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Abstract—In wireless communication, accurate and efficient
channel prediction is essential for addressing channel aging caused
by user mobility. However, the actual channel variations over time
are complex in high-mobility scenarios. This complexity makes it
difficult for existing channel predictors to obtain future channels
accurately. To overcome channel aging, we propose a channel pre-
diction scheme based on spatial-temporal electromagnetic kernel
learning (STEM-KL). Specifically, the STEM correlation function
can capture the fundamental propagation characteristics of the
wireless channel, making it suitable to use as a kernel function
that incorporates prior information. For the channel prediction
problem especially, we redesign the hyperparameters of the STEM
kernel, including user velocity and concentration, which charac-
terize the direction of the EM wave. The hyperparameters are
obtained through kernel learning. Then, we use Bayesian inference
to predict the future channels, employing the STEM Kkernel as the
required covariance. To further improve the stability and model
expressiveness, we propose a grid-based electromagnetic mixed
kernel learning (GEM-KL) scheme. We design the mixed kernel
to be a convex combination of multiple sub-kernels, where each of
the sub-kernels corresponds to a grid point in the parameter space.
This approach transforms the learning of concentration and speed
hyperparameters into the learning of weights for different sub-
kernels, helping the kernel learning process avoid local optima.
Finally, simulation results verify that the proposed STEM-KL
schemes outperform the baseline schemes.

Index Terms—Channel prediction, spatial-temporal electromag-
netic (STEM) correlation, grid-based electromagnetic mixed ker-
nel learning (GEM-KL), Gaussian process regression (GPR).

I. INTRODUCTION

The effective communication of massive MIMO system
highly relies on accurate and timely channel state information
(CSI). However, dynamic environments, characterized by user
mobility, complicate the acquisition of CSI. According to the
current 5G standard, explicit CSI acquisition, i.e., channel esti-
mation, is performed periodically. When user mobility is high,
significant channel changes may occur within a single channel
estimation period, leading to outdated CSI. This phenomenon
is termed as channel aging [1]. To address the challenges posed
by channel aging, various channel prediction techniques have
emerged.

Sparsity-based methods typically exploit the Doppler domain
sparse structure of channel responses to predict future channels.
For example, the sum-of-sinusoids model-based method [2]
represents the channel response as a combination of sinusoidal
waves. This method first identifies the dominant sinusoidal
components and then uses the harmonic retrieval method to
obtain these components for channel prediction. The authors
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of [3] proposed the Prony vector (PVEC) method which fits
a linear prediction model to the observed channel response.
Specifically, PVEC models the future channel as a linear com-
bination of the past channels, where the combination weights
are computed from the received pilot signals.

AR-based methods use autoregressive principle to process
channel time series [4]. The original AR prediction method
models the future channel as a weighted sum of its past values,
where the weights, i.e., the AR parameters, are obtained from
the autocorrelation function of channels at different times [5].
The Wiener channel predictor is a generalization of the AR pre-
dictor [6]. This approach predicts an autoregressive multivariate
random process using a Wiener linear filter.

The existing two categories of channel prediction schemes
were designed for prediction in the discrete-time domain.
However, wireless communication systems utilize continuously
varying electromagnetic fields in both space and time for signal
transmission [7]. The existing methods are incompatible with
the continuous characteristics of electromagnetic signals, which
means they cannot accurately capture CSI within a single
estimation period, leading to severe performance degradation.
Therefore, it is essential to restore to the continuous electromag-
netic fields to analyze channel prediction and design channel
predictors based on this foundation.

