fined below.

Definition 13.2.1 A stationary Markov chain {zV) t =1,2,... } is said
to have the interleaving Markov property if there exists a conjugate Markov
chain {y® t =1,2,...,} such that

(a) D and V) are conditionally independent given y®, Vt,

(b) y® and yttV) are conditionally independent given z(ttV) | VE,

274 13. Selected Theoretical Topics

(c) (@D, z®), (z®, y®) and (y®,zE+D)) are identically distributed.

The two chains are said to be mutually interleaving. The interleaving prop-
erty implies the reversibility of both chains.

Lemma 13.2.1 The marginal chains {a:§” } and {:cgt)} constructed in data
augmentation are mutually interleaving.

Consider the forward operator for the marginal chain {mgt) }. From (13.3),
we have

Fih(z1) = / h(z{) Ay (1, 2)dalV)
E; [Ew{h(xl) |£L'2}|£L'1]

If we let 9 be the maximal correlation between z; and z2 under 7, then
the norm ||F1|| is 7¢. Using expressing (12.21), we can write

IR =70 = sup var[E{h(z1) | 22}]-
heL3(m)

Similarly, the norm of F» for the companion chain is also 7Z. Since both
marginal chains are reversible, the two forward operators are self-adjoint.
Thus, their norms are equal to their spectral radii and are equal to each
other. This means that the two chains converge at the same speed. On the
other hand, the joint forward operator F' has the property

Fax®) = [[1, afyras? | o (el | 2o ok,

whose norm is shown to be ||F|| = 7. It is not difficult to show that the
spectral radius of F is also equal to 73, as expected.

The above discussion has two implications: (a) One need only to estab-
lish convergence properties of one of the marginal chains in order for the
joint chain to converge; (b) the convergence rate of data augmentation is
completely determined by the maximal correlation between the two com-
ponents. In statistical missing problems, one component often corresponds
to missing data, ymis, and the other to the parameter §. The maximal cor-
relation between these two components reflects the “maximal fraction of
missing information” (Little and Rubin 1987, Liu 1994b), defined as

var[E{h(0) | ¥mis}]
o<var,(h)<co varg{h(@)}

Hence, the more the fraction of missing information, the larger the maxi-
mal correlation between 6 and yn,;s and the slower the corresponding data
augmentation scheme. On the other hand, because of this duality, we can
also estimate the mazimal faction of missing information in a missing data
problem from the output of its data augmentation scheme (Liu 1994b).

13.2 Iterative Conditional Sampling 275

Furthermore, because

1= E[Var{h(o) | ymiS}] var[E{h(G) | Ymis}]
var, {h(6)} var, (@)}

a larger fraction of E[var{h(f) | ymis}] in the total variance means that
21 can move more freely conditional on x5 and, hence, a faster scheme.
Thus, when giving two data augmentation schemes with the same target
distribution for 6, we prefer the scheme that gives a larger conditional
variance for h(#), for all functions h() (Liu and Wu 1999, Meng and van
Dyk 1999).

13.2.2 Random-scan Gibbs sampler

As shown in Lemma 6.6.1 of Section 6.6.2, the random-scan Gibbs sampler
(RSGS) has a similar expression for its first-order autocorrelation to that
of data augmentation. Thus, the Markov chain produced by the RSGS also

has the interleaving property, with its conjugate process (i(t),xft_)i(t)]), for

t=1,2,.... Here, i) is the random variable that indicates which of the d
components is updated at the ¢-th iteration.

The geometric convergence property of the RSGS process is not very
difficult to prove and the interested reader is referred to Liu, Wong and
Kong (1995) and Schervish and Carlin (1992). What is a little new here is
an expression to bound the convergence rate of the RSGS. Based on the
theory discussed in the previous subsection, we have, for any ||h|| = 1,

IFAZ = 1- Blvar{h(x) | i,xy}]

- 1_ Z o E[var{h(x) | x_;}]

d
= Zaivar[E{h(x) | x1_i1 }- (13.4)

Suppose we can find a pair of functions h;(x;), and g;(x;_;) with unit
variance such that

E{hi(z:) | x—q} = 7vigi(xX[—q),
E{gi(x_q |zi} = ~ihi(zs).

Then, using (13.4) with h replaced by h;, we have
IFI* > (Fhs hi) =1 = a;i(1 =),
Letting ¢ = 1,... ,d, we have

IFIP > max{1 - as(1 — 7).

276 13. Selected Theoretical Topics

Heuristically, we may want to find the vector (ai,...,aq) so that this
lower bound for the convergence rate is minimized. This is equivalent to
finding

max [miin{ai(l -} -

It is easy to see that the solution is a; oc (1 —~2) 1. This result is rather
intuitive: In order to achieve a better convergence rate, one should spend
more resources (number of updates roughly proportional to the inverse of
the spectral gap) on those “stickier” components. On the other hand, if
one is interested in estimating a particular expectation, E f(x), after the
chain becomes stationary, one should allocate resources differently.

We can also use (13.4) to show that grouping and collapsing (Section 6.7)
in a random scan are always preferable (a stronger result than that for the
deterministic scans).

Theorem 13.2.1 Suppose we can either group the first two components
together or integrate out the first component so as to result in a RSGS
with d — 1 components. We also assume that the scheduling probability o;
remains unchanged fori = 3,... ,d. Then, the collapsing sampler converges
faster than the grouping sampler, and the grouping sampler faster than the
original RSGS.

Proof: We directly compare (13.4) for the three samplers. For grouping,

|1Ehll? = (a1 + az)var[E{h(x) | X[1, 2}]
d
+> avar[B{h(x) | x|_3}];
=3

for collapsing,

IFhl” = (a1 + az)var[E{h(x) | x[1, 9}]
d
+" ayvar[E{h(x) | x(_1,—q}]-
=3

For notational simplicity, here we take the test function for the collapsed
sampler, which only has d — 1 components, as E[g(x) | x[_y;]. Because

E{h(x) | x{—1,-q} = E[E{h(x) | x—q} | x[1],
it follows that
var[E{h(x) | x[_1,—q}] < var[E{h(x) | x[_q}],

for i = 2,...,d. Hence, the theorem is proved. ¢

13.3 Comparison of Metropolis-Type Algorithms 277
13.3 Comparison of Metropolis-Type Algorithms

13.3.1 Peskun’s ordering

As an alternative to the acceptance-rejection criterion of Metropolis et al.
(1953), Barker (1965) proposes a more “continuous” acceptance function

T(¥Y)T(x,y) :
(X (x,y) +7(y)T(y,x)’

that is, one accepts the proposed y with probability rg and rejects the
proposal with probability 1 — rg (Section 5.2). To understand whether
Barker’s proposal has any advantage, Peskun (1973) introduced a partial
ordering among all finite-state reversible Markov transition matrices that
have the same stationary distribution.

B (Xv Y) =

Definition 13.3.1 Suppose two reversible transition kernels Ay and As
have the same stationary distribution w. Matriz Ay is said to dominate A,
(i.e., Ay = As) if all the off-diagonal elements of Ay is greater than or
equal to the corresponding elements in As. This definition is generalized by
Tierney (1998) as follows:

P [x(l) €S\ {x}|x© = x] > P [x(l) €S\ {x}|x® = x]

for all measurable subset S C X.

This dominance condition easily leads to a comparison between the lag-1
autocorrelations of two Markov chains.

Lemma 13.3.1 (Tierney) Suppose A1 and Ay have the same invariant
distribution w and satisfy Ay = Ay. Then, the corresponding forward oper-
ators, F1 and F5, satisfy

(F, = F)f, f) >0
for all f € L3(m).

Proof: Here, we only prove the case when the state space is finite. Please
refer to Tierney (1998) for a more general proof. Suppose the total number
of states is N. In this case, we can express the target distribution as the
vector m = (my,...,7mn) and the transition function as matrices. Then,
any function f € LZ(m) can be expressed as a column vector of length NV,
f=,-.. ,fN)T, and Fi f is simply equal to the matrix product A f.
We define an N x N matrix as

H=A(I+A1 _AQ),

where I is the identity matrix and A = diag(m,... ,7n). Because A
dominates As, it is easy to check that H is a probability measure on the

278 13. Selected Theoretical Topics

product space (all entries h;; are non-negative and they sum to 1) and the
both marginals of H are equal to 7. Hence,

(A= ANS) = |'f A(As — AL f
= [{A-H}f

=Y fimi— D> fifihi,
i T

2D 2 Fehiz =2) ifihis
i J i j
= 3 i 1 20
i]

N | =

<

Suppose that we are interested in estimating E,f by using a MCMC
sampler whose transition kernel is A(x,y). We can define the sampler’s
asymptotic efficiency as

1 S
vmnggﬁm{ZN&%}, (13.5)

=1
where x(@ x() . are stationary samples obtained from this sampler.

Since we are ultimately interested in using a MCMC sampler to compute
quantities of interest, this asymptotic efficiency measure seems to be a
sensible criterion in comparing different schemes. Peskun (1973) proved
that if A; > As, then the first chain will be asymptotically more efficient.

Theorem 13.3.1 (Peskun) Suppose A; and Az are reversible transition
kernels with the same invariant distribution and Ay > As. Then, for all
f € Li(w) (i-e., mean zero functions), we have v(f, A1) < v(f, Az).

Proof: It is easy to see that for any transition matrix A,

o(f, 4) = (f AT+ T = A)7}f).
Note that operator (I — A) is invertible only in the restricted space L3(w),

but not in the unrestricted space L?(r). Define A(3) = (1 — B)A; + BAs;
then,

QARG — (1,1 - A(8)) (42 — AT - AB) 1)
(= AB) . Az — AT~ AB)) 2 0

The second equality follows from the fact that if A is a self-adjoint opera-
tion, then all powers of A, and thus, (I — A)~1, are also self-adjoint oper-
ators. The last inequality follows from Lemma 13.3.1. Hence, v(f, A(f)) is

13.3 Comparison of Metropolis-Type Algorithms 279

a monotone nondecreasing function in £ and attains its minimum at g =0
and maximum at § =1. &

13.3.2 Comparing schemes using Peskun’s ordering

The ordering among transition functions introduced by Peskun is very use-
ful for comparing different schemes. Based on Theorem 13.3.1, for example,
Peskun (1973) proved the following theorem.

Theorem 13.3.2 For the same proposal transition T (x,y), the acceptance
function suggested by Metropolis et al. dominates that proposed by Barker
in terms of asymptotic efficiency (13.5).

Proof: The transition function of the Metropolis algorithm is
AM(XJ y) = T(X, y) min{l, T(XJ y)} for x 7é Y

where

m(y)T(y,x)
m(x)T(x,y)

On the other hand, the transition function for Barker’s scheme is

T(X, y) =

An() = TO0¥) et for x £y,

It is easy to show that

, r(x%y)
min{1,7(x,y)} > Trrxy)

Hence, Ay = Ap. &

As a generalization of Peskun’s result, Liu (1996a) showed that the
“Metropolization” of the Gibbs sampler for a finite state space as described
in Section 6.3.2 dominates the usual random-scan Gibbs sampler.

Theorem 13.3.3 Suppose that x = (z1,...,%q), where x; takes m; <
oo possible values, and that w(x) is the distribution of interest. Then, the
Metropolized Gibbs sampler defined in Section 6.3.2 for discrete random
variables is statistically more efficient than the random-scan Gibbs sampler.

Proof: Suppose that in the random-scan Gibbs sampler, we choose each
component with probability «;. Then, all the nonzero elements of the tran-
sition matrix P; of the random scan Gibbs sampler are of the form

Pi(x,y) = a;m(y; | X[—q)),

280 13. Selected Theoretical Topics

where y = x except that y; replaces x;. In contrast, those nonzero off-
diagonal elements in the transition matrix P» of the modified sampler are

Py(x,y) = a; min{ m(yi | X)) m(yi | X—) }

L—7(z | xpq)" 1=y | x{-q)
Clearly, P,>P. o

Although Theorem 13.3.3 does not even require m; to be finite, the mod-
ification is likely to be most useful for components with m; rather small.
It is easily shown from inequality v(f, P1) > v(f,P2), Vf € L?*(rw), that
the second largest eigenvalue of P; is greater than or equal to that of Ps.
Frigessi et al. (1993) proved that for the binary Ising model, Metropolis con-
verges faster than Gibbs for strong interaction and more slowly for weak
interaction. This does not conflict with our result, which concerns statisti-
cal efficiency in equilibrium, rather than rate of convergence. Whereas the
eigenvalues of the Gibbs sampler are necessarily non-negative (Liu, Wong
and Kong 1995), slow Metropolis convergence under weak interaction is the
product of a large negative eigenvalue.

Using the same technique, Besag et al. (1995) and Tierney (1998) proved
another interesting result regarding the use of a mixture proposal in a
Metropolis sampler. Let T; be a sequence of proposal kernels and let a; > 0
with), a; = 1. Let A; be the corresponding Metropolis transition kernel:

Ai(x,y) = Ti(x,y) win {1’ %} '

Furthermore, we define a mixture proposal

T" (Xa Y) = Z aiTi (Xa Y)

and its corresponding Metropolis transition function A*(x,y).

Theorem 13.3.4 The Metropolis transition with a mizture proposal dom-
inates the corresponding mixture of Metropolis transitions; that is,

A" - Z ;A
i
Proof: Because of the simple inequality

min(Al, Bl) =+ min(Ag, Bg) S min(A1 + AQ, Bl =+ BQ),

13.4 Eigenvalue Analysis for the Independence Sampler 281

we have that

iAi(x = min < o;T;(x @a-~ X
;azAz(:Y) ; { iTi(Jy)Jﬂ_(x) iTi(ys)}

min {Z aiTz-(x, y), % z aiTz’(ya X)}

= min {T*(X, y), %T*(yﬂc)} = A*(x,y)

(VA

Hence, the theorem is proved. ¢

This theorem may also shed some light on the issue of whether the multi-
point Metropolis method is superior to the ordinary Metropolis algorithm
(with a comparable number of proposals).

13.4 Eigenvalue Analysis for the Independence
Sampler

In the special case that the proposal is an independent transition function
(Section 5.4.2), we have a rather clean result on the analysis of all the
eigenvalues of the Metropolis-Hastings transition matrix (Liu 1996a). In
this section, we assume that the state space X is finite. Without loss of
generality, we let X = {1,...,m}. Two probability measures m(-) and
p(-) are then abbreviated as m; = 7(i), and p; = p(@), i = 1,... ,m. We
introduce the following four notations: Fy(k) = m + --- + mg, Sz(k) =
1-Fr(k—1) = mp+- - -+7m, Fp(k) = pr+- - -+pg, and Sp (k) = 1-F,(k—-1).

For any ,j € X, we can write down the transition probability from ¢ to
j for the Metropolized independence sampler

- pjmin{1, w;/w;} if j#i
A, §) = pi + > pprmax{0,1 —wg/w;} if j=1,
k

where w; = m;/p; is the importance ratio. Without loss of generality, we
further assume that the states are sorted according to the magnitudes of
their importance ratios; that is, the elements in X" are labeled so that

wi > wy > e > Wi

The transition matrix can then be written as

p+M mjwr wyfwi - Tm—1/W1 Tm [W1
ygi P2+ A w3fwa --- Tm—1/W2 Tom [W2
A= s L z -
D1 P2 D3 ot Pm—1+t Am—1 7"'m/wm—l

D1 D2 D3 T Pm—1 DPm

282 13. Selected Theoretical Topics

where

m

Ak = Z(pi - 7rz'/wk) = Sp(k) - Sfr(k)/wk; (13-6)

i=k

which is just the probability of being rejected in the next step if the chain
is currently at state k.
For any function f(z) defined on X, we denote

_J @) if f(z) >0
fre) = { 0 if f(z) <0,

It is noted that A\ has another expression:

.
M= Y msfus = mifw) = B { s = 2L

i>k
where the expectation is taken with respect to X ~ m. Apparently, if two
states 7 and ¢ + 1 have equal importance ratios, then A; = X\;41. Let p =
(p1,---, pm)T denote the column vector of the trial distribution and let
e=(1,... ,l)T. Then, A can be expressed as

A=G+ep,
where G is an upper triangular matrix of the form

A p2(way — wi) Pm—1(Wm—1 —w1) P (W — w1)

! w1y w1 w1
G =
0 0 L A1 P (Wi — Wy 1)
Wm—1
0 0 e 0 0

Note that e is a common right eigenvector for both A and A — G, corre-
sponding to the largest eigenvalue 1. Since A — G is of rank 1, the rest of
the eigenvalues of A and G have to be the same. Hence, the eigenvalues for
Aare 1> A > A >+ > X 1.

When m is fixed and the number of iterations goes to infinity, the mixing
rate of this Metropolis Markov chain is asymptotically dominated by the
second largest eigenvalue A;, which is equal to 1 — 1/w;. All the eigen-
vectors of G can also be found explicitly. We first note that the vector
v = (1,0,... ,O)T is a right eigenvector corresponding to A;. Checking
one more step, we find that Vo = (72,1 —m1,0,... ,O)T is a right eigenvec-
tor of A2. Generalizing the result, we obtain the following result.

Lemma 13.4.1 The eigenvectors and eigenvalues of G are A, and vy =
(k- - - ,wk,Sﬂ(k),O,...,O)T, for k = 1,...,m — 1, where there are k
nonzero entries in Vy,.

