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Abstract—In wireless communication, accurate and efficient
channel prediction is essential for addressing channel aging caused
by user mobility. However, the actual channel variations over time
are complex in high-mobility scenarios. This complexity makes it
difficult for existing channel predictors to obtain future channels
accurately. To overcome channel aging, we propose a channel pre-
diction scheme based on spatial-temporal electromagnetic kernel
learning (STEM-KL). Specifically, the STEM correlation function
can capture the fundamental propagation characteristics of the
wireless channel, making it suitable to use as a kernel function
that incorporates prior information. For the channel prediction
problem especially, we redesign the hyperparameters of the STEM
kernel, including user velocity and concentration, which charac-
terize the direction of the EM wave. The hyperparameters are
obtained through kernel learning. Then, we use Bayesian inference
to predict the future channels, employing the STEM kernel as the
required covariance. To further improve the stability and model
expressiveness, we propose a grid-based electromagnetic mixed
kernel learning (GEM-KL) scheme. We design the mixed kernel
to be a convex combination of multiple sub-kernels, where each of
the sub-kernels corresponds to a grid point in the parameter space.
This approach transforms the learning of concentration and speed
hyperparameters into the learning of weights for different sub-
kernels, helping the kernel learning process avoid local optima.
Finally, simulation results verify that the proposed STEM-KL
schemes outperform the baseline schemes.

Index Terms—Channel prediction, spatial-temporal electromag-
netic (STEM) correlation, grid-based electromagnetic mixed ker-
nel learning (GEM-KL), Gaussian process regression (GPR).

I. INTRODUCTION

The effective communication of massive MIMO system

highly relies on accurate and timely channel state information

(CSI). However, dynamic environments, characterized by user

mobility, complicate the acquisition of CSI. According to the

current 5G standard, explicit CSI acquisition, i.e., channel esti-

mation, is performed periodically. When user mobility is high,

significant channel changes may occur within a single channel

estimation period, leading to outdated CSI. This phenomenon

is termed as channel aging [1]. To address the challenges posed

by channel aging, various channel prediction techniques have

emerged.

Sparsity-based methods typically exploit the Doppler domain

sparse structure of channel responses to predict future channels.

For example, the sum-of-sinusoids model-based method [2]

represents the channel response as a combination of sinusoidal

waves. This method first identifies the dominant sinusoidal

components and then uses the harmonic retrieval method to

obtain these components for channel prediction. The authors

of [3] proposed the Prony vector (PVEC) method which fits

a linear prediction model to the observed channel response.

Specifically, PVEC models the future channel as a linear com-

bination of the past channels, where the combination weights

are computed from the received pilot signals.

AR-based methods use autoregressive principle to process

channel time series [4]. The original AR prediction method

models the future channel as a weighted sum of its past values,

where the weights, i.e., the AR parameters, are obtained from

the autocorrelation function of channels at different times [5].

The Wiener channel predictor is a generalization of the AR pre-

dictor [6]. This approach predicts an autoregressive multivariate

random process using a Wiener linear filter.

The existing two categories of channel prediction schemes

were designed for prediction in the discrete-time domain.

However, wireless communication systems utilize continuously

varying electromagnetic fields in both space and time for signal

transmission [7]. The existing methods are incompatible with

the continuous characteristics of electromagnetic signals, which

means they cannot accurately capture CSI within a single

estimation period, leading to severe performance degradation.

Therefore, it is essential to restore to the continuous electromag-

netic fields to analyze channel prediction and design channel

predictors based on this foundation.

In order to solve this problem, we propose a channel predic-

tion scheme based on electromagnetic kernel learning, which

simultaneously utilizes the spatial-temporal electromagnetic

(EM) correlation characteristic of the channel. Specifically, we

derive the spatial-temporal electromagnetic (STEM) correlation

function of the EM channel. This STEM kernel originates from

EM physics, thus it is more suitable for modeling practical

wireless propagation environments than other kernel functions.

The spatial-temporal electromagnetic kernel learning (STEM-

KL) based channel predictor is proposed to achieve parallel

prediction of future channels through the Bayesian framework.

