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Abstract—Orthogonal time frequency space (OTFS) modu-
lation outperforms orthogonal frequency division multiplexing
(OFDM) in high-mobility scenarios. One challenge for OTFS
massive MIMO is downlink channel estimation due to the
required high pilot overhead. In this paper, we propose a 3D
structured orthogonal matching pursuit (3D-SOMP) algorithm
based channel estimation technique. First, we show that the OTFS
MIMO channel exhibits 3D structured sparsity: normal sparsity
along the delay dimension, block sparsity along the Doppler
dimension, and burst sparsity along the angle dimension. Based
on the 3D structured channel sparsity, we then formulate the
downlink channel estimation problem as a sparse signal recovery
problem. Simulation results show that the proposed 3D-SOMP
algorithm can achieve accurate channel state information with
low pilot overhead.

I. INTRODUCTION

One goal of future wireless communications (the emerging

5G or beyond 5G) is to support reliable communications in

high-mobility scenarios, such as on high-speed railways with

a speed of up to 500 km/h [1] or on vehicles with a speed

of up to 300 km/h [2]. The dominant modulation technique

for 4G and the emerging 5G is orthogonal frequency division

multiplexing (OFDM). In high-mobility scenarios, OFDM may

experience significant inter-carrier interference (ICI) due to

the large Doppler spread of time-variant channels. ICI will

severely degrade the performance of OFDM systems when

traditional transceivers are used. To cope with ICI, some

modifications of the traditional OFDM were proposed at the

cost of more complicated transceiver design [3]–[7].
Orthogonal time frequency space (OTFS) is an alternative

to OFDM to tackle the time-variant channels [8]–[10]. Lever-

aging the basis expansion model for the channel [11], OTFS

converts the time-variant channels into the time-independent
channels in the delay-Doppler domain. Accordingly, the infor-

mation bearing data is multiplexed into the roughly constant

channels in the delay-Doppler domain. OTFS with massive

multiple-input multiple-output (MIMO) can further increase

the spectrum efficiency. Such benefits require that the down-

link channel state information (CSI) is known at the transmitter
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to design the transmit beamforming vectors [12]. With a large

number of base station (BS) antennas in OTFS massive MIMO

systems, downlink channel estimation is challenging due to the

required high pilot overhead.

In OTFS systems, the BS uses pilots that are transmitted

in the delay-Doppler domain for channel estimation [13]. An

impulse-based method was proposed for single-input single-

output (SISO) systems, where an impulse in the delay-Doppler

domain was transmitted as the training pilots. It was extended

to OTFS MIMO systems by transmitting several impulses

with proper guard between adjacent impulses to distinguish

different BS antennas [14]. An alternative method using PN

sequences in the delay-Doppler domain as the training pilots

was proposed for OTFS SISO channel estimation in [15].

In that method, three coefficients of channels, namely, delay

shift, Doppler shift, and fade coefficient are estimated. Then

the delay-Doppler channel can be calculated accordingly.

The existing OTFS channel estimation techniques can not be

directly extended to OTFS massive MIMO systems, since a

large number of antennas are required to be distinguished by

transmitting orthogonal pilots, which will lead to high pilot

overhead.

In this paper, we propose a 3D structured orthogonal match-

ing pursuit (3D-SOMP) algorithm based downlink channel

estimation technique for OTFS massive MIMO systems. We

present the discrete-time formulation of OTFS systems and

show that the OTFS massive MIMO channel exhibits a delay-

Doppler-angle 3D structured sparsity. The channel estimator

makes use of the training pilots that are transmitted in the

delay-Doppler domain. Decomposing the channel based on its

structure, we formulate the channel estimation problem as a

sparse signal recovery problem. To solve this problem, we

propose a 3D-SOMP algorithm, which can achieve accurate

CSI with low pilot overhead.