13.4 Eigenvalue Analysis for the Independence Sampler 283

Theorem 13.4.1 For the Metropolized independence sampler, all the eigen-
values of its transition matriz are 1 > Ay > Ay > --- > Ajp—1 > 0, where
Me = 2o (pi — mi/wi) = Ex{1/w(X) —1/w}*. The right eigenvector vy
corresponding to Ay is

T

VkO((05(k+1),—7rk,...,—7rk) s
where there are k — 1 zero entries.

Proof: Since A= G+ep , Avy = GV +e(p vy). It is further noted that

P Vi = Sa(k)mi + prSp(k) = mie(1 = A).

Hence, AV = AV + (1 — Ag)e. Since e is a right eigenvector of A with
eigenvalue 1, we have, for any ¢,

ATy —te) = Ay {vk - Me} .

Ak

Solving t = {t — mx(1 — Ag)}/ Ak, we find that vy = Vv, — mpe is a right
eigenvector of A corresponding to Agx. &

The coupling method can also be used to bound the convergence rate for
this sampler and the argument does not require that the state space of the
chain is discrete. Suppose two independence sampler chains {x(®, x(1) ...}
and {y©®,y(" . ..} are simulated, of which the x chain starts from a fixed
point x(®) = x¢ (or a distribution) and the y chain starts from the equi-
librium distribution 7. The two chains can be “coupled” in the follow-
ing way. Suppose x(¥) = x and y® = y. At step ¢t + 1, a new state
z is drawn according to distribution p(-), its associated importance ratio
w, = w(z)/p(z) is computed and a uniform random variable u is generated
independently. There are three scenarios: (i) If v < min{w./w,,w./w,},
then both chains accept x as their next states (i.e., X+ = y(t+1) =).
(i) if w > max{w, /wy, w,/wy}, then both chains reject so that x(**+1) = x
and yY = y; and (iii) if u lies between w,/w, and w,/w,, then the
chain with larger ratio accepts and the chain with smaller ratio rejects. It
is clear that the first time when scenario (i) occurs is the coupling time, the
time at and after which the realizations of the two chains become identical.

The probability of the occurrence of (i) can be bounded from below:

P(accept | X =2,V =y) = Zp,mm{l Wi %}
W Wy

{ 1 1} 1
mem —_—, — 2—
w; wy Wy

where w; is the largest importance ratio. Hence, from the Markov property,
the number of steps for the chains to be coupled is bounded by a geometric

284 13. Selected Theoretical Topics
distribution

P(N >n) < (1 —w;)™
Consequently, for any measurable subset S C X,

p™(S) — 7 (9)|

|P(X, € S) — P(Y, €9)
< P(Xp #Yy) = P(N >n) < (1—wi)™

13.5 Perfect Simulation

When running a MCMC sampler, we have always to wait for a period
of “burn-in” time (or called the time for equilibration). Samples obtained
after this period of time can be regarded as approximately following the
target distribution 7 and be used in Monte Carlo estimation. In practice,
however, one is never sure how long the “burn-in” period should be and
it is always a distracting question for researchers to know when to declare
“convergence” of the chain. A surprising discovery recently made by Propp
and Wilson (1996) is that perfect random samples can be obtained, in finite
(but stochastic) time, from many Markov chain samplers. Their algorithm
is also called coupling from the past (CFTP).

Under mild conditions (irreducibility, aperiodicity, and a drift condition)
which we have assumed throughout of the book, the Markov chain under-
lying a MCMC sampler would have been in its stationary distribution had
it been iterated for infinite steps. Thus, if the chain had been started from
t = —oo, the infinite past, then at time ¢t = 0, the chain would have been
in equilibrium and a sample produced at ¢ = 0 would have been an exact
sample from the target distribution 7. This fact has already been known
to all the probabilists a long time ago. What Propp and Wilson discov-
ered is that one can figure out what the current sample is without actually
tracing back to the infinite past. The strategy they took was also known
to probabilists a long time ago: coupling and coalescence.

Suppose the Markov chain under consideration is defined on a finite
space X = {1,...,|X|}. Let the transition matrix be A(x,y) and the
equilibrium distribution be 7. Consider all possible ways from x(~1) — x(®)
The transition function tells us that

Pr(x® = j | x("1) = i) = A(i, j).

If we want to simulate this step on a computer, we will first compute the
cumulative transition probabilities:
J
G(i,j) =Y A@ k) = Pr(x® < j[x=D =),
k=1

13.5 Perfect Simulation 285

Then, we generate a uniform random number [i.e., ug ~ Uniform(0,1)].
Finally, we let x(© = j if G(i,j — 1) < ug < G(4,7). In a usual computer
algorithm for realizing a forward Markov transition, one generates a random
number whenever needed and they may be different had x(~=1) been i’ # 1.
However, there is no reason why we cannot use the same random number
ug generated beforehand and use it for all possible states i € X’ at time —1.
More abstractly, we can think of the above sampling step as a mapping

x© = ¢(ug,xV). (13.7)

A distinctive feature of (13.7) is that the chains starting from all possible
states are coupled by the same random number ug.

If it so happens that our random number uy makes all the chain “cou-
pled;” that is,

@d(ug,i) = jo for all 4, (13.8)

then x(®) = j; must be a perfect sample from the target distribution 7. To
see this point, imagine that the Markov chain has been run from ¢t = —oco
and entered into time ¢ = —1. Then, it must be in stationarity at time
t = —1. Because of the construction of ¢, the next step x(®) must still be
in stationarity. Because of (13.8), x(%) has to take value j, no matter what
state x(—1) takes.

Of course, the chance that the chains are all coupled in one step is too
small. If they are not all coupled, we can iterate (13.7) backward. Since

x(™ = g(u_p, x(7D) (13.9)
for all n, we have

X(O) = ¢(u07 ¢(U_1, ree ,¢(U_N+1, X(iN)) T))

In fact, we can even imagine that the sequence of uniform random num-
bers, ... ,u_n,... ,u_1,Ug, has been given in advance, and we realize a
stationary Markov chain by composing (13.9) from the infinite past.

Now, consider starting |X| parallel Markov chains at time ¢ = —N, each
with a different starting state [i.e., x(~N¥) = j]. Then, after one iteration
of the ¢ function, we have, for all the chains,

x("NHTLI) = d(u_pny1,) forj=1,...,|X) (13.10)

Hence, the x(~N+1.9) have fewer distinct values than that of x(~~:/)_ This
means that each iteration of the ¢ function will “coalesce” some chains. If N
is large enough, then all the chains starting at t = —N will coalescence and
produce a single random sample, xg, at time ¢ = 0. Since a Markov chain
that comes from the infinite past has to get into time — N and then passes
through recursion (13.10), the sample obtained at time ¢ = 0 has to be

286 13. Selected Theoretical Topics

x(©) (if the same set of uniform random numbers has been used from time
—N to0 0). Thus, this x(©) is an exact draw from the stationary distribution
m. If N is not large enough, we will need to move K steps backward to
time —N — K and try again, reusing all the previously generated random
numbers.

The CFTP algorithm can be implemented, at least conceptually, as fol-
lows:

1. Generate ug ~ Uniform(0,1) and compute f_1(i) = ¢(uq,?), for i =
1,...,|X|

(a) If the f_1(¢) are all equal, then the common value f_1(7) is re-
tained as a random sample from 7 and the algorithm is stopped.

(b) If not all the f_1(¢) are the same, set n = 2 and go to Step 2.

2. At time —n, we generate u_n+1 ~ Uniform(0,1) and update

fon(i) = fonpi{d(unir, i)} fori=1,...,|X] (13.11)

(a) If all the f_,(¢) are the same, return the common value f_,, (%)
as a sample from 7 and stop.

(b) If not all the f_, (i) are the same, set n < n + 1 and return to
Step 2.

It is important to notice the difference between the forward coupling ex-
pression (13.9) and the backward coupling formula (13.11). More explicitly,
f—n(d), for all n, refers to a possible state for x(*) at time 0 instead of that
for x(=™) at time —n.

It is often too slow to move one-step backward a time. A preferable
approach is to modify Step 2(b) in the foregoing CFTP algorithm by setting
n < 2n; that is, one doubles the backward steps if not all the chains coalesce
at time 0 in n steps. A main difficulty in applying the CFTP algorithm in
interesting cases is that it is often impossible to monitor simultaneously all
the chains starting from all possible states. For example, an Ising model on
a 64 x 64 lattice has 264” possible states, which are impossible to follow.
A useful method (Propp and Wilson 1996) is to establish an ordering “<”
among all the states, so that this ordering is maintained after the one-step
coupled Markov transition:

x2y = ¢(u,x) 2 ¢(u,y),

for all 0 < u < 1. Suppose a “maximal state” and a “minimal state”
under this ordering exist. Then, one needs only to monitor two chains on
the computer: one started from the maximal state and the other from the
minimal state. When these two chains are coupled, then chains from all
other states must be coupled to the same state.

13.6 A Theory for Dynamic Weighting 287

The work of Propp and Wilson (1996) has stimulated a lot of interest
from computer scientists, probabilists, and statisticians. Many new tricks
have been developed to tackle various situations. One of the main concerns
regarding the CFTP algorithm is the “user impatience” bias; that is, the
user may stop the algorithm when it takes too long to find an appropri-
ate past time —N or the algorithm is stopped before schedule because of
emergency (an electricity outage, say). Both cases will create a bias in the
produced samples. In a sense, the CFTP cannot be interrupted. Fill (1998)
recently proposed an interruptible algorithm that alleviates this concern.
See Green and Murdoch (1998), Fill (1998), and Propp and Wilson (1998).

13.6 A Theory for Dynamic Weighting

13.6.1 Definitions

Suppose the configuration state X is augmented by a one-dimensional
weight space so that the current state in a dynamic weighting Monte Carlo
scheme is (x,w). Most of the analysis presented in this section are adapted
from Liu et al. (2001).

Let constant # > 0 be given in advance. The Q-type and the R-type
moves that we will study in this section are defined as follows.

@-type Move:

e Propose the next state y from the proposal T'(x,-) and compute the
Metropolis ratio

r(X,y) = — S (13.12)

e Draw U ~ Uniform(0,1). Update (x,w) to (x',w') as
oty — | max{Burtey))) iU < min{lur(ey)/6)
’ (x, aw) otherwise.

(13.13)

where a > 1 can be either a constant or a random variable indepen-
dent of all other variables.

R-type Move

e Propose y and compute r(x,by) as in the Q-type move.

288 13. Selected Theoretical Topics

e Draw U ~ Uniform(0,1). Update (x,w) to (x',w') as

. wr(x,y)
X + fuo< —=2
(xl,wl) = (y,wr(7y) 0)7 . - wr(x,y) +6’

(x, w(wr(x,y) +0)/6), Otherwise.
(13.14)

The design of the algorithms was motivated by the following consideration.

Definition 13.6.1 Random variable x is said correctly weighted by w with
respect to 7 if 3, wf(x,w) o m(x), where f(x,w) is the joint distribution
of (x,w). A transition rule is said to be invariant with respect to importance
weighting (IWIW) if it maintains the correctly weightedness of (x,w).

It is easy to verify that the R-type move satisfies IWIW property, whereas
the @Q-type move does not. Although the R-type move satisfies IWIW | it can
be shown that with 8 = 1 the stationary distribution of the weight process,
if it exists at all, will necessarily has an infinite expectation. It is also
possible that the weight process does not have a stationary distribution,
which renders the scheme useless.

Although 6 is an adjustable parameter that can depend on previous value
of (x,w), we focus only on the case when 6§ = constant. Since any nonzero
constant leads to the same weight behavior, we need only to discuss two
cases: # =1 and § = 0. One may think that using § = 0 would be a sensible
choice. But we will show that this is not very interesting: Either the scheme
becomes the usual importance sampling or the weight converges to zero.
Consequently, in practice, we choose 8§ = 1 and use a stratified truncation
method to deal with the weight process whose expectation is infinite.

13.6.2 Weight behavior under different scenarios

Case (i): =0 and T'(x,y) is reversible.

In this case the Q- and R-type moves are identical, and both can be
viewed as a generalization of the importance sampling. More precisely, ev-
ery proposed move will be accepted and the weight is updated as

w' =wr(x,x').

Suppose g(x) is the invariant distribution for T'(x,y) and we let g(x,y) =
9(x)T(x,y). Then, g() is a symmetric function. Let u(x) = 7(x)/g(x) be
the importance ratio function. The update formula for the weight process
can be written as

L u) o)
w' = © (13.15)

13.6 A Theory for Dynamic Weighting 289

Hence, if we start with x(© and w(©® = ¢ u(x(®), then for any ¢ > 0,
w® = ¢ u(x®). These weights are the same as those from the standard
importance sampling using the trial distribution g.

Case (ii): # =1 and T'(x,y) is reversible.

If the proposal chain is reversible, the @)-type sampler converges to a
a joint state of (x,w) that is similar to case (i). To see this, let uo =
miny {7 (x)/g(x)}. Once the pair (x,w) satisfies w = cou(x) with coug > 1,
the proposed transition y will always be accepted according to (13.13), and
the new weight will be cou(y) because of (13.15). Thus, the weight will be
stabilized at w(x) = cou(x) once coug > 1, and the equilibrium distribution
of x will be g(x). Therefore, for any starting value of w, the weight process
will climb until it is large enough. After that, (x,w) behaves like a pair in
an importance sampler.

The behavior of the weight process of an R-type move is less than sat-
isfactory: It does not have a stable distribution. For example, let T" be
symmetric and let 7 be uniform on X = {1,2, 3}. It is easy to see that

w+1
w(w+1) otherwise.

, {w+1 if U< —0

Therefore, the sequence of w is nondecreasing and diverges to infinity with
probability 1. A simple way to fix this problem is to modify the weight
update (13.14) by a random multiplier:

o = { V(wr(x,y) +1) if accepted (13.16)

Vw(wr(x,y) +1) if rejected,

where V' ~ Uniform (1 — §,1 + 4) is drawn independent of the x. It is easy
to see that this modified R-type move still satisfies IWIW. The parameter
4 needs to be chosen properly so that E(log V') is not too small.

Case (iii): # = 0 and T'(x,y) is nonreversible.

Dynamic weighting is most often used in combination with the regu-
lar Metropolis-Hastings’s moves. Such a combination typically results in a
nonreversible proposal transition. Thus, this is the case of most interest to
us. When 6 = 0, the Q-type and the R-type moves are identical and have
the following properties.

From the first equality in (13.15), we have

W)) gx)
08wty Bt T % glex)”
Hence,
w® w©® Il (ke (o))

g
1 —1 = log 2> % /.
og U(X(t)) og ’LL(X(O)) SZZI og g(X(s),X(S+1))

290 13. Selected Theoretical Topics

However, the following lemma shows that each term on the right-hand side
has a negative expectation. Hence, the log-weight process is a cumulative
sum of identically distributed (but correlated) random variables with a
negative expectation, implying that the weight process converges to zero
at an exponential rate.

Lemma 13.6.1 Let g() be the invariant distribution of T' and let g(x,y) =
9(x)T(x,y). Then,

e0 = E, {log Zg ;‘; } E, {log ;g;‘; } <0. (13.17)

The equality holds only when T induces a reversible Markov chain.

Proof: By definition, we have

9(y,x%) 9(y,x%)
eo=F {log }glogE { =0
1" 9x,y) “lg(x,y)
We used the Jensen’s inequality in which the equality holds only when
9(z0,71) = g(21,T0). ©

Case (iv): § =1 and T'(x,y) is nonreversible.
Consider the behavior of the log-weight process in -type moves:

(t+1)_ [max{0,log [w®r(x®,xED)]}, if accept;
logw { logw® +loga, if reject, (13.18)

where the acceptance-rejection decision depends on . Thus, a nonzero 6
prevents the weight process from converging to zero. In other words, zero
works like a reflecting boundary. When w(®) becomes too small, § ensures
that some rejections will occur and the weight process will be forced to go
up. On the other hand, when w becomes too large and no rejection occurs,
the nonreversibility of T’ will produce a negative drift (Lemma 13.6.1) that
prevents the process from drifting to infinity. To summarize, we state the
following theorem of Liu et al. (2001) without giving a detailed proof.

Theorem 13.6.1 Suppose the sample space X of x is finite and the pro-
posal transition T(x,y) is nonreversible. Then, the process (x() logw®)
induced by the Q-type move is positive recurrent and has o unique equilib-
rium distribution.

Case (v): Mixing different types of moves (6 = 1).
Suppose in each iteration that we make a @-type move with probability «
and a Metropolis move with probability 1 —a. When w is sufficiently large,

13.6 A Theory for Dynamic Weighting 291

there will be no rejection for the Q-type moves, thus, the actual transition
for the Markov chain is approximately

Ax,y) = cdi(x,y) + (1 - a)A2(x,y),

where A;(x,y) is just the proposal transition for the @Q-type move and
As(x,y) satisfies the detailed balance with respect to 7. Let g(x) be the
invariant distribution of A(x,y) and let § =1 or 2 be an indicator variable.
When a move x — y occurs, the weight is updated as

o)A
) =0 A4 ey

where § = 1 with probability a and 6 = 2 with 1 — a. It is easy to show
that

A6 (XJ Y)
Hence, the log-weight process is a cumulative sum of terms with negative

expectations. A similar argument as in Theorem 13.6.1 applies to show that
the dynamic weighting process has a stable distribution.

9(y)As(y,x)
00 A5 y) = B 0450, y)

13.6.8 FEstimation with weighted samples

Suppose a set of weighted samples, (x(M), w™), ... (x(™) w(™)) is ob-
tained by running either a Q-type or an R-type scheme. We are interested
in estimating u = E;h(x). The standard importance sampling estimate of

W is
w@d) 4+ ... 4 (m) ’

o= (13.19)
Since the weights derived from the Q- or R-type moves may have infinite
expectations, it is not clear whether estimate (13.19) is still valid.