In order to solve this problem, we propose a channel predic-
tion scheme based on electromagnetic kernel learning, which
simultaneously utilizes the spatial-temporal electromagnetic
(EM) correlation characteristic of the channel. Specifically, we
derive the spatial-temporal electromagnetic (STEM) correlation
function of the EM channel. This STEM kernel originates from
EM physics, thus it is more suitable for modeling practical
wireless propagation environments than other kernel functions.
The spatial-temporal electromagnetic kernel learning (STEM-
KL) based channel predictor is proposed to achieve parallel
prediction of future channels through the Bayesian framework.
In this framework, channel prediction is divided into two
sub-problems: First, the hyperparameters are obtained through
STEM kernel learning. Then, through Bayesian inference,
several future channels are simultaneously predicted. In order
to further improve the stability and model expressiveness, we
propose a grid-based electromagnetic mixed kernel learning
(GEM-KL) scheme. We design a mixed kernel composed of
sub-kernels, where each of the sub-kernel corresponds to a
grid point in the parameter space. In this way, hyperparameters
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learning is transformed into sub-kernel weights learning. Fi-
nally, through performance analysis and numerical experiments,
it can be verified that the proposed GEM-KL channel predictor
outperforms the PVEC and AR baselines.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first review the Gaussian random field
(GRF)-based channel model, based on which we introduce
a probabilistic inference method for channel prediction. The
autocorrelation function of the channel is selected via the
maximum likelihood (ML) criterion from a GRF ensemble,
and the inference is done by the minimum mean square error
(MMSE) estimator.

A. GRF-Based Channel Model

Traditional channel models express channel matrices as a
weighted Gaussian mixture of steering vectors, which is a
discrete special case of a Gaussian random field. To capture
the continuously varying properties of the wireless channel, in
this section, we model the channel with a complex symmetric
Gaussian random field (CSGRF). Let function & (p) : R* — C
represent a circularly symmetric Gaussian random field (CS-
GRF). The variable is p = (x,t), where x = (z,y,2)
represents the spatial location, ¢ represents time indicator,
and (x,t) € R* For any @ points, the joint distribution
of their function values (h(p1),h(p2),...,h(pg)) follows a
multivariate Gaussian distribution, then the random field is a
Gaussian random field, denoted as h(p) ~ GRF (0, k(p, p')),
and its probability measure is determined by their autocorrela-
tion function

k(p. o) = E[h(p)h" (o). ()

The autocorrelation function is usually called the kernel,
note that the kernel function of the GRF must be semi-positive
definite. To enable CSGRF to represent the wireless channel,
some restrictions should be imposed on k(p, p’) so that the
h(p) generated by it satisfies the EM propagation constraints.
We use h(p) to model the electric field distribution E(p) :
R* — C3. Then, the autocorrelation function can be defined
as Kg(p, p') = E [E(p)E(p")"] € C>*3 [8]. Similarly, for a
channel vector with Npg components, it can also be modeled
using CSGRF by constructing the autocorrelation function of
pn forn=12,... Nps.

B. Signal Model

We consider a massive MIMO system, in which a single base
station (BS) with Npg antennas serves a single user with 1
antenna. We will try to solve the problem of uplink channel
prediction in a narrowband system. Consider the simplest
communication scenario, assuming we use an Npg-antenna
base station with fully digital precoding, where each antenna
is connected to a dedicated radio frequency (RF) chain. The
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Fig. 1. An illustration of channel time-varying: Taking a component of a

channel vector as an example

where y; € CVes*lis the BS received pilots at time ¢, h; €
CNesxlig the normalized channel vector satisfying E[||h¢|*] =
Npg, and n; is the complex-valued additive white Gaussian
noise (AWGN) with zero mean and covariance v~ 'I Nps- The
symbol v represents the received signal-to-noise ratio (SNR)
of the BS. We use the minimum mean square error (MMSE)
criterion [9] to estimate the channel.

X 1.\t
hi\/IMSE =K [ht|}’t] = Eht <Eht + ’yI) Yt (3)

where X, = }E{hth'{'} is the prior covariance matrix of
channel.