In this framework, channel prediction is divided into two

sub-problems: First, the hyperparameters are obtained through

STEM kernel learning. Then, through Bayesian inference,

several future channels are simultaneously predicted. In order

to further improve the stability and model expressiveness, we

propose a grid-based electromagnetic mixed kernel learning

(GEM-KL) scheme. We design a mixed kernel composed of

sub-kernels, where each of the sub-kernel corresponds to a

grid point in the parameter space. In this way, hyperparameters
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learning is transformed into sub-kernel weights learning. Fi-

nally, through performance analysis and numerical experiments,

it can be verified that the proposed GEM-KL channel predictor

outperforms the PVEC and AR baselines.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first review the Gaussian random field

(GRF)-based channel model, based on which we introduce

a probabilistic inference method for channel prediction. The

autocorrelation function of the channel is selected via the

maximum likelihood (ML) criterion from a GRF ensemble,

and the inference is done by the minimum mean square error

(MMSE) estimator.

A. GRF-Based Channel Model

Traditional channel models express channel matrices as a

weighted Gaussian mixture of steering vectors, which is a

discrete special case of a Gaussian random field. To capture

the continuously varying properties of the wireless channel, in

this section, we model the channel with a complex symmetric

Gaussian random field (CSGRF). Let function h (ρ) : R4 → C

represent a circularly symmetric Gaussian random field (CS-

GRF). The variable is ρ = (x, t), where x = (x, y, z)
represents the spatial location, t represents time indicator,

and (x, t) ∈ R
4. For any Q points, the joint distribution

of their function values (h(ρ1), h(ρ2), . . . , h(ρQ)) follows a

multivariate Gaussian distribution, then the random field is a

Gaussian random field, denoted as h(ρ) ∼ GRF(0, k(ρ,ρ′)),
and its probability measure is determined by their autocorrela-

tion function

k(ρ,ρ′) = E [h(ρ)h∗(ρ′)] . (1)

The autocorrelation function is usually called the kernel,

note that the kernel function of the GRF must be semi-positive

definite. To enable CSGRF to represent the wireless channel,

some restrictions should be imposed on k(ρ,ρ′) so that the

h(ρ) generated by it satisfies the EM propagation constraints.

We use h(ρ) to model the electric field distribution E(ρ) :
R

4 → C
3. Then, the autocorrelation function can be defined

as KE(ρ,ρ
′) = E

[
E(ρ)E(ρ′)H

] ∈ C
3×3 [8]. Similarly, for a

channel vector with NBS components, it can also be modeled

using CSGRF by constructing the autocorrelation function of

ρn for n = 1, 2, . . . , NBS.

B. Signal Model

We consider a massive MIMO system, in which a single base

station (BS) with NBS antennas serves a single user with 1

antenna. We will try to solve the problem of uplink channel

prediction in a narrowband system. Consider the simplest

communication scenario, assuming we use an NBS-antenna

base station with fully digital precoding, where each antenna

is connected to a dedicated radio frequency (RF) chain. The

uplink signal model is

yt = ht + nt, (2)
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Fig. 1. An illustration of channel time-varying: Taking a component of a
channel vector as an example

where yt ∈ C
NBS×1is the BS received pilots at time t, ht ∈

C
NBS×1is the normalized channel vector satisfying E[‖ht‖2] =

NBS, and nt is the complex-valued additive white Gaussian

noise (AWGN) with zero mean and covariance γ−1INBS
. The

symbol γ represents the received signal-to-noise ratio (SNR)

of the BS. We use the minimum mean square error (MMSE)

criterion [9] to estimate the channel.

ĥMMSE
t = E [ht|yt] = Σht

(
Σht

+
1

γ
I

)−1

yt, (3)

where Σht
= E

{
hth

H
t

}
is the prior covariance matrix of

channel.

C. Problem Formulation

We refer to the period of channel estimation as a frame,

which contains Ns time slots. Channel estimation is only

performed in the first slot. In mobile scenarios, because of

the Doppler effect, except for the channel at the first slot, the

actual channels of the follow-up slots may have significant

differences from the channel estimation result, leading to a

decrease in the accuracy of the obtained CSI and thus affecting

communication quality. The variations of the channel and its

uncertainty over time are shown in Fig. 1. The solid curve

represents the real part of the channel vector component, and

the shadow area represents its uncertainty region. It can be

observed that the channel uncertainty significantly increases at

future time moments.