By a general weak law of large numbers (Chung 1974), Liu et al. (2001)
show that this estimate still converges, although very slowly. Here we de-
scribe a stratified truncation method to improve the estimation and a brief
justification for why it works.

Stratified Truncation for Weighted Estimate: Suppose of interest
is the estimation of y = Eh(x). First, the samples (x(), w®) are stratified
according to the value of h(x). Within each stratum, values of the h(x®))
should be as close to constant as possible and the sizes of the strata are
comparable. The highest k% (usually k£ = 1 or 2) of the weights within each
stratum are then trimmed down to the value of the (100 — k)th percentile
of the weights within the stratum. See Section 10.6 for some illustrations.

292 13. Selected Theoretical Topics

It is observed that the log-weight process has an exponential tail; that
is, using a result of Kesten (1974), one can show that for the Q-type move
on a finite state space satisfies

lim P(logw® > ¢ | x® = x) = K'u(x),
c—» 00

where u() is as defined in Section 13.6.2. This implies that the upper
k-percentile, gx(x), of those weights associated with x satisfies

k(%) < u(x) = w(x)/9(x). (13.20)

Since no rejection can occur in a @-type move when w is large enough,
those x’s that are accompanied with large weights follow (approximately)
distribution g(). Hence, a weighted average of h(x) using the upper per-
centiles of the weights provides us with an approximately correct estimate.
Section 10.6 showed that the truncation method can provide good estimate
for the Ising model simulation.

18.6.4 A simulation study

A simulation is designed to verify several predictions of our theory: (i)
The tail distribution of the log-weight in a @Q-type move is exponential
with decay rate 1 (and a similar result for the R-type move); (ii) upper
percentiles of the stratified weights are approximately proportional to u(x);
(iii) the plain estimate (13.19) converges slowly, but to the correct mean;
and (iv) the estimation with stratified truncation gives us an approximately
correct answer.

In our experiment, the state space of x is {1,2,3,4,5} and a random
5 x 5 transition matrix was simulated (each row is independently drawn
from a Dirichlet (1,1,1,1,1)):

0.00370 0.15436 0.55588 0.15998 0.12608
0.18506 0.34190 0.17511 0.14471 0.15322
T=1] 027798 0.26276 0.16575 0.21687 0.07664
0.29265 0.28028 0.22982 0.15994 0.03731
0.25206 0.23105 0.02426 0.22976 0.26287

It is easy to check that the the transition matrix 7" is nonreversible and
its invariant distribution is g = (0.1987,0.2611,0.2398,0.1782,0.1222). We
took the target distribution = = (0.25,0.1,0.2,0.4,0.05).

With a = 2, a Q-type process was started with w(® =1 and x(® ~ g. A
total of 200,000 iterations were carried out. Figure 13.1(a) shows the per-
centiles of weights stratified according to the state space. The percentages
range from 70% to 99%. Figure 13.1(b) shows the histogram of the weight
for X = 3, and Figure 13.1(c) shows the g-¢ plot of the tail of the weights
versus the Exp(1) distribution. Estimating 7r by using stratified truncation

13.6 A Theory for Dynamic Weighting 293

at k% = 1%, 2.5%, 5% [i.e., the upper k% of the weights in each stratum are
trimmed down to be equal to the stratum’s (100 — k)th percentile] gives
us & = (0.2453, 0.0984, 0.2001, 0.4071, 0.0491), (0.2450, 0.1004, 0.2020,
0.4038, 0.0488), and (0.2449, 0.1023, 0.1994, 0.4049, 0.0485), respectively.
To show the slow convergence of the raw estimate, we run 23° iterations,
and at every 2* epoch, we estimate 7 by using the raw estimate (13.19).
Figure 13.1(d) shows the plot of the x?-distances between 7 and these es-
timates [i.e., (35, (m; — @) /m;)'/?] versus the logarithm of the number of
iterations.

(a) (b)
=
e =
b=
= 8
£ =
D 9 =
= =
= < p=
= o7 =
S =
=2 K] g
1=
8 © g
& s
8 S
— z =
1 2 3 4 5 o 2 4 6 8 10
State Histogram of log-wgt of state 3
(c) (d)
o
— ©
z (=1}
& re)
td 2
i 3 5
& @ =
S w© § <
= 23
<) s <
= g5
g U‘—') =}
- -~
o~ (=]
o
S
(o] 2 a 6 8 10 5 10 15 20 25
Exp(1) Log-iteration

FIGURE 13.1. Results for the simulation study with @Q-type moves. (a) The
conditional percentiles of the weights. The parallel-ness of these percentiles is
predicted by (13.20) and is the basis for the stratified truncation method; (b) the
histogram of the log-weights; (c) the g-q plot of the upper tail of the log-weights
versus the Exp(1) distribution; (d) the convergence of the raw weighted estimates.

We also applied the R-type moves to the same problem. The results
showed that the weights resulting from R-type moves are appreciably greater
than those from the Q-type, and the tail distribution of the weights seems
to still be exponential but with a changing rate. Our predictions were also
verified in more complicated examples, such as the Ising model simulation
and a model selection problem (Liu et al. 2001).

294 13. Selected Theoretical Topics

This is page 295
Printer: Opaque this

Appendix A
Basics in Probability and Statistics

A.1 Basic Probability Theory

A.1.1 FExperiments, events, and probability

Probability theory is a mathematical tool for modeling natural phenomena
in which outcomes occur nondeterministically. Random phenomena consid-
ered in the probability theory are often referred to as experiments, although
many of which are observational (i.e., experimental conditions cannot be
controlled or intervened by the investigator) instead of experimental. Prob-
ability can be seen either as the long-run frequency of the occurrence of each
potential outcome when the identical experiment is repeated indefinitely
or as a numerical measure of subjective uncertainty on the experimental
result. These two views underly two main different approaches to statistical
inference: the frequentist school and the Bayesian school.

The set of all possible outcomes of an experiment is called a sample
space, denoted as X'. An event A is a collection of individual outcomes that
satisfy certain criterion. For example, in a coin toss experiment, event A
can be “more than 8 heads in 10 tosses of a coin.” Mathematically, A is a
measurable subset of X. Hence, P(AU BU ---) is the probability that at
least one of the events A, B, ... occurs and P(ANBN---) is the probability
that all the events A, B, ... occur. The following simple axioms completely
determine how probabilities operate:

(Al) P(0) =0 and P(X) =1.
(A2) If AC X, then P(A) > 0.

296 Appendix A. Basics in Probability and Statistics

(A3) If Ay, As,... is are disjoint events (i.e., 4; N A; = @ for any i # j),
then,

i=1 i=1

From these axioms, one can derive some other useful properties such as
P(A®) = 1— P(A) and P(AN B) = P(A) + P(B) — P(A U B). Here,
A® = X'\ A and reads as “A compliment.” Furthermore, we define P(4 |
B) = P(AN B)/P(B) as the conditional probability of A given B. The
interpretation of this concept is that if we are told that event B has already
occurred, the consideration of whether A occurs should be confined to the
smaller universe — characterized by the occurrence of B. Therefore, we say
that two events A and B are mutually independent if and only if P(ANB) =
P(A)P(B).

A.1.2 Univariate random variables and their properties

A one-dimensional random variable X is a mapping from the outcome
space X to the real line R'. For example, in a coin toss experiment, the
total number of heads observed in the first 10 tosses is a random variable.
The cumulative distribution function (cdf) of random variable X is defined
as F(x) = P(X < z). Clearly, F/(—00) =0, F(c0) = 1, and F' is monotone
nondecreasing. The mathematical expectation of a function of X, say h(X),
is defined as

E[h(X)] = / h(z)dF (),

where notation [should be understood as a Stieltjes integral. In most
applications, the following two cases are sufficient: (a) F' is differentiable,
in which case X is called a continuous random variable, f(z) = dF(z)/dx
is called the density function of X, and E[h(X)] = [h(z)f(z)dz; (b) Fis a
step-function with countably many jumps of sizes p1,ps2,... at x1,%2,...,
respectively, in which case X is called a discrete random variable, and
E[h(X)] = Y72, pih(x;). The mean of the random variable X is defined as
E(X), the expectation of X, and the variance of X is var(X) = E(X?) —
E(X)2. Heuristically, E(X) is the center of probabilistic “gravity” and
v/var(X) reflects the range of fluctuation of X.

Several important distributions are worth mentioning. The first one is
the normal distribution (also called the Gaussian distribution), denoted as
N(u,0?), which has a density function

f(@) = =

|
:
3
9
[¢]
»
kel
—N
|
L
)
MRS
e
——

A.1 Basic Probability Theory 297

This distribution has a mean p and variance ¢2. When g = 0 and o =
1, the distribution is referred to as the standard normal (or Gaussian)
distribution. Due to the celebrated central limit theorem (Section A.1.4),
the normal distribution is most frequently used in applied statistics to
model continuous “errors” resulting from the aggregation of many sources
of variations.

The next one is the exponential distribution, Exp(A), which has a density
function

f(z) = Aexp(—Az), when z >0,

and f(z) = 0 when z < 0. The mean of this density is A~! and the variance
is A=2. This distribution is often used to model the waiting time for the
occurrence of rare events (e.g., car accidents in a given short segment of
road or the emission of a-particles from a radioactive material).

A related distribution is the Gamma(a, \) distribution with density

flx) = A e 1 >0,

where a > 0 and A > 0 are adjustable parameters. Another most frequently
used distribution is the wuniform distribution, Uniform[a,b], which has a
density function

f@) = (b-a), if z€a,b]

and f(z) = 0 otherwise. In this case E(X) = (a+ b)/2 and var(X) = (b—
a)?/12. All computer-based random number generators produce (pseudo-)
random variables from Uniform[0,1].

If a random variable only takes value in the interval [0,1], a popular
distribution for it is the Beta(a, 8) distribution with density

_Tla+pB) 4 -1
f(x)—wm (1—xz)P~1.

The mean and variance of this distribution are a/(a + 8) and af/[(a +
B)?(a+ B+ 1)], respectively. More interestingly, if X ~ Gamma(a, \), ¥ ~
Gamma(f, A), and they are independent, then X/(X +Y) is distributed
as Beta(a, 8). This property is often used in Monte Carlo simulation of a
Beta random variable.

There are several useful discrete distributions. One is the Binomial dis-
tribution, denoted as Binom(n,#), which records the probability of seeing
x heads in n tosses of a biased coin (with 6 probability of showing head).
It has a distribution function

P(X =z) = (Z)em —0)", £=0,1,...,n.

298 Appendix A. Basics in Probability and Statistics

Clearly, E(X) = nf and var(X) = nf(1 — 6). A related distribution is the
geometric distribution, Geo(6), which models the number of tosses it takes
to see the first head. Its distribution function has the form

PX=k=01-6"1, k=1,2,...

The mean of this distribution is 1, and the variance is (1 — 6)/62.

A generalization of the binomial distribution is the multinomial distribu-
tion, which is used to model the outcomes of tossing a loaded k-sided die.
In particular, the multinomial random variable is a k-dimensional vector,
X = (21,... ,2), with 21 + --- + 2 = n, where z; records the number
of occurrence of face j in n tosses of the die. Let @ = (1,... ,6;) be the
probability vector that characterizes the “loadedness” of the die Then the
multinomial distribution is

n!

P(X = (z1,...,2x) = k!Hfl---Hi’“.

!z
Another famous discrete distribution is the Poisson distribution, Poi(A),
who has a distribution function
T
P(X =zx)= —'e_’\, z=0,1,2,...
x!
Here, the distribution is supported on all non-negative integers. The mean
and the variance of this distribution are all equal to A. The Poisson distri-
bution can be viewed as the limit of a Binom(n,p) distribution in which
n — oo and np — A. It is also related to the exponential distribution and
is often used in modeling the number of occurrences of certain rare events
in a region or a period of time (Pitman 1993)

A.1.3 Multivariate random variable

We can extend the distribution concept for univariate random variables to
the multivariate case. Let us consider a random vector X = (X7,...,X,)
taking values in R?. Its cdf is defined as F(x) = P(N{_,{X; < z;}) x € R?.
If X is a continuous random variable, its density is

_ 6dF(.ZL‘1,... ,.Z‘d)
Oz ---0xg

For any function h(x), we can compute its expectation as

f(z1,... ,24q)

EnX)] = /h(x)dF(x) = /h(x)f(x)d:nl - dxg.

For example, a multivariate normal distribution has a density form

i,) = 2ns 2 exp { =S - w5 x -)}

A.1 Basic Probability Theory 299

in which x and p are d-dimensional row vectors and ¥ is a d x d positive-
definite matrix.

Naturally, we say that random variables Xi,...,X; are mutually in-
dependent if and only if their joint cdf is the product of the individual
marginal cdf’s. In the continuous random variable case, this really means
that the joint density can be factored:

f(x) = filw) x--- x fa(za).

An important concept in dealing with the multivariate case is that the
variables often wary together; that is, a change in one component will usu-
ally influence others. A quantitative measure of this characteristic is the
covariance between any pair of random variables, X; and X;:

cov(Xy, X;) = E(X;X;) — E(X;)E(Xj).

If X; and X; are mutually independent, then cov(X;, X2) = 0 (the reverse
argument is not true). Using the definition of covariance, we can show that

d
var(Xy + -+ Xq) = 3 _var(X;) +2) cov(X;, X;).
i=1

i<J

If the random variables X1, ... , X, are mutually independent and have the
same variance, then we have

var (Xl +--+ Xn) _ var(X;) + - 2 + var(X,,) _ var(Xl)7 (A1)
n n n

implying that the “variability” of X decreases linearly as we average over
more and more independent random variables with the same variance.

We have encountered a multivariate random variable — the multinomial
distribution — in the previous section. This distribution is most frequently
used in studying discrete categorical data and is the most basic probability
distribution in all biological sequence analysis methods (Liu and Lawrence
1999). A closely related distribution is called the Dirichlet distribution of
which the Beta distribution is a special case. This distribution is used for
modeling the uncertainty in probability vector. For example, if we are given
a loaded die that we know nothing about, it is convenient to assume that
the long-run frequencies of all the faces follow a Dirichlet distribution. The
density of a Dirichlet random variable has the form

k
fo(®) < I 67 (A2)

where a; > 0 for all j. Section A.3 gives more details on this distribution.

300 Appendix A. Basics in Probability and Statistics

A.1.4 Convergence of random variables

It is often useful to think about how a sequence of random variables become
more and more “stable” (i.e., converge to another random variable). Let
Y1,Ys2,... be a sequence of random variables and let Fi(y), F2(y),... be
the corresponding sequence of cumulative distribution functions. If their
probability distributions look more and more similar to the distribution of
a common random variable Y as n — oo, we say that they converge to Y
in distribution. Mathematically, this means that

lim F,(y) = F(y), Vy,
n—oo
where F'(y) is the cdf of Y.
We say that Y,, converges to Y in probability if V € > 0,
lim P(|Y, —Y]|>¢) =0.
n—oo
This means that the part of the sample space where X, differs from X is
getting smaller and smaller. Furthermore, we say that Y;, converges to Y
almost surely (abbreviated as a.s.) if
P(lim |Y,-Y|=0)=1.
n—oo
In thinking about the latter two modes of convergence, it is useful to think
of each random variable Y, as the function of the outcomes in the sample
space. Hence, almost sure convergence implies that for almost all s in X we
have Y,,(s) getting closer and closer to Y (s). It can be shown that almost
sure convergence implies the convergence in probability, which then implies
convergence in distribution. The following three fundamental results for
convergence of random variables are most widely used in practice.
The weak law of large numbers (WLLN) states that if Xy,...,X,,...
are i.i.d. random variables with finite mean u, then

Xi+--+X, -
2ttt An — 4 in probability.
n

If X; also has a finite variance (a weaker condition is also possible), then
we have the strong law of large numbers (SLLN):

Xi+---+ X,
n

— 4 as.

The central limit theorem (Chung 1974) says that for mutually indepen-
dent (or weakly correlated) random variables X7, X5, ... with mean u and

variance o2,

VX —p) N(

0,1) in distribution.
o

A.2 Statistical Modeling and Inference 301

This means that the distributional shape of X is more and more like that
of a Gaussian random variable as n increases. It gives one a sense of how
fast X approaches to p as n increases. This result is also an informal basis
for the widespread use of the normal distributions in diverse application
fields.

A.2 Statistical Modeling and Inference

A.2.1 Parametric statistical modeling

Statistical modeling and analysis, including the collection of data, the con-
struction of a probabilistic model, the quantification and incorporation of
expert opinions, the interpretation of the model and the results, and the
prediction from the data, form an essential part of the scientific method
in diverse fields. The key focus of statistics is on making inferences, where
the word inference follows the dictionary definition as “the process of de-
riving a conclusion from fact and/or premise.” In statistics, the facts are
the observed data, the premise is represented by a probabilistic model of
the system of interest, and the conclusions concern unobserved quantities.
Statistical inference distinguishes itself from other forms of inferences by
explicitly quantifying uncertainties involved in the premise and the conclu-
sions.