C. Problem Formulation

We refer to the period of channel estimation as a frame,
which contains Ny time slots. Channel estimation is only
performed in the first slot. In mobile scenarios, because of
the Doppler effect, except for the channel at the first slot, the
actual channels of the follow-up slots may have significant
differences from the channel estimation result, leading to a
decrease in the accuracy of the obtained CSI and thus affecting
communication quality. The variations of the channel and its
uncertainty over time are shown in Fig. 1. The solid curve
represents the real part of the channel vector component, and
the shadow area represents its uncertainty region. It can be
observed that the channel uncertainty significantly increases at
future time moments.

The channel prediction problem is to obtain future channels
through past channels. Considering the characteristics of the
GRF channel, achieving accurate channel prediction requires
an appropriate autocorrelation function, i.e., the kernel. We can
then predict the future channel through inference based on this
kernel. The appropriate kernel form will be discussed in the
next section. Let w € € denote model parameters of the kernel,
and € is the set of model parameters. y = (y{,y4,...,yL)" €
CE~*1 denotes the column vector composed of the received
pilot sequences in the past L time frames, where Ly = NpgL
and Fy = NgsF. hy = (h],h],... ' h])T € CI~*! denotes
the column vector composed of the previous L channels. hx =

uplink signal model is (h(TL+1)v h(TL+2), . ,h(TL+F )T € CF~*1 denotes the column
y: = hy + ny, (2) vector composed of I future channels that need to be predicted.
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After accurately predicting the channel of future frames, we can
reduce the frequency of channel estimation, thereby reducing
the pilot overhead. By using the ML criterion to obtain kernel
parameters, and then using the MMSE criterion to predict future
channels, the channel prediction problem can be formulated as

y) = argn{llaxln / p(ylhz)p(hz|w)dhg,
we
hr(y) = argmax

h}_E(CNBSFxl

In the following Section III, we will solve the problem in (4).

) “
Inp(ylhr) +Inpthr|@(y)).

III. PROPOSED SPATIAL-TEMPORAL ELECTROMAGNETIC
KERNEL LEARNING BASED CHANNEL PREDICTION

In this section, the appropriate autocorrelation function, i.e.,
the STEM, has been applied. Then we propose a channel pre-
diction scheme that simultaneously utilizes the spatial-temporal
EM correlation between channels.

A. STEM Correlation Function

EM information can be combined with the autocorrelation
function of the channel, This function is also named as electro-
magnetic correlation function (EMCF) [10], which is expressed

as CQ

Krmcr(p, Pl) = WE@)’ &)

where Kgyor is a 3 x 3 complex matrix, tr(Kgymcr(p, p')) =
C% € = kow = ko(x —x' + v(t —t')) —id € C3, in which
ko = 27/ )¢ is the wavenumber. The vector § € C? is the con-
centration parameter, and its direction represents the direction
in which the EM wave is concentrated. S(¢) = sinh(d)/4 is an
additional normalisation factor, where § = ||§|| € R . For time-
varying channels, we incorporate the Doppler frequency shift
into the EM correlation function by introducing the velocity
vector v, hence this EMCF can be referred to as the spatial-
temporal kernel function (STEM-CF). We utilize the commonly
used spherical Bessel functions j, (£) in 3D scenes to represent
the correlation function 3(€)

S(€) = £ (450(6) — (E)Ts + 3 (12(6) — 2io(€)EET, ©)

where § = |€] = \/£€TE, and E=¢ /¢ denotes the normalized
&. The spherical Bessel function j,(§) is expressed as
, L1 d\"siné
O =0 (g5) 5 )
It is important to note that w = x — x’ + v(t — ') — id /ko
contains the spatially varying covariates and time-varying co-
variates, which means that the correlation function we use is
able to account for the spatial and temporal correlation in a
way consistent with EM principles.