The channel prediction problem is to obtain future channels

through past channels. Considering the characteristics of the

GRF channel, achieving accurate channel prediction requires

an appropriate autocorrelation function, i.e., the kernel. We can

then predict the future channel through inference based on this

kernel. The appropriate kernel form will be discussed in the

next section. Let ω ∈ Ω denote model parameters of the kernel,

and Ω is the set of model parameters. y = (yT
1 ,y

T
2 , . . . ,y

T
L)

T ∈
C

LN×1 denotes the column vector composed of the received

pilot sequences in the past L time frames, where LN = NBSL
and FN = NBSF . hL = (hT

1 ,h
T
2 , . . . ,h

T
L)

T ∈ C
LN×1 denotes

the column vector composed of the previous L channels. hF =
(hT

(L+1),h
T
(L+2), . . . ,h

T
(L+F ))

T ∈ C
FN×1 denotes the column

vector composed of F future channels that need to be predicted.
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After accurately predicting the channel of future frames, we can

reduce the frequency of channel estimation, thereby reducing

the pilot overhead. By using the ML criterion to obtain kernel

parameters, and then using the MMSE criterion to predict future

channels, the channel prediction problem can be formulated as

ω̂(y) = argmax
ω∈Ω

ln

∫
p(y|hL)p(hL|ω)dhL,

ĥF (y) = argmax
hF∈CNBSF×1

ln p(y|hF ) + ln p(hF |ω̂(y)).
(4)

In the following Section III, we will solve the problem in (4).

III. PROPOSED SPATIAL-TEMPORAL ELECTROMAGNETIC

KERNEL LEARNING BASED CHANNEL PREDICTION

In this section, the appropriate autocorrelation function, i.e.,

the STEM, has been applied. Then we propose a channel pre-

diction scheme that simultaneously utilizes the spatial-temporal

EM correlation between channels.

A. STEM Correlation Function

EM information can be combined with the autocorrelation

function of the channel, This function is also named as electro-

magnetic correlation function (EMCF) [10], which is expressed

as

KEMCF(ρ,ρ
′) =

ζ2

S(‖δ‖)Σ(ξ), (5)

where KEMCF is a 3×3 complex matrix, tr(KEMCF(ρ,ρ
′)) =

ζ2, ξ = k0w = k0(x − x′ + v(t − t′)) − iδ ∈ C
3, in which

k0 = 2π/λ0 is the wavenumber. The vector δ ∈ C
3 is the con-

centration parameter, and its direction represents the direction

in which the EM wave is concentrated. S(δ) = sinh(δ)/δ is an

additional normalisation factor, where δ = ‖δ‖ ∈ R+. For time-

varying channels, we incorporate the Doppler frequency shift

into the EM correlation function by introducing the velocity

vector v, hence this EMCF can be referred to as the spatial-

temporal kernel function (STEM-CF). We utilize the commonly

used spherical Bessel functions jn(ξ) in 3D scenes to represent

the correlation function Σ(ξ)

Σ(ξ) =
1

6
(4j0(ξ)− j2(ξ))I3 +

1

2
(j2(ξ)− 2j0(ξ))ξ̂ξ̂

T, (6)

where ξ = |ξ| =
√
ξTξ, and ξ̂ = ξ/ξ denotes the normalized

ξ. The spherical Bessel function jn(ξ) is expressed as

jn(ξ) = (−ξ)n
(
1

ξ

d

dξ

)n
sin ξ

ξ
. (7)

It is important to note that w = x− x′ + v(t− t′)− iδ/k0
contains the spatially varying covariates and time-varying co-

variates, which means that the correlation function we use is

able to account for the spatial and temporal correlation in a

way consistent with EM principles.

B. Gaussian Process Regression

Gaussian Process Regression (GPR) [11], also called

Bayesian linear regression can obtain predictions through

prior information and observation data of GRF. Specifically,

for the GRF f(x) ∼ GRF(μ(x), k(x, x′)), GPR uses ob-

servation data yi = f(xi) + ni, ni ∼ CN (0, σ2
n), i =

1, 2, . . . , LN to get a set of FN -point prediction F =
{f(xLN+1), f(xLN+2), . . . , f(xLN+FN

)}.