In nonparametric statistical inference, one does not assume any specific
distributional form for the probability law of the observed data, but only
imposes on the data a dependence (or independence) structure. For exam-
ple, an often imposed assumption in nonparametric analyses is that the
observations are independent and identically distributed (i.i.d.). When the
observed data are continuous quantities, what one has to infer for this
nonparametric model is the whole density curve — an infinite-dimensional
parameter. A main advantage of nonparametric methods is that the re-
sulting inferential statements are relatively more robust than those from
parametric methods. A main disadvantage of the nonparametric approach
is, however, that it is difficult, and sometimes impossible, to build into the
model more sophisticated structures based on our scientific knowledge (i.e.,
it does not facilitate researchers to “learn”).

Indeed, it would be ideal and preferable if we could derive what we want
without having to assume anything. On the other hand, however, the pro-
cess of using simple models (with a small number of adjustable parameters)
to describe natural phenomena and then improving upon them (e.g., New-
ton’s law of motion versus Einstein’s theory of relativity) is at the heart
of all scientific investigations. Parametric modeling, either analytically or
qualitatively, either explicitly or implicitly, is intrinsic to human intelligence
(i-e., it is essentially the only way we learn about the outside world). Anal-

302 Appendix A. Basics in Probability and Statistics

ogously, statistical analysis based on parametric modeling is also essential
to our scientific understanding of the data.

At a conceptual level, probabilistic models in statistical analyses serve
as a mechanism through which one connects observed data with a scientific
premise or hypothesis about the real-world phenomena. No model can com-
pletely represents every detail of reality. The goal of modeling is to abstract
the key features of the underlying scientific problem into a workable math-
ematical form with which the scientific premise may be examined. Families
of probability distributions characterized by a small number of parameters
are most useful for this purpose.

Let y denote the observed data. In parametric inference, we assume that
the observation follows a probabilistic law that belongs to a given distribu-
tion family; that is, y is a realization of a random process (i.e., sampling)
whose probability law has a particular form (e.g., Gaussian, multinomial,
Dirichlet etc.), f(y | 8), which is completely known other than 6. Here, 6
is called a (population) parameter and it often corresponds to a scientific
premise for our understanding of a natural process. Finding a value of 6
that is most compatible with the observation y is termed model fitting or
estimation. We make scientific progresses by iterating between fitting the
data to the posited model and proposing an improved model to accom-
modate important features of the data that are not accounted for by the
previous model. When the model is given, an efficient method should be
used to make inference on the parameters. Both the maximum likelihood
estimation method and the Bayes method use the likelihood function to
extract information from data and are efficient; these methods will be the
main focus of the remaining part of this chapter.

A.2.2 Frequentist approach to statistical inference

Frequentist approach, or sometimes simply referred to as the classical statis-
tics procedure, arrives at its inferential statements by using a point estimate
of the unknown parameter and addressing the estimation uncertainty by
the frequency behavior of the estimator. Among all the estimation methods,
the method of mazimum likelihood estimate (MLE) is most popular.

The MLE of 6 is defined as an argument @ that maximizes the likelihood
function; that is,

N

0 = argmax L(60 ,
gmax L(6 |y)

where the likelihood function L(0 | y) is defined to be any function that is

proportional to the probability density f(y | 8). Clearly, @ is a function of y
and its form is determined completely by the parametric model f(). Hence,

we can write as 0(y) to explicate this connection. Any deterministic
function of the data y, such as 8(y), is called an estimator. Although there

A.2 Statistical Modeling and Inference 303

are many possible ways of producing an estimator, it can be shown under
regularity conditions that the MLE 68(y) is asymptotically the most efficient
among all potential estimators. In other words, no other ways of using y
can outperform the MLE procedure in estimating @ in an asymptotic sense.
Some inferior methods, such as the method of moments (MOM), can be
used as alternatives when the MLE is difficult to obtain.

For example, if y = (y1,...,yn) are i.i.d. observations from N(6,1), a
Normal distribution with mean ¢ and variance 1, then the MLE of ¢ is
6(y) = g which is simply a linear combination of the y. Another often-used
estimator is the median, which is also easy to compute. If y = (y1,... ,¥n)
are i.i.d. observations from a Cauchy(f) distribution, which has a density
form

1
w[l+ (z —6)?]’

then the MLE is no longer easy to compute, whereas the median is often a
good substitute.

Uncertainty in the estimation is addressed by the principle of repeated
sampling. Imagine that the same stochastic process which “generates” our
observation y can be repeated indefinitely under identical conditions. A fre-
quentist studies what the “typical” behavior of an estimator [e.g., é(y,ep)]
is. Here, yrep denotes a hypothetical dataset generated by a replication of
the same process that generates y and is, therefore, a random variable that
has y’s characteristics. The distribution of §(yrep) is called the frequency

f(z; 0) =

behavior of estimator . For the normal distribution example, the frequency
distribution of grep is N(6,1/n). With this distribution available, we can
calibrate the observed f(y) with the “typical” behavior of é(yrep) [e.g.,
N(6,1/n)] to quantify uncertainty in the estimation.

We want to emphasize that the concepts of an “estimator” and its uncer-
tainty only make sense if a generative model is contemplated. For example,
the statement that “6, estimates the true frequency of A” only makes sense
if we imagine that an i.i.d. model (or another similar model) was used to
generate the data. If this model is not really what we have in mind, then
the meaning of 8, is no longer clear. A imaginary random process for the
data generation is crucial for deriving a valid statistical statement.

A (1-0)100% confidence interval (or region) for @, for instance, is of the
form (8(¥rep), O(¥rep)), meaning that under repeated sampling, the prob-
ability that the interval (the interval is random under repeated sampling)
covers the true 8 is 1 — a. To the contrary of what most people have hoped
for, this interval statement does not mean that “@ is in (8(y),0(y)) with
probability 1 — a.” With observed y, the true 0 is either in or out of the
interval and no meaningful probability statement can be given unless 8 can
be treated as a random variable.

When finding the analytical form of the frequency distribution of an es-
timator @ is difficult, some advanced techniques such as the jackknife and

304 Appendix A. Basics in Probability and Statistics

bootstrap method can be applied to numerically simulate the “typical” be-
havior of an estimator (Efron 1979). Suppose y = (y1,--- ,yn) and each y;
follows an i.i.d. model. In the bootstrap method, one treats the empirical
distribution of y (the distribution that gives a probability mass of 1/n to
each y; and 0 to all other points in the space) as the “true underlying dis-
tribution” and repeatedly generates new datasets, Yrep,1,--- ; Yrep,B from
this distribution. Operationally, each y,ep,» consists of n data points; that
is, Yrep,b = (Yb,1,- -+, Yb,n), Where each yy ; is a simple random sample (with
replacement) from the set of the observed data points {y1,... ,yn}. With
the bootstrap samples, we can calculate é(yrep’b), for b=1,...,B, whose
histogram tells us how 6 varies from sample to sample.

In a sense, the classical inferential statements are pre-data statements
because they are concerned with the repeated sampling properties of a pro-
cedure and do not have to refer to the actual observed data (except in the
bootstrap method, where the observed data are used in the approximation
of the “true underlying distribution”). A major difficulty in the frequentist
approach, besides its awkwardness in quantifying estimation uncertainty,
is its difficulty in dealing with nuisance parameters. Suppose 8 = (61,05).
In a problem where we are only interested in one component, 6; say, the
other component 62 becomes a nuisance parameter. No clear principles ex-
ist in classical statistics that enables us to get rid of 2 in an optimal way.
One of the most popular practices in statistical analysis is the so-called
profile likelihood method, in which one treats the nuisance parameter 6, as
known and fixes it at its MLE. This method, however, underestimates the
involved uncertainty (because it treats unknown 65 as if it were known)
and can lead to incorrect inference when the dimensionality of 65 is high.
More sophisticated methods based on orthogonality, similarity, and average
likelihood have also been proposed, but they all have their own problems
and limitations.

A.2.3 Bayesian methodology

Bayesian statistics seeks a more ambitious goal by modeling all sorts of
related information and uncertainty (e.g., physical randomness, subjective
opinions, prior knowledge from different sources, etc.) with a joint proba-
bility distribution and treating all quantities involved in the model, be they
observations, missing data, or unknown parameters, as random variables.
It uses the calculus of probability as the guiding principle in manipulating
data and derives its inferential statements based purely on an appropriate
conditional distribution of unknown variables.

Instead of treating @ as an unknown constant as in a frequentist ap-
proach, Bayesian treats 6 as a realized value of a random variable that
follows a prior distribution fo(0). This prior is typically regarded as known
to the researcher independently of the data under analysis. The Bayesian

A.2 Statistical Modeling and Inference 305

approach has at least two advantages. First, through the prior distribution,
we can inject prior knowledge and information on the value of 8. This is es-
pecially important in bioinformatics since biologists often have substantial
knowledge on the subject under study. To the extent that this information
is correct, it will sharpen the inference about 6. Second, treating all the
variables in the system as random variables greatly clarifies the methods
of analysis. It follows from the basic probability theory that information
about the realized value of any random variable, 8, say, based on observa-
tion of related random variables, y, say, is summarized in the conditional
distribution of @ given y, the so-called posterior distribution. Hence, if we
are interested only in a component of 8, we have just to integrate out the
remaining components of @ (i.e., nuisance parameters) from the posterior
distribution. Furthermore, if we are interested in the prediction of a future
observation y* depending on 6, we can obtain the posterior distribution of
yT given y by completely integrating out 8. However, an associated prob-
lem with the Bayesian approach is the specification of an appropriate prior
for the unknowns. This task can be daunting in some high-dimensional
problems.

The use of probability distributions to describe unknown quantities is
also supported by the fact that probability theory is the only known coher-
ent system for quantifying objective and subjective uncertainties. Further-
more, probabilistic models have been accepted as appropriate in almost
all information-based technologies, including artificial intelligence, control
theory, communication and signal processing, information theory, statistics,
system science, etc. When the system under study is modeled properly, the
Bayesian approach is always among the most coherent, consistent, and ef-
ficient statistical methods.

The theorem that combines the prior and the data to form the poste-
rior distribution (Section A.3) is a simple mathematical result first given
by Thomas Bayes in 1763. The statistical procedure based on the sys-
tematic use of this theorem appears much later (some people believe that
Laplace was the first Bayesian) and is also named after Bayes. The adjec-
tive Bayesian is often used for approaches in which subjective probabilities
are emphasized. In this sense, Thomas Bayes is not really a Bayesian.

A main controversial aspect of the Bayesian approach is the use of the
prior distribution, to which three interpretations can be given: (a) as fre-
quency distributions; (b) as objective representations of a rational belief of
the parameter, usually in a state of ignorance; and (c¢) as a subjective mea-
sure of what a particular individual believes (Cox and Hinkley 1974). Inter-
pretation (a) refers to the case when 6 indeed follows a stochastic process
and, therefore, is uncontroversial. But this scenario is of limited applicabil-
ity. Interpretation (b) is theoretically interesting but is often untenable in
real applications. The emotive words “subjective” and “objective” should
not be taken too seriously. (Many people regard the frequentist approach
as a more “objective” one.) There are considerable subjective elements

306 Appendix A. Basics in Probability and Statistics

and personal judgments injected into all phases of scientific investigations.
Claiming that someone’s procedure is “more objective” based on how the
procedure is derived is nearly meaningless. A truly objective evaluation of
any procedure is by how well it attains its stated goals. In bioinformatics,
we are fortunate to have a lot of known biological facts to serve as objective
judges.

In most of our applications, we employ the Bayesian method mainly be-
cause of its internal consistency in modeling and analysis and its capability
to combine various sources of information. Thus, we often take a combina-
tion of (a) and (c) for deriving a “reasonable” prior for our data analysis.
We advocate the use of a suitable sensitivity analysis (i.e., an analysis on
how our inferential statements are influenced by a change in the prior) to
validate our statistical conclusions.

A.3 Bayes Procedure and Missing Data Formalism

A.3.1 The joint and posterior distributions

The full process of a typical Bayesian analysis can be described as consist-
ing of three main steps (Gelman, Roberts and Gilks 1995): (a) setting up
a full probability model, the joint distribution, that captures the relation-
ship among all the variables (e.g., observed data, missing data, unknown
parameters) in consideration; (b) summarizing the findings for particular
quantities of interest by appropriate posterior distributions, which is typ-
ically a conditional distribution of the quantities of interest given the ob-
served data; (c) evaluating the appropriateness of the model and suggesting
improvements (model criticizing and selection).

A standard procedure for carrying out step (a) is to formulate the sci-
entific question of interest through the use of a probabilistic model, based
on which we can write down the likelihood function of 8. Then, a prior
distribution fo(@) is contemplated which should be both mathematically
tractable and scientifically meaningful. The joint probability distribution
can then be represented as Joint = likelihood X prior:

p(y,0) =p(y | 6)fo(6) (A.3)

For notational simplicity, we use p(y | 8), hereafter, interchangeably with
f(y | 0) to denote the likelihood. From a Bayesian’s point of view, this is
simply a conditional distribution.

Step (b) is completed by obtaining the posterior distribution through the
application of the Bayes theorem:

_p(y,0) _ plyl6)fo(8)
p(@y) =) fp(y|0)f(())(0)d0 o< p(y | 6)fo(6). (A.4)

A .3 Bayes Procedure and Missing Data Formalism 307

When 6 is discrete, the integral is replaced by summation. The denominator
p(y), which is a normalizing constant for the function, is sometimes called
the marginal likelihood of the model and can be used to conduct model
selection (Kass and Raftery 1995). Although evaluating p(y) analytically
is infeasible in many applications, Markov chain Monte Carlo methods often
can be employed for its estimation.

For example, suppose we toss a loaded k-sided die n times and wish to
estimate the frequency vector @ = (61,... ,0%) for the occurrence frequency
of each side. A commonly used model is the multinomial distribution. A
mathematically convenient prior for the multinomial families is the Dirich-
let distributions, Dirichlet(a), whose density form is given in (A.2). Here,
a = (ay,...,q) is the hyperparameter for the Dirichlet distribution and
is sometimes referred to as the “pseudo-counts,” which can be understood
heuristically as the “worth” of one’s prior opinion (relative to the num-
ber of actual observations) . When a simple i.i.d. model is imposed on an
observed sequence of letters, y = (y1,-.. ,yn), its likelihood function is

n k
p(y 16) =6 =] 67",
i=1 j=1

where n; is the number of counts of residual type j in y. If a Dirichlet (o)
prior is used for its parameter 0, the posterior distribution for @ is simply
another Dirichlet distribution with hyperparameter (aq +n1, ..., +ng)-
The posterior mean of, say, 8; is (n; + o;)/(n +).

Suppose the parameter vector has more than one component [i.e., 8 =
(61,0[_1), where 8;_;] denotes all but the first component]. One may be
interested only in one of components, 6, say. The other components that
are not of immediate interest but are needed by the model, nuisance pa-
rameters, can be removed by integration:

p(y,01) _ I p(y | 01,6[_1)) fo(61,0}_17)dO[_q
p(y) [p(y | 61,0_17) fo(61,6[—1))dO1dO_1

p(6:|y) = (A.5)

Note that computations required for completing a Bayesian inference are
the integrations (or summations for discrete parameters) over all unknowns
in the joint distribution to obtain the marginal likelihood and over all but
those of interest to remove nuisance parameters. Despite the deceptively
simple-looking form of (A.5), the challenging aspects of Bayesian statistics
are as follows: (i) the development of a model, p(y | 8) fo(8), which must
effectively capture the key features of the underlying scientific problem
and (ii) the necessary computation for deriving the posterior distributions.
For aspect (i), the missing data formulation is an important tool to help
one formulate a scientific problem; for (ii), the Monte Carlo techniques
described in this book are essential.

308 Appendix A. Basics in Probability and Statistics

A.3.2 The missing data problem

The missing data formulation is an important methodology for modeling
complex data structures and for designing computational strategies (Little
and Rubin 1987). This general framework was motivated in the early 1970s
(and maybe earlier) by the need of a proper statistical analysis of cer-
tain survey data where parts of the data were missing (Rubin 1976). For
example, a large survey of families was conducted in 1967, in which many
socioeconomic variables were recorded. Then, a follow-up study of the same
families were done in 1970. Naturally, the 1967 data had a large amount of
missing values due to either recording errors or some families’s refusal to
answer certain questions. The 1970 data had an even more severe kind of
missing data caused by the fact that many families studied in 1967 could
not be located in 1970.

The first important question for a missing data problem is under what
conditions one can ignore the “missing mechanism” in the analysis; that
is, does the fact that an observation is missing tell us anything about the
quantities we are interested in estimating? For example, the fact that many
families moved out of a particular region may indicate that the region’s
economy was having a problem. Thus, if our interested estimand is a cer-
tain “consumer confidence” measure of the region, the standard estimate
resulting only from the observed families might be biased. Rubin’s (1976)
pioneering work provides a general guidance on how to judge the ignorabil-
ity. Since everything in a Bayes model is a random variable, it is especially
convenient and transparent in dealing with these ignorability problems in a
Bayesian framework. The second important question is how one should con-
duct computations, such as finding the MLE or the posterior distribution
of the estimands. This question has motivated statisticians to develop sev-
eral important algorithms: the EM algorithm (Dempster et al. 1977), data
augmentation (Tanner and Wong 1987), and the Gibbs sampler (Gelfand
and Smith 1990)

In the late 1970s and early 1980s, people started to realize that many
other problems can be treated as a missing data problem. One typical
example is the so-called latent-class model, which is most easily explained
by the following example (Tanner and Wong 1987). In the 1972-74 General
Social Surveys, a sample of 3181 participants were asked to answer the
following questions. Question A: whether or not you think it should be
possible for a pregnant woman to obtain a legal abortion if she is married
and does not want any more children. Question B: the italicized phrase
in A is replaced with “if she is not married and does not want to marry
the man.” A latent-class model assumes that a person’s answers to A and
B are conditionally independent given the value of a dichotomous latent
variable Z (either 0 or 1). Intuitively, this model asserts that the population
consists of two “types” of persons (e.g., conservative and liberal) and Z is
the unobserved “label” of each person. If you know the person’s label, then

A .3 Bayes Procedure and Missing Data Formalism 309

his/her answer to question A will not help you to predict his/her answer
to question B. Clearly, variable Z can be thought of as a “missing data”
although it is not really “missing” in a standard sense.