B. Gaussian Process Regression

Gaussian Process Regression (GPR) [11], also called
Bayesian linear regression can obtain predictions through
prior information and observation data of GRF. Specifically,
for the GRF f(z) ~ GRF(u(z),k(x,2')), GPR uses ob-
servation data y; = f(z;) + ny ng ~ CN(0,02),i =

1,2,...,Ly to get a set of Fy-point prediction F =

{f@ry+1), f(@ry+2)s oo f(@Ly+ry) )

The joint probability distribution of the
observed and  predicted joint vector g =
[y173127 <YLy f(mLN+1)7 f(xLN+2)a SRR f(xLN+FN)]T
satisfies

K + 0'2IL Kﬁf
~CN [ | P~ N n ’ 8
& ([Hf Kre Krr ®)
where pp = [pu(z1), p(a2), ... p(zry)]" and pr =
(@ L yt1), (@ Ly+2)s - (T L+ 5y )] T The (m, n)-th entry
of Kpp € CENXIN s k(2. 2,,), for all mym € {1,...,Ly}.

The (m,n)-th entry of Ky € CIvXIN is k(z,,,z,), for
al m € {1,...,Ly} and n € {Ly+1,...,Ly+ Fn}.
And Kz, = KE}- € CHIvXIn_ The (m,n)-th en-
try of Krr € CINXIN s k(x,,,1,), for all m,n €
{Ln+1,...,Lny + Fn}. We use Ky to represent K. +
021} . From the Gaussian posterior formula, we can obtain

pre = pr+ KiK'y,
Krie =Kr - KK 'K,
The results of Bayesian regression are given by pr|..

€))

C. Kernel Learning

Choosing appropriate kernel parameters is an important step
in constructing an effective regression model, which affects
the accuracy of the kernel function in reconstructing Gaussian
processes. The parameters that need to be adjusted in this
process are usually referred to as hyperparameters. Assuming
that the hyperparameters w € € C RV« of the adjustable kernel
k(z;x'|w) is also tunable. The process of finding the optimal
hyperparameters for the STEM kernel is called kernel learning.

It is necessary to specify a criterion for evaluating whether
hyperparameters are appropriate. The maximum likelihood
(ML) criterion is a commonly used method, which can be

expressed as
Gwmr, = arg max In p(y|w), (10)
weN
where the probability density function (PDF) of observing y
given the parameter w is expressed as
exp(—y"K;y).

p(ylw) = AIN RN dorK, an

The kernel Ky = Ky (w) is a matrix-valued function of hyper-
parameter w. Function {(w]y) = Inp(y|w) = —IndetK, —
(Ly + Fn)Inm — yHK; ly is the log-likelihood function.
In order to obtain the maximum likelihood estimator of the
hyperparameter w, methods such as gradient descent, conjugate
gradient descent, and Newton iteration can be used. All of these
methods require the derivative of the log-likelihood function
with respect to w, which is given by

AMwly) 0

— = — (~IndetK, — y"K!
Ow; 8w7;( ndetKy —y Ky y)
9K (12)
=t H_OK;H—=—Y),
o
where w; for ¢ = 1,2,..., N, represents each component of

hyperparameter w. For simplicity, let o = K ly. When the
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hyperparameter components are complex numbers, we need to
consider the Wirtinger derivatives (0/0w; re — 10/0w; 1m)/2.
Since I(wly) is an analytic function of Ky, the derivative
formula (12) remains unchanged.

Through gradient-based methods such as gradient ascent,
these results can be used to obtain better w according to ML
criterion.

D. Proposed Grid Electromagnetic Mixed Kernel

The gradient based hyperparameter optimization method may
get stuck in local optima. Fortunately, the grid-based electro-
magnetic mixed kernel learning (GEM-KL) proposed in this
subsection can achieve more global learning results.