The joint probability distribution of the

observed and predicted joint vector g =
[y1, y2, . . . , yLN

, f(xLN+1), f(xLN+2), . . . , f(xLN+FN
)]T

satisfies

g ∼ CN
([

μL
μF

]
,

[
KLL + σ2

nIL KLF
KFL KFF

])
, (8)

where μL = [μ(x1), μ(x2), . . . , μ(xLN
)]T and μF =

[μ(xLN+1), μ(xLN+2), . . . , μ(xLN+FN
)]T. The (m,n)-th entry

of KLL ∈ C
LN×LN is k(xm, xn), for all m,n ∈ {1, . . . , LN}.

The (m,n)-th entry of KLF ∈ C
LN×FN is k(xm, xn), for

all m ∈ {1, . . . , LN} and n ∈ {LN + 1, . . . , LN + FN}.

And KFL = KH
LF ∈ C

FN×LN . The (m,n)-th en-

try of KFF ∈ C
FN×FN is k(xm, xn), for all m,n ∈

{LN + 1, . . . , LN + FN}. We use Ky to represent KLL +
σ2
nILN

. From the Gaussian posterior formula, we can obtain

μF|L = μF +KH
LFK

−1
y y,

KF|L = KF −KH
LFK

−1
y KFL.

(9)

The results of Bayesian regression are given by μF|L.

C. Kernel Learning

Choosing appropriate kernel parameters is an important step

in constructing an effective regression model, which affects

the accuracy of the kernel function in reconstructing Gaussian

processes. The parameters that need to be adjusted in this

process are usually referred to as hyperparameters. Assuming

that the hyperparameters ω ∈ Ω ⊂ R
Nω of the adjustable kernel

k(x;x′|ω) is also tunable. The process of finding the optimal

hyperparameters for the STEM kernel is called kernel learning.

It is necessary to specify a criterion for evaluating whether

hyperparameters are appropriate. The maximum likelihood

(ML) criterion is a commonly used method, which can be

expressed as
ω̂ML = argmax

ω∈Ω
ln p(y|ω), (10)

where the probability density function (PDF) of observing y
given the parameter ω is expressed as

p(y|ω) =
1

πLN+FNdetKy
exp(−yHK−1

y y). (11)

The kernel Ky = Ky(ω) is a matrix-valued function of hyper-

parameter ω. Function l(ω|y) = ln p(y|ω) = − ln detKy −
(LN + FN ) lnπ − yHK−1

y y is the log-likelihood function.

In order to obtain the maximum likelihood estimator of the

hyperparameter ω, methods such as gradient descent, conjugate

gradient descent, and Newton iteration can be used. All of these

methods require the derivative of the log-likelihood function

with respect to ω, which is given by

∂l(ω|y)
∂ωi

=
∂

∂ωi
(− ln detKy − yHK−1

y y)

= tr((��H −K−1
y )

∂Ky

∂ωi
),

(12)

where ωi for i = 1, 2, . . . , Nω represents each component of

hyperparameter ω. For simplicity, let � = K−1
y y. When the

2025 IEEE International Conference on Communications (ICC): Wireless Communications Symposium

1015
Authorized licensed use limited to: Tsinghua University. Downloaded on September 30,2025 at 07:41:24 UTC from IEEE Xplore.  Restrictions apply. 



hyperparameter components are complex numbers, we need to

consider the Wirtinger derivatives (∂/∂ωi,Re − i∂/∂ωi,Im)/2.

Since l(ω|y) is an analytic function of Ky, the derivative

formula (12) remains unchanged.

Through gradient-based methods such as gradient ascent,

these results can be used to obtain better ω according to ML

criterion.

D. Proposed Grid Electromagnetic Mixed Kernel

The gradient based hyperparameter optimization method may

get stuck in local optima. Fortunately, the grid-based electro-

magnetic mixed kernel learning (GEM-KL) proposed in this

subsection can achieve more global learning results.