The importance of the missing data formulation stems from the follow-
ing two main considerations. Conceptually, this framework helps in mak-
ing model assumptions explicit (e.g., ignorable versus nonignorable missing
mechanism), in defining precise estimand of interest, and in providing a
logical framework for causal inference (Rubin, 1976). Computationally, the
missing data formulation inspired the invention of several important statis-
tical algorithms. Mathematically, however, the missing data formulation is
not well defined. In real life, what we can observe is always partial (incom-
plete) information and there is no absolute distinction between parameters
and missing data (i.e., some unknown parameters can also be thought of
as missing data and vice versa). In the most general and abstract form, the
“missing data” can refer to any augmented part of the probabilistic system
under consideration. When missing data ymis is present, a proper inference
on parameters of interest can be achieved by using the “observed-data like-
lihood,” Lobs(8;¥obs) = P(Yobs |), which can be obtained by integration:

Lobs(0; Yobs) /p(YObs;Ymis | 0)dy mis-

Since it is often difficult to complete this integral analytically, one needs
advanced computational methods such as the EM algorithm (Dempster et
al. 1977) to compute the MLE.

Bayesian analysis for missing data problems can be achieved coherently
through integration. Let 8 = (61, 0[_1]) and suppose we are interested only
in 6;. Then,

P(61 | Yobs) x //p(YObs;Ymis | 01,0[_11)p(01, 0[—11)dYmisdO[_1].

Since all quantities in a Bayesian model are treated as random variables,
the integration for eliminating the missing data is no different than that
for eliminating nuisance parameters.

Our main use of the missing data formulation is to construct proper sta-
tistical models for bioinformatics problems. As will be shown in the later
sections, this framework frees us from being afraid of introducing meaning-
ful but perhaps high-dimensional variables into our model, which is often
necessary for a satisfactory description of the underlying scientific knowl-
edge. The extra variables introduced this way, when treated as missing
data, can be integrated out in the analysis stage so as to result in a proper
inference for the parameter of interest. Although a conceptually simple pro-
cedure, the computation involved in integrating out missing data can be
very difficult.

310 Appendix A. Basics in Probability and Statistics
A4 The Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is perhaps one of the most
well-known statistical algorithms for finding the mode of a marginal likeli-
hood or posterior distribution function; that is, the EM algorithm enables
one to find the mode of

F(O) = /f(Ymis;B)deis; (A6)

where f(ymis,0) > 0 and F(0) < oo for all 8. When ym;s is discrete,
we simply replace the integral in (A.6) by summation. In the traditional
description of the EM algorithm, the f function is usually written as a
complete data likelihood, p(¥obs, Ymis|@). Here we purposely omit yops for
a simpler presentation. Although trivial, it is worthwhile to note that the
problem setting in (A.6) is very general and can refer to any marginal
optimization problem. The EM algorithm starts with an initial guess 6
and iterates the following two steps:

e E-step. Compute
Q(01609) = E4[1og f (Ymis, 0) | Yobs]
/ 10g f (Yoniss 0)f (Yomis | 07)dy i,

where f(¥mis | 0) = f(¥mis,0)/F(0) can be seen as the conditional
distribution of yn;s-

e M-step. Find 8“*Y to maximize Q(8|6").

The E-step is derived from an “imputation” heuristic. Since we assume
that the log-likelihood function is easy to compute once the missing data
Ymis are given, it is appealing to simply “fill in” a set of missing data
and conduct a complete-data analysis. However, the simple “fill-in” idea is
incorrect because it underestimates the variability caused by the missing
information. The correct approach is to average over all the missing data.
In general, the E-step considers all possible ways of filling in the missing
data, computes the corresponding complete-data log-likelihood function,
and then obtains Q(0|0(t)) by averaging these functions according to the
current “predictive density” of the missing data. The M-step then finds the
maximum of the @-function.

It is shown (Dempster et al. 1977) that this iteration always increases
the likelihood value. To see this, we note that

f(Ymis | 0) = f(Ymis, 8)/F(8),

which is equivalent to

IOgF(B) =log f(Ymi57 0) — log f(Ymis | 0)

A.4 The Expectation-Maximization Algorithm 311

Thus, taking expectation with respect to f(ymis |) for both sides, we
have

log F(0) = Ey[log f(yumis,0)] — Ei[log f(ymis | 0)]
Q(6]6") — 5(6/6). (A7)
If we replace @ by 8% in (A.7), we have that
log F(8') = (616" — 5(6"16),
and if replaced by 0(t+1), we have that
log F(0**V)) = Q(0“1V]91)) — 5911 |9V)).

By the definition of the EM iteration, we note that

QB V1e") > (6" 16"). (A.8)

By the Jensen’s inequality, we see that for any two probability distributions
m1(x) and 7o (x),

/log [:igz;] m1(x)dx < log/ :?Ez; m(x)dx = 0.

SED10Y) > 50D |19W). (A.9)

Hence,

Putting (A.8) and (A.9) together, we have proven that F(8+Y > F(8®).
From the proof, we can see that any 0*Y that increases the Q-function
will increase F'(8). See Meng and van Dyk (1997) and discussions therein
for a recent overview of the methods related to the EM algorithm.

It is instructive to consider the EM algorithm for the latent-class model
of Section A.3.2. The observed values are yobs = (y1,--- ,Yn), Where y; =
(yi1,¥i2) and y;; is the ith person’s answer to the jth question. The missing
data are ynis = (21,--- ,2n), Where z; is the latent-class label of person i.
Let 6 = (60,1,01,1,60,2,01,2,7), where v is the frequency of z; = 1 in the
population and 6, is the probability of a type-k person saying “yes” to
the Ith question. Then, the complete-data, likelihood is

f(Ymis; 9) = p(Yobs | Ymis; 0)p(Ymis | 0)

1 [H [o24,(0— 0.,)70+ 700 —v)l-“] .

i=1 Lk=1

The E-step requires us to average over all label imputations. Thus,

n

Z {yirlog 0., x + (1 — ys) log(1 — azi,k)}]

=1 k=1

Q(016") =

+E;

Z {zilogy + (1 — 2;)log(1 — ’Y)}])

i=1

312 Appendix A. Basics in Probability and Statistics

where the expectation is taken to average out all the z; according to their
“current” predictive probability distribution

7@)9@
YOy, + (1= 7 0)6,

T = P(Zz' =1 | Yobs, B(t)) =

Hence, we simply “fill in” a probabilistic label for each person in the E-step,
which gives us

1 2

QMOIEM) = >N > (1 — 1) "™ log b i

m=0 k=1 y;r=1

+ Z (1 — 1) ™ log(1 — O)
i Yir=0

(Z Tt) logy + (Z(l - T,)) log(1 — 7).

Although the above expression looks overwhelming, the computation is ac-
tually quite simple. The M-step simply updates the parameters as y(t+1) =

>, 7i/n and

9(t+1): Zz yin=1Ti (1_71)1 m
ok Zl y1k11(1_7—)1m+zz kaz(l_Tz)lm

The EM algorithm can only guarantee to converge to a local mode, 9,
of the observed data likelihood F'(8). Since the algorithm is deterministic,
there is no principled way of getting out of such a local mode. Furthermore,
although one can use a similar iterative method to compute the observed
Fisher information, which is defined as the curvature of log f(8), it is still
not as desirable as having a full posterior distribution on 6.

Alternatively, one can take the Bayesian approach via the data augmen-
tation algorithm (Section 6.4), which is conceptually much simpler. More
precisely, with a prior distribution po(0), one can iterate the following two
Monte Carlo sampling steps:

¢ Draw yr(ms) from P(Ymis | 9<t)a}’obs)§

e Draw 0%V from p(0 | y(tfl),}’obs)-

mis

Both steps are straightforward to implement provided that the prior dis-
tribution po() is a standard one (e.g., a product of Beta distributions).
Otherwise, means such as the rejection method or a Metropolis-Hastings
step may be needed.

This is page 313
Printer: Opaque this

References

Aarts, E. H. L. and Korst, J. (1989). Simulated Annealing and Boltzmann
Machines: A Stochastic Approach to Combinatorial Optimization and
Neural Computing, Wiley, Chichester.

Ackley, D. H., Hinton, G. R. and Sejnowski, T. J. (1985). A learning
algorithm for Boltzmann machines, Cognitive Science 9(1): 147-169.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D.
(1994). Molecular Biology of the Cell, 3rd ed, Garland Publishing,
New York.

Alder, B. and Wainwright, T. (1959). Studies in molecular dynamics I.
General method, Journal of Chemical Physics 31(2): 459-466.

Aldous, D. J. and Diaconis, P. (1987). Strong uniform times and finite
random walks, Advances in Applied Mathematics 8: 69-97.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering, Prentice-
Hall, Englewood Cliffs, NJ.

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications
to Bayesian nonparametric problems, Annals of Statistics 2(6): 1152—
1174.

Arnold, V. 1. (1989). Mathematical Methods of Classical Mechanics, 2nd
ed, Springer-Verlag, New York.

Asmussen, S. (1987). Applied Probability and Queues, Wiley, Chichester.

314 References

Athreya, K. B. and Ney, P. (1978). New approach to the limit theory of
recurrent Markov chains, Transactions of the American Mathematical
Society 245: 493-501.

Avitzour, D. (1995). Stochastic simulation Bayesian approach to
multi-target tracking, IEE Proceedings-Radar Sonar and Navigation
142(2): 41-44.

Bar-Shalom, Y. and Fortmann, T. E. (1988). Tracking and Data Associa-
tion, Academic Press, Boston.

Barker, A. A. (1965). Monte Carlo calculations of radial distribution
functions for a proton-electron plasma, Australian Journal of Physics
18(2): 119-133.

Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P. and Nadler,
W. (1998). Testing a new Monte Carlo algorithm for protein folding,
Proteins-Structure Function and Genetics 32(1): 52—-66.

Batoulis, J. and Kremer, K. (1988). Statistical properties of biased sam-
pling methods for long polymer chains, Journal of Physics A (Math-
ematical and General) 21(1): 127-46.

Beckett, L. and Diaconis, P. (1994). Spectral analysis for discrete longitu-
dinal data, Advances in Mathematics 103(1): 107-128.

Beichl, I. and Sullivan, F. (1999). Approximating the permanent via im-
portance sampling with application to the dimer covering problem,
Journal of Computational Physics 149(1): 128-147.

Bellman, R. E. (1957). Dynamic Programming. Rand Corporation Research
Study, Princeton University Press, Princeton.

Berg, B. A. and Neuhaus, T. (1991). Multicanonical algorithms for 1st
order phase-transitions, Physics Letters B 267(2): 249-253.

Berman, A. and Plemmons, R. J. (1994). Nonnegative Matrices in the
Mathematical Sciences, Classics in applied mathematics 9, Society for
Industrial and Applied Mathematics, Philadelphia.

Berzuini, C., Best, N. G., Gilks, W. R. and Larizza, C. (1997). Dynamic
conditional independence models and Markov chain Monte Carlo
methods, Journal of the American Statistical Association 92: 1403—
1412.

Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian compu-
tation, Journal of the Royal Statistical Society, Series B 55(1): 25-37.

References 315

Besag, J., Green, P. J., Higdon, D. and Mengersen, K. (1995). Bayesian
computation and stochastic systems (with discussion), Statistical Sci-
ence 10(1): 3-41.

Bickel, P. J. and Doksum, K. A. (2000). Mathematical Statistics: Basic
Ideas and Selected Topics, Vol. 1, 2nd ed, Prentice Hall, Englewood
Cliffs, NJ.

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statis-
tical Analysis, Addison-Wesley Publishing Company, Reading, Mas-
sachusetts.

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transforma-
tions for multiple regression and correlation (with discussion), Journal
of the Americal Statistical Association 80: 580-619.

Buntine, W. L. and Weigend, A. S. (1991). Bayesian back-propagation,
Complex Systems 5: 603—643.

Campbell, M. K. (1999). Biochemistry, 3rd ed, Saunders College Pub.,
Philadelphia.

Cannings, C., Thompson, E. A. and Skolnick, M. H. (1978). Probabil-
ity functions on complex pedigrees, Advances in Applied Probability
10(1): 26-61.

Casella, G. and George, E. 1. (1992). Explaining the Gibbs sampler, Amer-
ican Statistician 46(3): 167-174.

Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling
schemes, Biometrika 83(1): 81-94.

Ceperley, D. M. (1995). Path integrals in the theory of condensed helium,
Reviews of Modern Physics 6'7(2): 279-355.

Chakraborty, A., Chen, Y., Diaconis, P., Holmes, S. and Liu, J. S. (2001).
Counting 0-1 tables and related problems, Technical report, Depart-
ment of Statistics, Stanford University.

Chen, L., Qin, Z. and Liu, J. S. (2000). Exploring hybrid Monte Carlo
in Bayesian computation, Proceedings of the International Society of
Bayesian Analysis 1: to appear.

Chen, M. H. and Schmeiser, B. W. (1993). Performance of the Gibbs,
hit-and-run, and Metropolis samplers, Journal of Computational and
Graphical Statistics 2: 251-272.

Chen, M. H. and Shao, Q. M. (1997). On Monte Carlo methods for estimat-
ing ratios of normalizing constants, Annals of Statistics 25(4): 1563—
1594.

316 References

Chen, M. H., Shao, Q. M. and Ibrahim, J. G. (2000). Monte Carlo Meth-
ods in Bayesian Computation, Springer Series in Statistics, Springer-
Verlag, New York.

Chen, R. and Liu, J. S. (1996). Predictive updating methods with applica-
tion to Bayesian classification, Journal of the Royal Statistical Society,
Series B 58(2): 397-415.

Chen, R. and Liu, J. S. (2000a). Mixture Kalman filters, Journal of the
Royal Statistical Society, Series B 62: 493-508.

Chen, R., Wang, X. D. and Liu, J. S. (2000). Adaptive joint detection and
decoding in flat-fading channels via mixture Kalman filtering, IEEE
Transactions on Information Theory 46(6): 2079-2094.

Chen, Y. (2001). Sequential Importance Sampling and Its Applications,
Ph.D., Stanford University.

Chen, Y. and Liu, J. S. (2000b). Discussion of the paper by Stephens and
Donnelly, Journal of the Royal Statistical Society, Series B 62: 644—
645.

Chen, Y. and Liu, J. S. (2001). Approximating permanents with sequen-
tial importance sampling, Technical report, Department of Statistics,
Harvard University.

Chung, K. L. (1974). A Course in Probability Theory, Academic Press,
New York.

Cong, J., Kong, T., Xu, D., Liang, F., Liu, J. S. and Wong, W. H. (1999).
Simulated tempering for VLSI floorplan designs, Asia and South Pa-
cific Design Automation Conference, Tokyo, pp. 13-16.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo con-
vergence diagnostics: A comparative review, Journal of the American
Statistical Association 91(434): 883-904.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics, Chapman &
Hall, New York.

Creighton, T. E. (1993). Proteins: Structures and Molecular Properties,
2nd ed, W.H. Freeman, New York.

Cséaki, P. and Fischer, J. H. (1960). Contributions to the problem of maxi-
mal correlation, Matematikao Kotato Intezet, Kozlemenyei 5: 325-337.

Cybenko, G. (1989). Approximations by superpositions of a signodial func-
tion, Mathematics of Control, Signals, and Systems 2: 303-314.

References 317

Damien, P., Wakefield, J. and Walker, S. (1999). Gibbs sampling
for Bayesian non-conjugate and hierarchical models by using aux-
iliary variables, Journal of the Royal Statistical Society, Series B
61(pt.2)): 331-344.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum like-
lihood from incomplete data via EM algorithm, Journal of the Royal
Statistical Society, Series B 39(1): 1-38.

Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-
Verlag, New York.

Diaconis, P. (1988). Group Representations in Probability and Statistics,
Institute of Mathematical Statistics, Hayward, California.

Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues for
Markov chains, Annals of Applied Probability 1: 36—61.

Diaconis, P., Graham, R. and Holmes, S. P. (2001). Statistical problems
involving permutations with restricted positions, Technical report, De-
partment of Statistics, Stanford University.

Daorrie, H. (1965). 100 Great Problems of Elementary Mathematics; Their
History and Solution, Dover Publications, New York,.

Doss, H. (1994). Bayesian nonparametric estimation for incomplete data
via successive substitution sampling, Annals of Statistics 22(4): 1763—
1786.

Doucet, A., Godsill, S. J. and Andrieu, C. (2000). On sequential Monte
Carlo sampling methods for Bayesian filtering, Statistics and Comput-
ing 10(3): 197-208.

Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid
Monte Carlo, Physics Letters B 195(2): 216-222.

Durbin, R. L., Eddy, S. R., Krogh, A. and Mitchison, G. (1998). Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids,
Cambridge University Press, Cambridge, UK.

Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin-
Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm,
Physical Review D 38(6): 2009-12.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals
of Statistics 7(1): 1-26.

Efron, B. and Morris, C. (1975). Data analysis using Stein’s estimator
and its generalizations, Journal of the American Statistical Association
70: 311-319.