Firstly, we analyze the objective function {(w|y), which can
be intuitively represented as a function of kernel K. However,
l(w]y) is not a convex/concave function of K. Therefore,
gradient-based optimization methods are difficult to find the
maximum value of [(wly). Moreover, the kernel K, can be
expressed as a function of the hyperparameter w. Unfortunately,
the components §, v of w are not linearly related to K, making
it difficult to directly characterize the relationship between
w and [(wly). In order to avoid the inconvenience caused
by the non-convexity/concavity of functions, the grid-based
method can be used in the parameter learning of the STEM
kernel. We design a mixed kernel composed of sub-kernels,
and each of the sub-kernels corresponds to a grid point in the
parameter space. specifically, several fixed values of § and v
are taken to be designed as the selection values for the grid. By
introducing the idea of mixed kernel, kg is @ combination of
multiple sub-STEM kernels. We assume that there are Nj sub-
correlation kernels and each of them has a weight of ¢, € R,
n = 1,2,..., Ni. Specifically, the GEM kernel function is
designed as

kaem(zp, tp; 24, tq|w)
Ny, 1
= u;—(ZcnKSTEM(xp,tp;xq,tq\wn))uq, ( 3)
n=1
where the value of each kgrm(p, tp; Tq, tg|ws,) is on the grid
(64, Vy), where 8, € A and v,, € V. The grid values are
uniformly sampled from the two-dimensional space defined by
AXV.w, €{d,,Vn, cn}fjil C Q is the collection of all the
hyperparameters w,, € £2. Correspondingly, the components of
the mixed correlation kernel matrix can be represented as
(KreMix)pg = kaem(Tp, b Tq, tg|w), (14)

The weight ¢, is linearly related to the kernel
ksteM(Zp, tp; T4, tglwy) in the objective function I(w]y), so
optimizing the weights {c, nNi , corresponding to different &,
and v,, is sufficient to obtain the optimal hyperparameters on
the grid. Let ¢ € Sy, denotes {cn}ivi 1> where Sy, is the
collection of the non negative vector that sum to 1.

The mixed and grid-based kernel is able to improve the fitting
ability of Gaussian random fields defined by the STEM function
to channel observation data. The ML problem is expressed as

&M, = argmax In p(y|c), (15)

cESN,

The log likelihood function is
[({entnty - Cly) =lnp(y| {en} )

= —IndetKy mix — y Ky iy (16)
-+ const,
N
where Ky vix = Keemix + 02y = Y2 Keen +

N Z
Ul?l]:LN' Let lT({Cn}nil ) C2|y) =In detKY7MiX + yHKy,]l\/Iixy’
we transform ML problems into finding the minimum value of
[, to eliminate the negative sign

¢vr, = argmin(In detKy aix + yHK;&\/ﬁXy)v
CESNk

a7

where yHK; MixY is a convex function about Ky niy and

IndetKy mix iS a concave function about Ky niix. The
majorization-minimization (MM) algorithm can be used to
solve the optimal hyperparameters with non-convex and non-
concave objective functions through an iterative scheme.

In the majorization step, we use the first-order Taylor expan-
sion to design the surrogate function, which approximates the
upper bound of the concave part of the new objective function.
To linearize IndetKy wmix, the concave part, at Ky wvix =

K;ml\zﬁx, ie., c=c™, the inequality is constructed as follow

lr(Ky,Mix) SyHK;E\/ﬁX}’ + lCCV(KizT,nI\B[iX)
+tr (VZCCV(Ks,nl\BIix)T(K%MiX - Kilr,nl\zlix))
(18)
where [, is the new objective function, lccv(Ksﬁix) =
ndetK "y, and (Vicov(K)),, = 01/0K;;. The Wirtinger
derivative of [ w.r.t. Kz 5, is given by the following formula
ol
OKrren
where g = K;jvﬁxy. The real-variable derivative of the
objective function ! with respect to c,, is expressed as
ol
dcy,

= (gg" — K, i)™ (19)

= 29 [tr(Kn(wn) (88" — K L)) -

(20)

Using formulas (18), (19) and (20), the surrogate function
of the MM algorithm can be expressed as

Ls(enlcl™) =y"K Ly + IndetK

F2m o [(KR ) ™) Ky i — KSR
21
(m) |
Then, in the minimization step, the weights {cn } . are
updated through "
&mFD) — arg min(l, (¢, (™)), (22)

CGSNk

This step requires the real-valued derivative of the surrogate
function with respect to c,, which is expressed as

aai; =20 [tr(Kﬁﬁ,n(wn)((Kij]\th)_l - ggH))} .