Firstly, we analyze the objective function l(ω|y), which can

be intuitively represented as a function of kernel Ky. However,

l(ω|y) is not a convex/concave function of Ky. Therefore,

gradient-based optimization methods are difficult to find the

maximum value of l(ω|y). Moreover, the kernel Ky can be

expressed as a function of the hyperparameter ω. Unfortunately,

the components δ,v of ω are not linearly related to Ky, making

it difficult to directly characterize the relationship between

ω and l(ω|y). In order to avoid the inconvenience caused

by the non-convexity/concavity of functions, the grid-based

method can be used in the parameter learning of the STEM

kernel. We design a mixed kernel composed of sub-kernels,

and each of the sub-kernels corresponds to a grid point in the

parameter space. specifically, several fixed values of δ and v
are taken to be designed as the selection values for the grid. By

introducing the idea of mixed kernel, kGEM is a combination of

multiple sub-STEM kernels. We assume that there are Nk sub-

correlation kernels and each of them has a weight of cn ∈ R,

n = 1, 2, . . . , Nk. Specifically, the GEM kernel function is

designed as

kGEM(xp, tp;xq, tq|ω)

= uT
p

( Nk∑
n=1

cnKSTEM(xp, tp;xq, tq|ωn)
)
uq,

(13)

where the value of each kGEM(xp, tp;xq, tq|ωn) is on the grid

(δn,vn), where δn ∈ Δ and vn ∈ V. The grid values are

uniformly sampled from the two-dimensional space defined by

Δ×V. ωn ∈ {δn,vn, cn}Nk

n=1 ⊂ Ω is the collection of all the

hyperparameters ωn ∈ Ω. Correspondingly, the components of

the mixed correlation kernel matrix can be represented as

(KLL,Mix)p,q = kGEM(xp, tp;xq, tq|ω), (14)

The weight cn is linearly related to the kernel

kSTEM(xp, tp;xq, tq|ωn) in the objective function l(ω|y), so

optimizing the weights {cn}Nk

n=1 corresponding to different δn
and vn is sufficient to obtain the optimal hyperparameters on

the grid. Let c ∈ SNk
denotes {cn}Nk

n=1, where SNk
is the

collection of the non negative vector that sum to 1.

The mixed and grid-based kernel is able to improve the fitting

ability of Gaussian random fields defined by the STEM function

to channel observation data. The ML problem is expressed as

ĉML = argmax
c∈SNk

ln p(y|c), (15)

The log likelihood function is

l({cn}Nk

n=1 , ζ
2|y) = ln p(y| {cn}Nk

n=1)

=− ln detKy,Mix − yHK−1
y,Mixy

+ const,

(16)

where Ky,Mix = KLL,Mix + σ2
hILN

=
∑Nk

n=1cnKLL,n +

σ2
hILN

. Let lr({cn}Nk

n=1 , ζ
2|y) = ln detKy,Mix + yHK−1

y,Mixy,

we transform ML problems into finding the minimum value of

lr to eliminate the negative sign

ĉML = argmin
c∈SNk

(ln detKy,Mix + yHK−1
y,Mixy), (17)

where yHK−1
y,Mixy is a convex function about Ky,Mix and

ln detKy,Mix is a concave function about Ky,Mix. The

majorization-minimization (MM) algorithm can be used to

solve the optimal hyperparameters with non-convex and non-

concave objective functions through an iterative scheme.

In the majorization step, we use the first-order Taylor expan-

sion to design the surrogate function, which approximates the

upper bound of the concave part of the new objective function.

To linearize ln detKy,Mix, the concave part, at Ky,Mix =

K
(m)
y,Mix, i.e., c = c(m), the inequality is constructed as follow

lr(Ky,Mix) ≤yHK−1
y,Mixy + lCCV(K

(m)
y,Mix)

+tr
(
∇lCCV(K

(m)
y,Mix)

T(Ky,Mix −K
(m)
y,Mix)

)
(18)

where lr is the new objective function, lCCV(K
(m)
y,Mix) =

ln detK
(m)
y,Mix and

(∇lCCV(K)
)
ij

= ∂l/∂Kij . The Wirtinger

derivative of l w.r.t. KLL,n is given by the following formula

∂l

∂KLL,n
= (ggH −K−1

y,Mix)
∗, (19)

where g = K−1
y,Mixy. The real-variable derivative of the

objective function l with respect to cn is expressed as

∂l

∂cn
= 2R

[
tr(KLL,n(ωn)(gg

H −K−1
y,Mix))

]
. (20)

Using formulas (18), (19) and (20), the surrogate function

of the MM algorithm can be expressed as

ls(cn|c(m)
n ) =yHK−1

y,Mixy + ln detK
(m)
y,Mix

+2R
{
tr
[
((K

(m)
y,Mix)

−1)T(Ky,Mix −K
(m)
y,Mix)

]}
.