318 References

Efron, B. and Petrosian, V. (1999). Nonparametric methods for dou-
bly truncated data, Journal of the American Statistical Association
94(447): 824-834.

Escobar, M. D. (1994). Estimating normal means with a Dirichlet process
prior, Journal of the American Statistical Association 89(425): 268
277.

Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characteriza-
tion and Convergence, Wiley series in probability and mathematical
statistics, Wiley, New York.

Ferguson, T. S. (1974). Prior distributions on spaces of probability mea-
sures, Annals of Statistics 2(4): 615-629.

Fill, J. A. (1991). Eigenvalue bounds on convergence to stationarity for
nonreversible Markov chains, with application to the exclusion pro-
cess., Annals of Applied Probability 1: 62-87.

Fill, J. A. (1998). An interruptible algorithm for perfect sampling via
Markov chains, Annals of Applied Probability 8: 131-162.

Frenkel, D. and Smit, B. (1996). Understanding Molecular Simulation:
From Algorithms to Applications, Academic Press, San Diego.

Frigessi, A., Distefano, P., Hwang, C. R. and Sheu, S. J. (1993).
Convergence-rates of the Gibbs sampler; the Metropolis algorithm and
other single-site updating dynamics, Journal of the Royal Statistical
Society, Series B 55(1): 205-219.

Gelb, A. (1974). Applied Optimal Estimation, M.I.T. Press, Cambridge,
Mass.

Gelfand, A. E. and Kuo, L. (1991). Nonparametric Bayesian bioassay in-
cluding ordered polytomous response, Biometrika 78(3): 657-666.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches
to calculating marginal densities, Journal of the American Statistical
Association 85: 398-409.

Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1995). Efficient parametriza-
tions for normal linear mixed models, Biometrika 82(3): 479-488.

Gelman, A. and Meng, X. L. (1998). Simulating normalizing constants:
From importance sampling to bridge sampling to path sampling, Sta-
tistical Science 13(2): 163-185.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation

using multiple sequences (with discussion), Statistical Science T: 457
472.

References 319

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian
Data Analysis, reprinted 1997. ed, Chapman & Hall, London.

Gelman, A., Roberts, G. O. and Gilks, W. R. (1995). Efficient Metropolis
jumping rules, in J. Bernardo, J. Berger, A. Dawid and A. Smith (eds),
Bayesian Statistics, Vol. 5, Oxford University Press, Oxford.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of images, IEEE Transactions on
Pattern Analysis and Machine Intelligence 6: 721-741.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian vari-
able selection, Statistica Sinica T(2): 339-373.

Geyer, C. (1992). Practical Monte Carlo Markov chain (with discussion),
Statistical Science 7: 473-511.

Geyer, C. and Thompson, E. (1995). Annealing Markov chain Monte Carlo
with applications to ancestral inference., Journal of the American Sta-
tistical Association 90: 909-920.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood, in
E. Keramigas (ed.), Computing Science and Statistics: The 23rd sym-
posium on the interface, Interface Foundation, Fairfax, pp. 156-163.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1998). Markov Chain
Monte Carlo in Practice, Chapman & Hall, London.

Gilks, W. R., Roberts, G. O. and George, E. I. (1994). Adaptive direction
sampling, Statistician 43(1): 179-189.

Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov
chain Monte Carlo through regeneration, Journal of the American Sta-
tistical Association 93(443): 1045-1054.

Goodman, J. and Sokal, A. (1989). Multigrid Monte Carlo method: Con-
ceptual foundations., Physical Review D 40(6): 2035-2071.

Gordon, N. J., Salmond, D. J. and Ewing, C. (1995). Bayesian state esti-
mation for tracking and guidance using the bootstrap filter, Journal
of Guidance Control and Dynamics 18(6): 1434-1443.

Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach
to nonlinear non-Gaussian Bayesian state estimation., IEE Proceedings
on Radar and Signal Processing 140: 107-113.

Gouriérourx, C. and Monfort, A. (1997). Simulation Based Econometric
Methods, Oxford University Press, Oxford.

320 References

Grassberger, P. (1997). Pruned-enriched Rosenbluth method: Simulations
of 8 polymers of chain length up to 1,000,000, Physical Review E
56: 3682-3693.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination, Biometrika 82(4): 711-732.

Green, P. J. and Murdoch, D. J. (1998). Exact sampling for Bayesian infer-
ence: Towards general purpose algorithms, in J. Bernardo, J. Berger,
A. Dawid and A. Smith (eds), Bayesian Statistics, Vol. 6, Oxford Uni-
versity Press, Oxford, pp. 301-321.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and
Generalized Linear Models: A Roughness Penalty Approach, Vol. 58
of Monographs on statistics and applied probability, Chapman & Hall,
London.

Grenander, U. and Miller, M. I. (1994). Representations of knowledge in
complex systems, Journal of the Royal Statistical Society, Series B
56(4): 549-603.

Griffiths, R. C. and Tavare, S. (1994). Simulating probability distributions
in the coalescent, Theoretical Population Biology 46(2): 131-159.

Gustafson, P. (1998). A guided walk Metropolis algorithm, Statistics and
Computing 8(4): 357-364.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods,
Methuen’s monographs on applied probability and statistics, Methuen;
Wiley, London.

Hammersley, J. M. and Morton, K. W. (1954). Poor man’s Monte Carlo.,
Journal of the Royal Statistical Society , Series B 16(1): 23-38.

Hammersley, J. M. and Morton, K. W. (1956). A new Monte Carlo tech-
nique: Antithetic variates, Proceedings of the Cambridge Philosophical
Society 52: 449-475.

Hansmann, U. H. E. and Okamoto, Y. (1997). Numerical comparisons
of three recently proposed algorithms in the protein folding problem,
Journal of Computational Chemistry 18(7): 920-933.

Harvey, A. C. (1990). The Econometric Analysis of Time Series, 2nd ed,
MIT Press, Cambridge.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
chains and their applications, Biometrika 57(1): 97-109.

References 321

Hesselbo, B. and Stinchcombe, R. B. (1995). Monte Carlo simulation
and global optimization without parameters, Physics Review Letters
74(12): 2151-2155.

Higdon, D. M. (1998). Auxiliary variable methods for Markov chain Monte
Carlo with applications, Journal of the American Statistical Associa-
tion 93: 585-595.

Hockney, R. W. (1970). The potential calculation and some applications,
Methods in Computational Physics 9: 136-211.

Holley, R. A. and Stroock, D. (1988). Simulated annealing via Sobolev
inequalities, Communications in Mathematical Physics 115(4): 553—
569.

Holley, R. A., Kusuoka, S. and Stroock, D. (1989). Asymptotics of the
spectral gap with applications to the theory of simulated annealing,
Journal of Functional Analysis 83(2): 333-347.

Hopfield, J. J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities, Proceedings of the National
Academy of Sciences of USA 79(8): 2554-2558.

Horn, R. A. and Johnson, C. R. (1985). Matriz Analysis, Cambridge Uni-
versity Press, New York.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feed-forward
networks are universal approximators, Neural Networks 2(5): 359-366.

Hukushima, K. and Nemoto, K. (1996). Exchange Monte Carlo method and
application to spin glass simulations, Journal of the Physical Society
of Japan 65(4): 1604-1608.

Hull, J. and White, A. (1987). The pricing of options on assets with stochas-
tic volatility, Journal of Finance 42: 281-300.

Hurzeler, M. and Kunsch, H. R. (1998). Monte Carlo approximations for
general state-space models, Journal of Computational and Graphical
Statistics 7(2): 175-193.

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, Math-
ematics in science and engineering v. 64, Academic Press, New York,.

Jerrum, M. and Sinclair, A. (1989). Approximating the permanent, STAM
Journal On Computing 18(6): 1149-1178.

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous
Multivariate Distributions, Wiley, New York,.

322 References

Kalman, R. (1960). A new approach to linear filtering and prediction
problems, Journal of Basic Engineering 82: 35—45.

Karlin, S. and Taylor, H. M. (1998). An Introduction to Stochastic Model-
ing, 3rd ed, Academic Press, Orlando.

Karplus, M. and Petsko, G. A. (1990). Molecular dynamics simulations in
biology, Nature 347: 631-639.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors, Journal of the Amer-
ican Statistical Association 90(430): 773-795.

Kesten, H. (1974). Renewal theory for functionals of a Markov chain with
general state space, The Annals of Probability.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by
simulated annealing, Science 220: 671-680.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models, Journal of Computational and Graphical
Statistics 5: 1-25.

Knuth, D. E. (1997). The Art of Computer Programming, 3rd ed, Addison-
Wesley, Reading, Mass.

Kong, A., Cox, N., Frigge, M. and Irwin, M. (1993). Sequential imputation
and multipoint linkage analysis, Genetic Epidemiology 10(6): 483-488.

Kong, A., Liu, J. S. and Wong, W. H. (1994). Sequential imputations and
Bayesian missing data problems, Journal of the American Statistical
Association 89(425): 278-288.

Kremer, K. and Binder, K. (1988). Monte Carlo simulation of lattice mod-
els for macromolecules, Computer Physics Reports.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K. and Haussler, D. (1994).
Hidden Markov models in computational biology: Applications to pro-
tein modeling, Journal of Molecular Biology 235(5): 1501-1531.

Kuznetsov, N. Y. (1996). Computing the permanent by importance sam-
pling method, Cybernetics and Systems Analysis 32(6): 749-755.

Lancaster, H. O. (1958). The structure of bivariate distributions, Annals
of Mathematical Statistics 29(3): 719-736.

Lang, K. J. and Witbrock, M. J. (1988). Learning to tell two spirals apart,
Connectionist Models Summer School, pp. 52-59.

References 323

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with
probabilities on graphical structures and their application to expert
systems, Journal of the Royal Statistical Society, Series B 50(2): 157—
224.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F.
and Wootton, J. C. (1993). Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment, Science 262(5131): 208-214.

Lawrence, C. E. and Reilly, A. A. (1990). An expectation-maximization
(EM) algorithm for the idenification and characterization of common
sites in unaligned biopolymer sequences, Proteins 7: 41-51.

Leach, A. R. (1996). Molecular Modelling: Principles and Applications,
Longman, Harlow, England.

Li, K.-H. (1988). Imputation using Markov chains, Journal of Statistical
Computation and Simulation 30: 57-79.

Li, X. J. and Sokal, A. D. (1989). Rigorous lower bound on the dynamic
critical exponents of the Swendsen-Wang algorithm, Physical Review
Letters 63(8): 827-30.

Liang, F. (1997). Weighted Markov Chain Monte Carlo and Optimization,
Ph.D., The Chinese University of Hong Kong.

Liang, F. and Wong, W. H. (1999). Dynamic weighting in simulations of
spin systems, Physics Letters A.

Liang, F. and Wong, W. H. (2000). Evolutionary Monte Carlo: Applica-
tions to ¢, model sampling and change point problem, Statistica Sinica
10(2): 317-342.

Liang, F. and Wong, W. H. (2001). Real parameter evolutionary Monte
Carlo and Bayesian neural network forecasting, Technical report, De-
partment of Statistics, UCLA.

Liang, F., Truong, Y. K. and Wong, W. H. (2001). Automatic Bayesian
model averaging for linear regression and applications in Bayesian
curve fitting, Statistica Sinica 11: To appear.

Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing
Data, Wiley series in probability and mathematical statistics. Applied
probability and statistics, Wiley, New York.

Liu, C. H., Rubin, D. B. and Wu, Y. N. (1998). Parameter expansion to
accelerate EM: The PX-EM algorithm, Biometrika 85(4): 755-770.

324 References

Liu, J. and West, M. (2000). Combined parameter and state estimation in
simulation-based filtering, in A. Doucet, J. F. G. de Freitas and N. J.
Gordon (eds), Sequential Monte Carlo in Practice, Springer-Verlag,
New York.

Liu, J. S. (1991). Correlation Structure and Convergence Rate of the Gibbs
Sampler, Ph.D. thesis, The University of Chicago.

Liu, J. S. (1994a). The collapsed Gibbs sampler in Bayesian computa-
tions with applications to a gene-regulation problem, Journal of the
American Statistical Association 89(427): 958-966.

Liu, J. S. (1994b). Fration of missing information and convergence rate of
data augmentation, in J. Small and A. Lehman (eds), Computationally
Intensive Statistical Methods: Proceedings of the 26th symposium on
the Interface, Vol. 26 of Computing Science and Statistics, Interface
Foundation of North America, North Carolina, pp. 490-497.

Liu, J. S. (1996a). Metropolized independent sampling with comparisons to
rejection sampling and importance sampling, Statistics and Computing
6(2): 113-119.

Liu, J. S. (1996b). Nonparametric hierarchical Bayes via sequential impu-
tations, Annals of Statistics 24(3): 911-930.

Liu, J. S. (1996¢). Peskun’s theorem and a modified discrete-state Gibbs
sampler, Biometrika 83(3): 681-682.

Liu, J. S. and Chen, R. (1995). Blind deconvolution via sequential imputa-
tions, Journal of the American Statistical Association 90(430): 567—
576.

Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for
dynamic systems, Journal of the American Statistical Association
93(443): 1032-1044.

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on biopolymer
models, Bioinformatics 15(1): 38-52.

Liu, J. S. and Sabatti, C. (1998). Simulated sintering: Markov chain
Monte Carlo with spaces of varying dimensions (with discussion), in
J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Bayesian Statis-
tics, Vol. 6, Oxford University Press, New York, pp. 386-413.

Liu, J. S. and Sabatti, C. (2000). Generalised Gibbs sampler and multigrid
Monte Carlo for Bayesian computation, Biometrika 87(2): 353-369.

Liu, J. S. and Wu, Y. N. (1999). Parameter expansion for data augmenta-
tion, Journal of the American Statistical Association 94: 1264—-1274.

References 325

Liu, J. S., Chen, R. and Logvinenko, T. (2000). A theoretical framework for
sequential importance sampling and resampling, in A. Doucet, J. F. G.
de Freitas and N. J. Gordon (eds), Sequential Monte Carlo in Practice,
Springer-Verlag, New York.

Liu, J. S., Chen, R. and Wong, W. H. (1998). Rejection control and se-
quential importance sampling, Journal of the American Statistical As-
sociation 93(443): 1022-1031.

Liu, J. S., Liang, F. and Wong, W. H. (2000). The use of multiple-try
method and local optimization in Metropolis sampling, Journal of the
American Statistical Association 95: 121-134.

Liu, J. S., Liang, F. and Wong, W. H. (2001). A theory for dynamic weight-
ing in Monte Carlo computation, Journal of the American Statistical
Association p. in press.

Liu, J. S., Neuwald, A. F. and Lawrence, C. E. (1995). Bayesian models
for multiple local sequence alignment and Gibbs sampling strategies,
Journal of the American Statistical Association 90(432): 1156-1170.

Liu, J. S., Wong, W. H. and Kong, A. (1994). Covariance structure of the
Gibbs sampler with applications to the comparisons of estimators and
augmentation schemes, Biometrika 81(1): 27-40.

Liu, J. S., Wong, W. H. and Kong, A. (1995). Covariance structure and
convergence rate of the Gibbs sampler with various scans, Journal of
the Royal Statistical Society, Series B 57(1): 157-169.

Liu, X., Brutlag, D. L. and Liu, J. S. (2001). Bioprospector: Discovering
conserved DNA motifs in upstream regulatory regions of co-expressed
genes, Procceedings of the Pacific Symposium on Bioinformatics.

Lyklema, J. W. and Kremer, K. (1986). Monte Carlo series analysis of irre-
versible self-avoiding walks 2. The growing self-avoiding walk, Journal
of Physics A-Mathematical and General 19(2): 279-289.

MacEachern, S. N. (1994). Estimating normal means with a conjugate
style Dirichlet process prior, Communications in Statistics-Simulation
and Computation 23(3): 727-741.

MacEachern, S. N., Clyde, M. and Liu, J. S. (1999). Sequential importance
sampling for nonparametric Bayes models: The next generation, Cana-
dian Journal of Statistics 27(2): 251-267.

Mallows, C. L. (1973). Some comments on cp, Technometrics 15(4): 661—
675.

326 References

Marinari, E. and Parisi, G. (1992). Simulated tempering: a new Monte
Carlo scheme., Europhysics Letters 19(6): 451-458.

Marsaglia, G. and Zaman, A. (1993). The KISS generator, Technical report,
Department of Statistics, Florida State University.

Marshall, A. (1956). The use of multi-stage sampling schemes in Monte
Carlo computations, in M. Meyer (ed.), Symposium on Monte Carlo
Methods, Wiley, New York, pp. 123-140.

Maung, K. (1941). Measurement of association in a contingency table with
special reference to the pigmentation of hair and eye colours of scottish
school children, Annals of Eugenics, London 11: 189.

McCue, L. A., Thompson, W., Carmack, C. S., Ryan, M.P., Liu, J. S,,
Derbyshire, V., Lawrence, C. E. (2001). Phylogenetic footprinting of
transcription factor binding sites in proteobacterial genomes, Nucl.
Acids Res. 29: 774-782.

McFadden, D. (1989). A method of simulated moments for estimation of
discrete response models without numerical integration, Econometrica
57: 995-1026.

Meirovitch, H. (1982). A new method for simulation of real chains: Scan-
ning future steps, Journal of Physics A-Mathematical and General
15(12): L735-L741.

Meirovitch, H. (1985). Scanning method as an unbiased simulation tech-
nique and its application to the study of self-attracting random-walks,
Physical Review A 32(6): 3699-3708.