(23)

These results can be used for iteratively solving the op-

timal weights {c, fji , in the MM algorithm. The sequence
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Algorithm 1 Proposed GEM Kernel Hyperparameters Learning
Algorithm.

Input: Number of sub-kernels Nj; grid hyperparameters
{8, v} 5, s Received pilots {y,},,; Noise variance o2;
Maximum iteration number Mi;e,.

Output: Hyperparameters {d,,, v, cn}n ¢ 2,

1: Initialization: 0510) =1/Ng, forn =1,2,..., Nj. Learning
rates of Armijo-Goldstein’s optimizer. m < 0.

2: Let y € CEv X1 contain received pilots from {y,}; ™).

3: form=1,2,..., M do

4: Construct the GEM kernel K, w1ix from hyperparameters

{857 vimY) e (m=D} Nk by (13) and (14).
5 g K; 1M1Xy
6: forn=12...,N;do
7: Construct surrogate function I,(c, | ) by (21).
8 Compute from (23).
9 Update c“") from (22) by Armijo-Goldstein’s opti-
mizer.
10: Update Ky wix from {c(m }n 1-
11:  end for
12: end for

13 2= 2y)* /(L - (14 0}))
14: return Hyperparameters learning results {6n,vmcn}n 1
and (2.

(1.(c™)) en is non-increasing since

lr(c(m“)) < lS(C(m+1)|C(m)) < ls(c(m)\c(m)) — lr(c(m))'
(24)
The first term in the objective function (16) represents model
complexity, while the second term represents data fitness. The
process of maximizing the objective function [ is capable of
automatically balancing model complexity and data fitness. The
GEM kernel parameter learning algorithm is summarized in
Algorithm 1, and in the next subsection, we will summarize
the overall GEM channel prediction algorithm.

E. Proposed GEM-KL Channel Prediction Algorithm

We set the number of base station antennas to Npg, assuming
that these antennas are located at {x,,}. > € R®. We consider
the spatial-temporal correlation tensor between the m-th po-
larization of antenna a at time ¢; and the n-th polarization of
antenna b at time ¢;. Let p = (a,m,4) and ¢ = (b,n,j) , the
correlation tensor can be expressed as

K,,=u, T [Ksrem (Xp, tp; Xq, )] Uy, (25)
where u,, and u, represent the unit vector of antenna polar-
ization direction. Based on formula (25), the correlation matrix
between several channels in different time and space can be
calculated, and the specific scheme is given by Algorithm 2.
The proposed STEM-based channel prediction method is sum-
marized in Algorithm 3. Specifically, the BS receives noisy
observations at any spatial-temporal coordinate at past times
and predicts the channel at future times. In this algorithm, the
channels in the future or past times are modeled as a Gaussian

Algorithm 2 Channels Correlation Matrix Design.

Input: Hyperparameters {én,vn,cn}n 1» and 2,
indices pE P, qc Q’ Pmins Pmaxs> @mins @max-
Output: The correlation matrix between the channels in set

‘P and the channels in set Q: Kpo.

channel

1: Let KPQ € C‘P‘X|Q" p = pmins q = Qmin-

2: for p = pumin, Pmin + 1, - -, Pmax do

3 for ¢ = gmin; Gmin + 1, ..., ¢max do

4: Calculate the STEM function: K, —
u;KSTEM(xwtp;xq,tq\w)uq according to (5).

5. end for

6: end for

7: return The correlation matrix Kpo.

Algorithm 3 Proposed STEM Channel Predictor.
Input: Past channel indices [ € £; Future channel indices
[ € F; Received pilots y;,l € L; Noise variance o2.