(21)

Then, in the minimization step, the weights
{
c
(m)
n

}Nk

n=1
are

updated through

ĉ(m+1)
n = argmin

c∈SNk

(ls(cn|c(m)
n )), (22)

This step requires the real-valued derivative of the surrogate

function with respect to cn, which is expressed as

∂ls
∂cn

= 2R
[
tr(KLL,n(ωn)((K

(m)
y,Mix)

−1 − ggH))
]
. (23)

These results can be used for iteratively solving the op-

timal weights {cn}Nk

n=1 in the MM algorithm. The sequence
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Algorithm 1 Proposed GEM Kernel Hyperparameters Learning

Algorithm.

Input: Number of sub-kernels Nk; grid hyperparameters

{δn,vn}Nk

n=1 ; Received pilots {y�}LN

�=1; Noise variance σ2
h;

Maximum iteration number Miter.

Output: Hyperparameters {δn,vn, ĉn}Nk

n=1; ζ̂2.

1: Initialization: c
(0)
n = 1/Nk, for n = 1, 2, . . . , Nk. Learning

rates of Armijo-Goldstein’s optimizer. m ← 0.

2: Let y ∈ C
LN×1 contain received pilots from {y�}LN

�=1.

3: for m = 1, 2, . . . ,Miter do
4: Construct the GEM kernel Ky,Mix from hyperparameters

{δ(m−1)
n ,v

(m−1)
n , cn

(m−1)}Nk
n=1 by (13) and (14).

5: g ← K−1
y,Mixy

6: for n = 1, 2, . . . , Nk do
7: Construct surrogate function ls(cn|c(m−1)

n ) by (21).

8: Compute ∂ls
∂cn

from (23).

9: Update c
(m)
n from (22) by Armijo-Goldstein’s opti-

mizer.

10: Update Ky,Mix from {c(m)
n }Nk

n=1.

11: end for
12: end for
13: ζ̂2 ← 2 ‖y‖2 /(LN · (1 + σ2

h))

14: return Hyperparameters learning results {δn,vn, ĉn}Nk

n=1,

and ζ̂2.

(lr(c
(m)))m∈N is non-increasing since

lr(c
(m+1)) ≤ ls(c

(m+1)|c(m)) ≤ ls(c
(m)|c(m)) = lr(c

(m)).
(24)

The first term in the objective function (16) represents model

complexity, while the second term represents data fitness. The

process of maximizing the objective function l is capable of

automatically balancing model complexity and data fitness. The

GEM kernel parameter learning algorithm is summarized in

Algorithm 1, and in the next subsection, we will summarize

the overall GEM channel prediction algorithm.

E. Proposed GEM-KL Channel Prediction Algorithm

We set the number of base station antennas to NBS, assuming

that these antennas are located at {xn}NBS

n=1 ∈ R
3. We consider

the spatial-temporal correlation tensor between the m-th po-

larization of antenna a at time ti and the n-th polarization of

antenna b at time tj . Let p = (a,m, i) and q = (b, n, j) , the

correlation tensor can be expressed as

Kp,q = uT
p [KSTEM(xp, tp;xq, tq)]uq, (25)

where up and uq represent the unit vector of antenna polar-

ization direction. Based on formula (25), the correlation matrix

between several channels in different time and space can be

calculated, and the specific scheme is given by Algorithm 2.

The proposed STEM-based channel prediction method is sum-

marized in Algorithm 3. Specifically, the BS receives noisy

observations at any spatial-temporal coordinate at past times

and predicts the channel at future times. In this algorithm, the

channels in the future or past times are modeled as a Gaussian

Algorithm 2 Channels Correlation Matrix Design.

Input: Hyperparameters {δn,vn, ĉn}Nk

n=1, and ζ̂2, channel

indices p ∈ P; q ∈ Q, pmin, pmax, qmin, qmax.

Output: The correlation matrix between the channels in set

P and the channels in set Q: KPQ.

1: Let KPQ ∈ C
|P|×|Q|, p = pmin, q = qmin.

2: for p = pmin, pmin + 1, . . . , pmax do
3: for q = qmin, qmin + 1, . . . , qmax do
4: Calculate the STEM function: Kpq ←

uT
pKSTEM(xp, tp;xq, tq|ω)uq according to (5).