Meng, X. L. and van Dyk, D. (1997). The EM algorithm: An old folk-song
sung to a fast new tune, Journal of the Royal Statistical Society, Series
B 59(3): 511-540.

Meng, X. L. and van Dyk, D. (1999). Seeking efficient data augmentation
schemes via conditional and marginal augmentation, Biometrika.

Meng, X. L. and Wong, W. H. (1996). Simulating ratios of normalizing
constants via a simple identity: A theoretical exploration, Statistica
Sinica 6(4): 831-860.

Mengersen, K. L., Robert, C. P. and Cuihenneuc-Jouyaux, C. (1999).
MCMC convergence diagnostics: A reviewww, in J. M. Bernardo, J. O.
Berger, A. P. Dawid and A. F. M. Smith (eds), Bayesian Statistics,
Vol. 6, Clarendon Press, Oxford, pp. 415-440.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and
Teller, E. (1953). Equations of state calculations by fast computing
machines, Journal of Chemical Physics 21(6): 1087-1091.

References 327

Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for convergence
rates of Markov chains, Annals of Applied Probability 4: 981-1011.

Miiller, P. and Insua, D. R. (1998). Issues in Bayesian analysis of neural
network models, Neural Computation 10(3): 749-770.

Murdoch, D. J. and Green, P. J. (1998). Exact sampling from a continuous
state space, Scandinavian Journal of Statistics 25(3): 483-502.

Murray, G. (1977). Comment on “Maximum likelihood from incomplete
data via the EM algorithm” by a.p. dempster, n.m. laird, and d.b.
rubin, Journal of the Royal Statistical Society, B. 39: 27-28.

Mykland, P., Tierney, L. and Yu, B. (1995). Regeneration in Markov
chain samplers, Journal of the American Statistical Association
90(429): 233-241.

Neal, R. M. (1993). A theoretical analysis of Monte Carlo algorithms for
the simulation of Gibbs random field images: Comments, IEEE Trans-
actions On Information Theory 39(1): 310-310.

Neal, R. M. (1994). An improved acceptance procedure for the hybrid
Monte Carlo algorithm, Journal of Computational Physics 111: 194—
203.

Neal, R. M. (1996). Bayesian Learning for Neural Networks, Springer-
Verlag, New York.

Neuwald, A. F., Liu, J. S. and Lawrence, C. E. (1995). Gibbs motif sam-
pling: Detection of bacterial outer-membrane protein repeats, Protein
Science 4(8): 1618-1632.

Newman, M. E. J. and Barkema, G. T. (1999). Monte Carlo Methods in
Statistical Physics, Oxford University Press, Oxford.

Niedermayer, F. (1988). General cluster updating method for Monte Carlo
simulations, Physical Review Letters 61(18): 2026—-2029.

Nienhuis, B. (1982). Exact critical-point and critical exponents of o(n)
models in 2 dimensions, Physical Review Letters 49(15): 1062-1065.

Nummelin, E. (1984). General Irreducible Markov Chains and Non-
negative Operators, Cambridge University Press, Cambridge.

Nummelin, E. and Tweedie, R. L. (1978). Geometric ergodicity and R-
positivity for general Markov chains, Annals of Probability 6: 404-420.

Odell, P. L. and Feiveson, A. H. (1966). A numerical procedure to gen-
erate a sample covariance matrix, Journal of the American Statistical
Association 61: 199-203.

328 References

Oh, M.-S. and Berger, J. O. (1992). Adaptive importance sampling in
Monte Carlo integration, Journal of Statistical Computation and Sim-
ulation 41: 143-168.

Oh, M.-S. and Berger, J. O. (1993). Integration of multimodal functions by
Monte Carlo importance sampling, Journal of the American Statistical
Association 88: 450-456.

Onsager, L. (1949). Statistical hydrodynamics, Nuovo Cimento (suppl.)
6: 261.

Pederson, A. R. (1995). A new approach to maximum likelihood estimation
for stochastic differential equations based on discrete observations,
Scandinavian Journal of Statistics 22: 55-T71.

Peskun, P. H. (1973). Optimum Monte Carlo sampling using Markov
chains, Biometrika 60(3): 607-612.

Pitman, J. (1993). Probability, Springer-Verlag, New York.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxil-
iary particle filters, Journal of the American Statistical Association
94(446): 590-599.

Press, W. H. and Vetterling, W. T. (1995). Numerical Recipes in C, Cam-
bridge University Press, Cambridge.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled
Markov chains and applications to statistical mechanics, Random
Structures and Algorithms 9(1-2): 223-252.

Propp, J. G. and Wilson, D. B. (1998). How to get a perfectly random
sample from a generic Markov chain and generate a random spanning
tree of a directed graph, Journal of Algorithms 27(2): 170-217.

Qin, Z. and Liu, J. S. (2000). Multi-point Metropolis method with appli-
cation to hybrid Monte Carlo, Technical report, Harvard University.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected ap-
plications in speech recognition, Proceedings of the IEEE 77(2): 257
286.

Rao, M. M. (1987). Measure Theory and Integration, Wiley, New York.
Reeds, J. (1981). Theory of riffle shuffling, Unpublished manuscript.

Renyi (1959). On measure of dependence, Acta Mathematica Academiae
Scientiarum Hungaricae 10: 441-451.

References 329

Rice, J. A. (1994). Mathematical Statistics and Data Analysis, 2nd ed,
Duxbury Press, Belmont, California.

Ripley, B. (1996). Pattern Recognition and Neural Networks, Cambridge
University Press, Cambridge.

Ripley, B. D. (1987). Stochastic Simulation, Wiley, New York.

Ritter, C. and Tanner, M. A. (1992). Facilitating the Gibbs sampler: the
Gibbs stopper and the griddy-Gibbs sampler, Journal of the American
Statistical Association 87(419): 861-868.

Roberts, G. O. and Gilks, W. R. (1994). Convergence of adaptive direction
sampling, Journal of Multivariate Analysis 49(2): 287-298.

Roberts, G. O. and Rosenthal, J. S. (1998). Markov chain Monte Carlo:
Some practical implications of theoretical results, Canadian Journal
of Statistics 26(1): 5-20.

Roberts, G. O. and Sahu, S. K. (1997). Updating schemes; correlation
structure; blocking and parameterization for the Gibbs sampler, Jour-
nal of the Royal Statistical Society, Series B 59(2): 291-317.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence
and optimal scaling of random walk Metropolis algorithms, Annals of
Applied Probability 7: 110-120.

Rosenbluth, M. N. and Rosenbluth, A. W. (1955). Monte Carlo calcula-
tion of the average extension of molecular chains, Journal of Chemical
Physics 23(2): 356-359.

Rosenthal, J. S. (1995). Minorization conditions and convergence rates
for Markov chain Monte Carlo, Journal of the American Statistical
Association 90(430): 558—-566.

Rosenthal, J. S. (1996). Analysis of the Gibbs sampler for a model related
to James-Stein estimators, Statistics and Computing 6(3): 269-275.

Rubin, D. B. (1976). Inference and missing data, Biometrika 63(3): 581—
590.

Rubin, D. B. (1980). Using empirical Bayes techniques in the law-
school validity studies, Journal of the American Statistical Association
75(372): 801-816.

Rubin, D. B. (1987). A noniterative sampling/importance resampling al-
ternative to the data augmentation algorithm for creating a few im-
putations when fractions of missing information are modest: the SIR
algorithm, Journal of the American Statistical Association.

330 References

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method, Wiley
series in probability and mathematical statistics, Wiley, New York.

Rumelhart, D. E. and McClelland, J. (1986). Parallel Distributed Process-
ing: Exploitations in the Micro-Structure of Cognition, Vol. 1 and 2,
MIT Press, Cambridge.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning
representations by back-propagating errors, Nature 323: 533-536.

Sanderson, J. G. (2000). Testing ecological patterns, American Scientist
88(4): 332-339.

Sarmanov, O. V. (1958). The maximal correlation coefficient (symmetrical
case), Doklady Akademii Nauk USSR 120: 715-718.

Schervish, M. and Carlin, B. (1992). On the convergence of successive sub-
stitution sampling, Journal of Computational and Graphical Statistics
1: 111-127.

Schmidler, S. C., Liu, J. S. and Brutlag, D. L. (2000). Bayesian segmenta-
tion of protein secondary structure, Journal of Computational Biology
7(1-2): 233-248.

Shephard, N. and Pitt, M. K. (1997). Likelihood analysis of non-Gaussian
measurement time series, Biometrika 84(3): 653-667.

Siepmann, J. I. and Frenkel, D. (1992). Configurational bias Monte
Carlo: A new sampling scheme for flexible chains, Molecular Physics
75(1): 59-70.

Smith, M. C. and Winter, E. M. (1978). On the detection of target tra-
jectories in a multi-target environment, The 17th IEEE conference on
Decision and Control, San Diego, California.

Stephens, M. and Donnelly, P. (2000). Inference in molecular population
genetics, Journal of the Royal Statistical Society, Series B 62(4): 605
635.

Stormo, G. D. and Hartzell, G. W. (1989). Identifying protein binding sites
from unaligned DNA fragments, Proceedings of the Nathional Academy
of Science of USA 86: 1183-1187.

Swendsen, R. H. and Wang, J. S. (1987). Nonuniversal critical dynamics
in Monte Carlo simulations, Physical Review Letters 58(2): 86-88.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior
distributions by data augmentation (with discussion), Journal of the
American Statistical Association 82(398): 528-540.

References 331

Thisted, R. A. (1988). FElements of Statistical Computing, Chapman &
Hall, New York.

Tierney, L. (1994). Markov chains for exploring posterior distributions,
Annals of Statistics 22(4): 1701-1728.

Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state
spaces, The Annals of Applied Probability 8(1): 1-9.

Torrie, G. M. and Valleau, J. P. (1977). Non-physical sampling distri-
butions in Monte Carlo free energy estimation: Umbrella sampling,
Journal of Computational Physics 23(2): 187-1909.

Unger, R. and Moult, J. (1993). Genetic algorithms for protein folding
simulations, Journal of Molecular Biology 231(1): 75-81.

Valleau, J. P. (1999). Thermodynamic scaling methods in Monte Carlo and
their application to phase equilibria, Advances in Chemical Physics
105: 369-404.

Verlet, L. (1967). Computer “experiments” on classical fluids. I. Ther-
modynamical properties of lennard-jones molecules, Physical Review
159: 98-103.

von Neumann, J. (1951). Various techniques used in connection with ran-
dom digits, National Bureau of Standards Applied Mathematics Series
12: 36-38.

Wall, F. T. and Erpenbeck, J. J. (1959). New method for the statisti-
cal computation of polymer dimensions, Journal of Chemical Physics
30(3): 634-37.

Wall, F. T., Rubin, R. J. and Isaacson, L. M. (1957). Improved statistical
method for computing mean dimension of polymer molecules, Journal
of Chemical Physics 27: 186-188.

Weisberg, S. (1985). Applied Linear Regression, 2nd ed, Wiley, New York.

West, M. and Harrison, J. (1989). Bayesian Forecasting and Dynamic
Models, Springer-Verlag, New York.

White, H. (1992). Artificial Neural Networks: Approzimation and Learning
Theory, Blackwell Publishers, Cambridge, MA.

Wolff, U. (1989). Collective Monte Carlo updating for spin systems, Phys-
ical Review Letters 62(4): 361-364.

Wong, W. H. and Liang, F. M. (1997). Dynamic weighting in Monte Carlo
and optimization, Proceedings of the National Academy of Sciences of
USA 94(26): 14220-14224.

332 References

Wu, Y. N., Zhu, S. C. and Liu, X. W. (1999). The equivalence of Julesz
and Gibbs ensembles, International Conference on Computer Vision,
Corfu, Greece.

Yang, C. N. (1952). The spontaneous magnetization of a 2-dimensional
Ising model, Physics Review 85(5): 808-815.

Zhu, S. C., Liu, X. W. and Wu, Y. N. (2000). Exploring texture ensembles
by efficient Markov chain Monte Carlo: Toward a “trichromacy” the-
ory of texture, IEEE Transactions On Pattern Analysis and Machine
Intelligence 22(6): 554-569.

Zhu, S. C., Wu, Y. N. and Mumford, D. (1997). Minimax entropy prin-
ciple and its application to texture modeling, Neural Computation
9(8): 1627-1660.

Zhu, S. C., Wu, Y. N. and Mumford, D. (1998). Filters; random fields and
maximum entropy (FRAME): Towards a unified theory for texture
modeling, International Journal of Computer Vision 27(2): 107-126.

Author Index

Aarts, E., 210

Ackley, D. H., 223
Alberts, B., 84

Alder, B. J., viii, 183
Aldous, D., 252
Altschul, S. F., viii
Anderson, B., 16
Andrieu, C., 72
Antoniak, C. E., 96
Asmussen, S., 247, 254
Athreya, K., 254
Avitzour, D., 64, 98, 101

Bar-Shalom, Y., 98
Barkema, G. T., 154
Barker, A. A., 112, 114, 134, 277
Bastolla, U., 80
Batoulis, J., 76
Beckett, L., 95

Beichl, I., 92

Bellman, R. E., 29
Berg, B. A., 207, 216
Berger, J. O., 43
Berman, A., 248
Besag, J., 133, 134, 280

Bickel, P., 28

Binder, K., 55, 59, 71, 74
Boguski, M. S., viii

Box, G. E. P., 40
Breiman, L., 267

Brown, M., 86

Brutlag, D. L., 13, 64
Buntine, W. L., 223, 240

Campbell, M. K., 11

Cannings, C., 31

Carlin, B. P., 130, 139, 272, 275

Carlin, J. B., 40

Casella, G., 28, 132

Ceperley, L., 117

Chakraborty, A., 92

Chen, L., 200

Chen, M. H., 8, 134

Chen, R., 54, 59, 64, 67, 71, 74,
102, 141

Chen, Y., 40, 70, 74, 81, 92

Chib, A., 179

Chung, K. L., 291, 300

Clyde, M., 38, 97

Cowles, M. K., 272

This is page 333
Printer: Opaque this

334 Author Index

Cox, D. R., 305
Cox, N., 62
Creighton, T. E., 9
Cséki, P., 267
Cybenko, G., 222

Dorrie, H., vii

Damien, P., 133

Dempster, A. P., 40, 308

Devroye, L., 24

Diaconis, P., 3, 18, 90, 92, 95, 147,
246, 249, 251, 252, 256

Doksum, K., 28

Donnelly, P., 49-51, 74, 83

Doss, H., 97

Doucet, A., 72

Duane, S., 189

Durbin, R. L., 86

Eddy, S. R., 86

Edwards, R. G., 133, 154
Efron, B., viii, 16, 138, 304
Elerian, O., 179

Erpenbeck, J. J., 59, 67, 71, 73
Escobar, M. D., 97, 150
Ethier, S., 247

Ewing, C., 98

Feiveson, A. H., 41, 95

Ferguson, T. S., 96

Fill, J. A., 147, 148, 259, 287

Fischer, J. H., 267

Fortmann, T. E., 98

Frenkel, D., viii, 4, 48, 55, 116,
118-120

Friedman, J. H., 267

Frigessi, A., 112, 280

Frigge, M., 62

Gelatt, C. D., viii, 3, 209

Gelb, A., 16

Gelfand, A., viii, 19, 97, 131, 139,
146, 162, 308

Gelman, A., 40, 62, 68, 115, 127,
135, 272

Geman, D., viii, 129, 210

Geman, S., viii, 129, 210

George, E., 132, 135, 239

Geyer, C. 1., 4, 210, 212, 272

Gilks, W. R., 21, 115, 127, 135,
226, 235

Godsill, S. J., 72

Goodman, J., viii, 4, 126, 161, 162

Gordon, N. J., 4, 54, 59, 66, 71,
74, 98

Gouriéroux, C., viii

Graham, R., 18, 90

Grassberger, P., 55, 59, 67, 71, 73

Green, P. J., 122, 133, 240, 287

Grenander, U., 122

Griffiths, R. C., 39, 49-51, 81

Gustafson, P., 193

Hammersley, J. M., 4, 26, 27, 38,
54-58, 76

Handscomb, D. C., 26, 38, 76

Hansmann, U. H. E., 218

Harrison, J., 14, 65

Hartzell, G. W., 13, 85-88

Harvey, A. C., 65

Hastings, W. K., 4, 111, 112, 115

Haussler, D., 86

Hesselbo, B., 207, 217

Higdon, D., 133, 156

Hinkley, D. V., 305

Hinton, G. E., 223

Hockney, R. W., 186

Holley, R. A., 210, 261

Holmes, S., 18, 90, 92, 93

Hopfield, J., 222

Horn, R. A., 257

Hornik, K., 222

Hukushima, K., 4

Hull, J., 201

Hurzeler, M., 76

Insua, D. R., 241
Irwin, M., 62
Isaacson, L. M., 69

Jazwinsgki, A. H., 16

Jerrum, M., 90, 261
Johnson, C. R., 257
Johnson, N. L., 41
Jones, C. S., 178

Kalman, R., 16, 65

Karlin, S., 106

Karplus, M., viii

Kass, R., 307

Kennedy, A. D., 184, 189-191

Kesten, H., 292

Kirkpatrick, S., viii, 3, 209

Kitagawa, G., 74

Knuth, D., 23

Kong, A., 4, 35, 54, 59, 61, 62, 64,
75, 149

Korst, J., 210

Kotz, S., 41

Kremer, K., 55, 56, 59, 71, 74, 76

Krogh, A., 86

Kunsch, H. R., 76

Kuo, L., 97

Kurtz, T., 247

Kusuoka, S., 210

Kuznetsov, N. Y., 92

Laird, N., 40, 308

Lancaster, H. O., 267

Lang, K. J., 223

Lauritzen, S., 31

Lawrence, C. E., viii, 13, 14, 86,
142, 299

Leach, A. R., viii, 10, 68

Li, K.-H., 131

Li, X. J., 156

Liang, F., 4, 118-120, 124, 221,
241

Little, R. J. A., 176, 274, 308

Liu, C., 169

Liu, J., 65

Liu, J. S., viii, 3, 4, 13, 14, 35, 38,
40, 54, 59, 67, 71, 74, 81,
112, 118-120, 124, 130,
131, 135, 141, 142, 150,
161, 200