Output: Predicted future channels Hr.

1: Obtain GEM hyperparameters {d,,, v, én}nNi , and é 2 ac-
cording to Algorithm 1;

2: Compute the correlation matrix of past channels K, and
the correlation matrix between the past channels and the
future channels Kz, according to Algorithm 2.

3: Ky =K+ J’rZLILN'

4 g+ K ly

5: Reconstruct the predicted futrue channels Hr « K Frg
according to (9).

6: return Channel prediction result Hr.

random field. We need to first use STEM-CF to calculate the
autocorrelation matrix Ky = Kz + 021, of the channels at
past times. And then calculate the correlation matrix between
the past and future channels. Finally, Bayesian inference is
used to obtain the future channels. The performance of the
proposed channel prediction algorithm will be evaluated in the
next section.

IV. SIMULATION RESULTS

In order to show the performance of our proposed STEM-
KL and GEM-KL channel prediction schemes, the simulation
results of some channel predictors are provided in this section.

Simulation setup. In the following channel prediction simu-
lation, we evaluate the performance of various predictors using
a standard 3GPP TR 38.901 CDL channel. The 128-element
ULA is considered. The center of the antenna array is located
at (0,0,0), ULA is located on the x-axis, and the user moves
in the zoz plane. The carrier frequency is set to f. = 3.5 GHz.
We set the period of transmitting pilot signals to 0.625 ms. The
unit vector of antenna polarization direction is u = (0,1,0)7.

Baseline algorithms. The no-prediction scheme refers to
comparing the current estimated channel with the future chan-
nel. The AR predictor is given by the autoregressive mod-
eling [4]. The PVEC predictor is given by the prony vector
prediction method [3].
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Fig. 2. The NMSE performance versus SNR in CDL channel model at
maximum Doppler velocity of 72 km /h.
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Fig. 3. The NMSE performance versus time in CDL channel model at the
maximum Doppler velocity of 72km/h.

All schemes are evaluated using normalized mean square
error (NMSE) performance, which is defined as
| — "

[

The NMSE performance versus SNR for different channel
prediction schemes under the CDL-A channel model is plot-
ted in Fig. 2. The channels from the past two frames are
used to predict the channels for the next frame. It can be
observed that the proposed STEM-KL scheme performs better
than baseline schemes with a maximum Doppler velocity of
72km/h. Among them, the GEM-KL scheme can achieve the
best performance. For example, when SNR is 2.5 dB, compared
to the PVEC scheme, the GEM kernel learning scheme can
achieve NMSE performance gains of approximately 4.4 dB at
v = 72km/h, respectively.

In addition, we plot Fig. 3 to show the temporal variation
of different channel prediction schemes. When SNR is 5dB,
the channels from the past two frames are used to predict the
channels for the next five frames. It can be observed that the
proposed GEM-KL predictor also has the best NMSE perfor-

NMSE = E (26)

7

mance in predicting the channels of subsequent frames. Taking
the prediction of the channel for the second future frame as an
example, compared with the PVEC channel prediction scheme,
the proposed GEM-KL method achieves 3.8 dB improvement
in NMSE performance in the scenarios of v = 72km /h.

V. CONCLUSIONS

In this paper, we design a high-accuracy channel predictor
through STEM kernel learning. We use the STEM correlation
function as a kernel function and redesign the hyperparameters
of the STEM kernel, including user velocity and concentration
to fit time-varying channels. The hyperparameters are obtained
through kernel learning. Then, we use GPR to predict future
channels, using the STEM kernel as the required covariance. In
order to improve the stability, we design the GEM kernel to be a
convex combination of multiple sub-kernels, where each of the
sub-kernels corresponds to a grid point in the parameter space.
Finally, we test the proposed STEM-KL and GEM-KL channel
prediction scheme, achieving improved performance over other
baseline methods.
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