5: end for
6: end for
7: return The correlation matrix KPQ.

Algorithm 3 Proposed STEM Channel Predictor.

Input: Past channel indices l ∈ L; Future channel indices

f ∈ F ; Received pilots yl, l ∈ L; Noise variance σ2
n.

Output: Predicted future channels ĤF .

1: Obtain GEM hyperparameters {δn,vn, ĉn}Nk

n=1 and ζ̂2 ac-

cording to Algorithm 1;

2: Compute the correlation matrix of past channels KLL and

the correlation matrix between the past channels and the

future channels KFL according to Algorithm 2.

3: Ky = KLL + σ2
nILN

.

4: g ← K−1
y y.

5: Reconstruct the predicted futrue channels ĤF ← KFLg
according to (9).

6: return Channel prediction result ĤF .

random field. We need to first use STEM-CF to calculate the

autocorrelation matrix Ky = KLL +σ2
nILN

of the channels at

past times. And then calculate the correlation matrix between

the past and future channels. Finally, Bayesian inference is

used to obtain the future channels. The performance of the

proposed channel prediction algorithm will be evaluated in the

next section.

IV. SIMULATION RESULTS

In order to show the performance of our proposed STEM-

KL and GEM-KL channel prediction schemes, the simulation

results of some channel predictors are provided in this section.

Simulation setup. In the following channel prediction simu-

lation, we evaluate the performance of various predictors using

a standard 3GPP TR 38.901 CDL channel. The 128-element

ULA is considered. The center of the antenna array is located

at (0, 0, 0), ULA is located on the x-axis, and the user moves

in the xoz plane. The carrier frequency is set to fc = 3.5 GHz.

We set the period of transmitting pilot signals to 0.625ms. The

unit vector of antenna polarization direction is u = (0, 1, 0)T.

Baseline algorithms. The no-prediction scheme refers to

comparing the current estimated channel with the future chan-

nel. The AR predictor is given by the autoregressive mod-

eling [4]. The PVEC predictor is given by the prony vector

prediction method [3].
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Fig. 2. The NMSE performance versus SNR in CDL channel model at
maximum Doppler velocity of 72 km/h.
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Fig. 3. The NMSE performance versus time in CDL channel model at the
maximum Doppler velocity of 72 km/h.

All schemes are evaluated using normalized mean square

error (NMSE) performance, which is defined as

NMSE = E

[
‖ĥ− h‖2

‖h‖2
]
, (26)

The NMSE performance versus SNR for different channel

prediction schemes under the CDL-A channel model is plot-

ted in Fig. 2. The channels from the past two frames are

used to predict the channels for the next frame. It can be

observed that the proposed STEM-KL scheme performs better

than baseline schemes with a maximum Doppler velocity of

72 km/h. Among them, the GEM-KL scheme can achieve the

best performance. For example, when SNR is 2.5 dB, compared

to the PVEC scheme, the GEM kernel learning scheme can

achieve NMSE performance gains of approximately 4.4 dB at

v = 72 km/h, respectively.

In addition, we plot Fig. 3 to show the temporal variation

of different channel prediction schemes. When SNR is 5 dB,

the channels from the past two frames are used to predict the

channels for the next five frames. It can be observed that the

proposed GEM-KL predictor also has the best NMSE perfor-

mance in predicting the channels of subsequent frames. Taking

the prediction of the channel for the second future frame as an

example, compared with the PVEC channel prediction scheme,

the proposed GEM-KL method achieves 3.8 dB improvement

in NMSE performance in the scenarios of v = 72 km/h.

V. CONCLUSIONS

In this paper, we design a high-accuracy channel predictor

through STEM kernel learning. We use the STEM correlation

function as a kernel function and redesign the hyperparameters

of the STEM kernel, including user velocity and concentration

to fit time-varying channels. The hyperparameters are obtained

through kernel learning. Then, we use GPR to predict future

channels, using the STEM kernel as the required covariance. In

order to improve the stability, we design the GEM kernel to be a

convex combination of multiple sub-kernels, where each of the

sub-kernels corresponds to a grid point in the parameter space.

Finally, we test the proposed STEM-KL and GEM-KL channel

prediction scheme, achieving improved performance over other

baseline methods.
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