Author Index 335

Liu, X., 13

Liu, X. W., 165
Logvinenko, T., 89
Lyklema, J. W., 56

Miiller, P., 241

MacEachern, S. N., 38, 76, 97, 150
Mallow, C. L., 238

Marinari, E., viii, 210
Marsaglia, G., 23

Marshall, A., 3, 33

Maung, K., 267

McClelland, J., 222

McCue, L. A., 13

McCulloch, R., 239
McFadden, D., 199
Meirovitch, H., 69, 76

Meng, X. L., 8, 70, 169, 275, 311
Mengersen, K. L., 272
Metropolis, N., viii, 4, 34, 105
Meyn, S. P., 254, 255

Mian, I. S., 86

Miller, M. 1., 122

Mitchison, G., 86

Monfort, A., viii

Moore, J., 16

Morris, C., 138

Morton, K. W., 4, 27, 54-58
Moult, J., 80

Mumford, D., 165

Murdoch, D. J., 287

Murray, G., 40

Mykland, P., 254

Neal, R., 191, 195, 223, 240
Nemoto, K., 4

Neuhaus, T., 207, 216
Neuwald, A. F., viii, 14, 86, 142
Newman, M. E. J., 154

Ney, P., 254

Niedermayer, F., 157

Nienhuis, B., 59

Nummelin, E., 247, 254, 271

Odell, P. L., 41, 95

336 Author Index

Oh, M.-S., 43
Okamoto, Y., 218

Parisi, G., viii, 210

Pederson, A. R., 178

Pendleton, B. J., 184, 189-191

Peskun, P. H., 112, 114, 127, 134,
277

Petrosian, V., 16

Petsko, G., viii

Pitman, J., ix

Pitt, M. K., 64, 73, 201

Plemmons, R., 248

Press, W. H., 228

Propp, J. G., 284

Qin, Z., 118, 200

Rényi, A., 267

Rabiner, L. R., 64

Raftery, A. E., 307

Rao, M. M., 172

Reeds, J., 251

Reilly, A. A., 86

Rice, J. A., ix

Richardson, S., 21

Ripley, B., 38, 39, 222

Ritter, C., 128

Robert, C. P., 272

Roberts, G. O.,115,127,131,135,
235, 254

Rosenbluth, A., viii, 4, 34, 54-58

Rosenbluth, M., viii, 4, 34, 54-58

Rosenthal, J., 254, 256, 263

Roweth, D., 184, 189-191

Rubin, D. B., 3, 18, 19, 40, 66, 73,
115, 135, 136, 138, 143,
176, 272, 274, 308

Rubin, R. J., 69

Rubinstein, R. Y., 26, 76

Rumelhart, D. E., 222, 223

Sabatti, C., 124, 139, 161, 162,
202
Sahu, S. K., 131, 139, 235

Salmond, D. J., 4, 54, 98

Sanderson, J. G., 92

Sarmanov, O. V., 267

Schervish, M., 130, 275

Schmeiser, B. W., 134

Schmidler, S., 64

Sejnowski, T. J., 223

Shao, Q. M., 8

Shephard, N., 64, 73, 179, 201

Siepmann, J. 1., 4, 48, 55, 116

Silverman, B., 240

Sinclair, A., 90, 261

Sjolander, K., 86

Skolnick, M. H., 31

Smit, B., viii, 4, 118-120

Smith, A. F. M., viii, 4, 19, 54,
131, 146, 308

Smith, M. C., 100

Sokal, A., viii, 4, 126, 133, 154,
156, 161, 162

Spiegelhalter, D. J., 21, 31

Stephens, M., 49-51, 74, 83

Stern, H. S., 40

Stinchcombe, M., 222

Stinchcombe, R. B., 207, 217

Stormo, G. D., 13, 85-88

Stroock, D., 147, 210, 249, 256,
261

Sullivan, F., 92

Swendsen, R. H., 133, 154-156

Tanner, M. A., viii, 20, 128, 131,
154, 308

Tavare, S., 39, 49-51, 81

Taylor, H., 106

Teller, A., viii, 4, 34

Teller, E., viii, 4, 34

Thisted, R., 2

Thompson, E. A.; 31, 210

Tiao, G., 40

Tierney, L., 114, 115, 135, 254,
271, 280

Torrie, G. M., 206

Tweedie, R., 254, 255

Author Index

Unger, R., 80

Valleau, J. P., 206

van Dyk, D., 169, 275, 311
Vecchi, M. P., viii, 3, 209
Verlet, L., 186

Vetterling, W. T., 228
von Neumann, J., 3, 24

Wainwright, T. E., viii, 183

Wakefield, J., 133

Walker, S., 133

Wall, F. T., 59, 67, 69, 71, 73

Wang, J. S., 133, 154-156

Weigend, A. S., 223, 240

Weisberg, S., 239

West, M., 14, 65

White, A., 201

White, H., 222

Williams, R. J., 223

Wilson, D. B., 284

Winter, E. M., 100

Witbrock, M. J., 223

Wolff, U., 154, 157

Wong, W. H., viii, 4, 8, 20, 54, 70,
118-120, 124, 131, 154,
221, 241, 308

Wooton, J. C., viii

Wu, Y. N, 3, 131, 165, 172, 275

Yang, C. N., 221
Yu, B., 254

Zaman, A., 23
Zhu, S., 165, 167

337

Subject Index

1/k-ensemble sampling, 215, 217
5 UTR, 13
x? distance, 249

cv?, see coefficient of variation

adaptive direction sampling, 226
ADS, see adaptive direction sam-
pling
algorithm
adaptive direction sampling,
226
conjugate gradient Monte Carlo,
228
data augmentation, 4
exchange Monte Carlo, 212
hybrid Monte Carlo, 4
Metropolis, 4, 106
Metropolis-Hastings, 111
multicanonical sampling, 4
multigrid Monte Carlo, 4
multiple-try Metropolis, 4, 118
orientational bias Monte Carlo,
119
parallel tempering, 212
parameter expansion, 4

This is page 338
Printer: Opaque this

random-walk Metropolis, 114
sequential imputation, 60-64
simulated tempering, 4
amino acid, 11
annealing, 209
simulated, see simulated an-
nealing
antithetic variates, 27
aperiodic, 114, 249
autocorrelation, 110
autocorrelation time
exponential, 126
integrated (IAT), 126, 215, 236,
273
auxiliary distributions, 116

back-propagation, 223
backward operator, 264
Barker’s scheme, 112
Bayes

method, 19-21, 135, 136, 304—

309

sequential imputation for, 62
Bayes inference, see Bayes method
Bayesian method, 3

Beta distribution, 297, 299

binding motif, 13

binding site, 13

binomial distribution, 297

bioinformatics, 10-14

Black-Scholes formula, 201

block-motif model, 13, 140

Boltzmann distribution, 7

bond angle, 10

bootstrap, viii, 304

bootstrap filter, 4, 66, 67, 71, 74,
81, 98, 99, 101

Buffon’s needle, vii

canonical ensemble, 215
card shuffling, 246
CBMC, see configurational bias
Monte Carlo
cdf, see cumulative distribution func-
tion
central limit theorem, 1, 300
CFTP, see coupling from the past
CGMC, see conjugate gradient Monte
Carlo
chain-structured model, 28
Chapman-Kolmogorov equation, 247
classification, 222
clique, 31
CLT, see central limit theorem
coalescence, 49, 50, 81
codon, 11
coefficient of variation, 35, 74, 75,
82, 93, 100
conditional probability, 296
configurational bias Monte Carlo,
4,116
conjugate gradient Monte Carlo,
227
control variates, 26
convergence
almost sure, 300
in distribution, 300
in probability, 300
coupling from the past, 272, 284
coupling method, 250, 272

Subject Index 339

covariance, 299

critical point, 221

crossover, 231

cumulative distribution function,
24, 296

data augmentation, 4, 131, 135-
139, 154, 174
demographic model, 49
density of the states, 216
density-scaling Monte Carlo, 4
detailed balance, 113, 117, 119
Dirichlet distribution, 299, 307
Dirichlet process, 96
distance
x2, 249
Li-, 249
variation, 249
DNA, 10-14
dynamic linear model, 14
dynamic programming, 29-30
dynamic system, 14
dynamic weighting, 124-125, 220,
287-293

effective sample size, 126
EM algorithm, see expectation-
maximization algorithm

empirical Bayes, 138
encoder problem, 223
energy

free, 8

interacting, 68

internal, 8

potential, 7
entropy, 8
equilibrium distribution, 106
ergodicity theorem, 184
error rate

Monte Carlo, 2

Riemann integral, 2
FEuclidean space, 114
evolution process, 49
exact simulation, 28, 30, 109
exchange Monte Carlo, 4, 212, 231

340 Subject Index

expectation-maximization algorithm,
310-312
exponential distribution, 297

fading channel, 102
fiber, 162-164, 170, 173, 176
forward operator, 147, 148, 264

Gamma, distribution, 297

Gaussian sum filter, 16

gene, 11

gene regulation, 10, 13

genealogy, 49

GeneBank, 12

genetic code, 11

genome, 11-14

geometric distribution, 298

Gibbs motif sampler, 12

Gibbs sampler, 14, 129-158
blocking, 131
collapsing, 146-151
generalized, 171
grouping, 130, 146-151
Metropolized, 133
random-scan, 130
systematic scan, 130

graphical model, 31

Griffiths-Tavare algorithm, 51

group, 171
Haar measure for, 172
topological, 171
locally compact, 171

growth method, 56-60, 67

Haar measure, 172

invariant, 172

left-invariant, 172

right invariant, 172
hard-shell ball model, 107
helix-turn-helix motif, 12
hidden Markov model, 29, 6465
hierarchical Bayes, 19, 138-139
hierarchical model, 95
Hilbert space, 264

inner product in, 264

hit-and-run algorithm, 134

HMC, see hybrid Monte Carlo,
see hybrid Monte Carlo

HMM, see hidden Markov model

HR, see hit-and-run algorithm

human genome project, 11

hybrid Monte Carlo, 4, 5, 183—
203

i.i.d., see independent and identi-
cally distributed
TAT, see autocorrelation time
importance sampling, 3, 31-42
adaptive, 42
efficiency of, 34
marginalization, 37
properly weighted sample of,
36
Rao-Blackwellization, 37
rule of thumb, 34
sequential, 4, 46—48
with rejection control, 43
independent, 299
independent and identically dis-
tributed, 1, 53, 301
indirect observation model, 199
integrated autocorrelation time, 269
invariance with respect to impor-
tance weighting, 125, 288
inversely restricted sampling, see
growth method
inversion method, 24
irreducible, 114, 249
Ising model, 7, 107, 153-158, 221
IWIW, see invariance with respect
to importance weighting

Kalman filter, 16
extended, 16
iterated extended, 16

kinetic energy, 185

L!-distance, 249
Laplacian, 257
law of large numbers, 1

strong, 300

weak, 291, 300
leap-frog method, 186
Lennard-Jones potential, 9
likelihood, 20, 60
limiting distribution, 106
linear equations, 38
Liouville’s theorem, 187
liquid model, 9
locally compact group, 171

macromolecule, 9
magnetization, 8, 110
marginalization, 37
Markov chain, 245
aperiodic, 249
forward operator of, see for-
ward operator
interleaving, 132
irreducible, 249
periodic, 246
reversible, 112, 113, 257
Markov chain Monte Carlo, viii,
4,105
Markov process, 64, 105
Markov property, 245
Markov random field, 163
Markovian structure, 71
mathematical expectation, 296
maximal correlation, 130, 132
maximum likelihood estimate, 20,
50, 60, 302
MCMC, see Markov chain Monte
Carlo
mean squared error, 35
Metropolis algorithm, 4, 105, 106
Metropolized Gibbs sampler, 133
Metropolized independence sam-
pler, 115, 116, 119, 281
multiple-trial, 120
MGMC, see multigrid Monte Carlo
MIH, see Metropolized indepen-
dence sampler
missing data problem, 19-21, 60—
64, 135-136, 308-312

Subject Index 341

mixture Kalman filter, 98, 100
MKF, see mxture Kalman filter100,
102
MLE, see maximum likelihood es-
timate
MLP, see multi-layer perceptrons
mobile communication, 102
molecular dynamics, 183
molecular structure, 3, 9
Monte Carlo
Markov chain, viii
sequential, 4
Monte Carlo filter, 81-104
MTM, see multiple-try Metropo-
lis, see multiple-try Metropo-
lis
MTMIS, see Metropolized inde-
pendence sampler
multi-layer perceptrons, 222
multicanonical sampling, 4, 216
multigrid Monte Carlo, 4
multinomial distribution, 298, 307
multiple alignment, 12, 139-143
multiple-try Metropolis, 4, 118, 135,
227
multipoint
hybrid Monte Carlo, 197
multipoint method, 120

neural network training, 222
Newton’s law of motion, 184
nonlinear filtering, 14, 64
nonlinear state-space model, 201
nonparametric Bayes, 95
normal distribution, 296
normalizing constant, 3, 7, 24, 37,
45,48, 56, 59, 69, 70, 72,
77, 80,97, 105, 109, 122,
181, 206208, 307
nucleotide, 11

OBMC, see orientational bias Monte
Carlo

observation equation, 64

on-line estimation, 16

342 Subject Index

Onsager, L., 221

optimization, 3

orbit, 170

orientational bias Monte Carlo, 119

parallel tempering, 4, 211, 212, 225,
229, 231

parameter expanded

data augmentation, 175

parameter expansion, 4, 174

parity problem, 223

partial rejection control, 75

partial resampling, 4

partial sample, 54, 58, 72

particle filter, see bootstrap filter

partition function, 3, 7, 8, 59

PDS, see probabilistic dynamic sys-
tem (PDS)

peeling algorithm, 31

perect simulation, see coupling from
the past

PERM, see prune-enriched Rosen-
bluth method

permanent, 90

permutation group, 247

permutation test, 17

phase flow, 188

phase space, 185

phylogeny, 81

Pitman, D., 298

Poincaré inequality, 257

Poisson Distribution, 298

polymer model, 55, 56

lattice, 55

population genetics, 49, 81

posterior distribution, 68

Potts model, 153-158

probabilistic dynamic system (PDS),
68

probit regression, 176

propagation method, 31

properly weighted sample, 36

proposal function, 106, 161

proposal transition, 129

protein, 10-14

protein folding, 79

prune-enriched Rosenbluth method,
71

pruning and enrichment method,
71

pseudo-random number, 23

PT, see parallel tempering

PX-DA, see parameter expansion

quadratic form, 257

random-grid Monte Carlo, 121
random-ray Monte Carlo, 134
random-walk Metropolis, 114
Rao-Blackwellization, 27, 28
rejection control, 43-46, 48, 75
partial, see partial rejection
control
rejection method, 3, 24-25
resampling, 72-75
residual, 72
simple random, 72
reversible, 112, 113
reversible jumping rule, 122-124
Robert, C. P., 28
Rosenbluth method, see growth
method

SA, see simulated annealing
sampling importance-resampling,
3, 66
SAW, see self-avoid walk
self-avoid walk, 55-60, 79-81
attrition, 56
sequential importance sampling,
4, 46-48, 53-104
application, 49
rejection control in, 48
sequential imputation, 4, 60-64
sequential Monte Carlo, 4, 53—104
sequentially symmetric, 120
shrinkage estimate, 139
sigmoidal function, 222
simple random walk
on a cube, 246

on a line, 246

simulated annealing, 3, 209

simulated tempering, 4, 210

simulated tempering with dynamic
weighting, 220

SIR, see sampling importance re-
sampling

SIS, see sequential importance sam-
pling

site sampler, 14

SKF, see split-track filter

slice sampler, 133, 156

snooker algorithm, see adaptive
direction sampling

specific heat, 8

spectral density, see density of the
states

spectral radius, 264

split-track filter, 100, 104

stage-wise rejection, 116

state equation, 64

state-space model, 14, 64

stationary distribution, 106, 111,
125

STDW, see simulated tempering
with dynamic weighting,
221

stochastic volatility model, 201

stratified sampling, 26

stream, 72-75, 101

strong uniform time, 252

Swendsen-Wang algorithm, 153—
158

target tracking, 14, 98-102
tempering
parallel, see parallel temper-
ing
simulated, see simulated tem-
pering
topological group, 171
torsion angle, 10
transformation group, 170, 171
transition function, 39, 106, 111,
245

Subject Index 343

transition rule, see transition func-
tion

truncated Gaussian, 25

truncated observation, 16

umbrella sampling, 4
unbiased estimator, 28

variance reduction, 26
variation distance, 249
Verlet algorithm, 186

water molecule, 10

Wishart Distribution
inverse, 40

Wishart distribution, 41
sampling, 41

Wolft’s algorithm, 157