Notation: Boldface capital letters stand for matrices and

lower-case letters stand for column vectors. The transpose,

conjugate, conjugate transpose, and inverse of a matrix are

denoted by (·)T, (·)∗, (·)H and (·)−1, respectively. � is the

Hadamard product operator. ‖s‖ is the �2-norm of the vector

s. Ψ† = (ΨHΨ)−1ΨH is the Moore-Penrose pseudo-inverse

of matrix Ψ.

II. SYSTEM MODEL

In this section, we present the discrete-time formulation of

OTFS modulation and OTFS demodulation in SISO systems.

Then, we describe an extension of OTFS into massive MIMO

systems.

978-1-5386-8088-9/19/$31.00 ©2019 IEEE 



A. OTFS SISO Modulation

We consider the OTFS SISO architecture as commonly

assumed [8]–[10]. A quadrature amplitude modulated (QAM)

data sequence of length MN is first rearranged into a 2D data

block. This is called a 2D OTFS frame XDD ∈ C
M×N in

the delay-Doppler domain, where M and N are the numbers

of resource units along the delay dimension and Doppler

dimension. OTFS modulation at the transmitter is composed

of a pre-processing block and a traditional frequency-time

modulator such as OFDM or filter bank multicarrier (FBMC).

The pre-processing block is realized by using an inverse

symplectic finite Fourier transform (ISFFT) and a transmit

windowing function. The ISFFT of XDD is [8]

XISFFT = FMXDDFH
N, (1)

where FM ∈ C
M×M and FN ∈ C

N×N are discrete Fouri-

er transform (DFT) matrices. A transmit windowing matrix

Wtx ∈ C
M×N multiplies XISFFT element-wise to produce

the 2D block in the frequency-time domain XFT ∈ C
M×N as

XFT = XISFFT �Wtx. (2)

There are several uses of the windowing matrix such as

randomizing the phases of the transmitted symbols to eliminate

the inter-cell interference [13]. In this paper, we assume a

trivial window for simple expression, i.e., Wtx is a matrix of

all ones.

Assuming an OFDM modulator, the M -point inverse DFT

(IDFT) is applied on each column of XFT to obtain the 2D

transmit signal block S ∈ C
M×N , i.e.,

S = FH
MXFT, (3)

where S = [s1, s2, · · · , sN ]. Each column vector si ∈ C
M×1

can be regarded as an OFDM symbol. Note that N OFDM

symbols {si}Ni=1 occupy the bandwidth MΔf and have the

duration NT , where Δf and T are the subcarrier spacing and

symbol duration. By combing (1)-(3),

S = XDDFH
N. (4)

To avoid inter-symbol interference between blocks, the OFDM

modulator usually adds cyclic prefix (CP) for each OFDM

symbol si via a CP addition matrix ACP ∈ C
(M+NCP)×M

[9] with NCP being the length of CP. By reading the 2D

transmit signal block S column-wise, the 1D transmit signal

s ∈ C
(M+NCP)N×1 is

s = vec{ACPS}. (5)

B. OTFS SISO Demodulation

At the receiver, the κ-th element rκ of the received signal

r ∈ C
(M+NCP)N×1 after the time-variant channel hκ,� with

length L+ 1 is expressed as

rκ =

L∑
�=0

hκ,�sκ−� + vκ, (6)

where sκ−� is the (κ− �)-th element of the transmit signal s
and vκ is the additive Gaussian noise at the receiver.

The OTFS demodulation at the receiver consists of a tra-

ditional frequency-time demodulator such as the OFDM or

FBMC demodulator and a post-processing block. Specifically,

assuming an OFDM demodulator, the received signal r is

first rearranged as a matrix R of size (M + NCP) × N .

Each column vector of R can be regarded as a received

OFDM symbol including CP. Then, the OFDM demodulator

removes the CP by multiplying R with a CP removal matrix

RCP ∈ C
M×(M+NCP) [9] to obtain the OFDM symbols

RCPR without CPs. Applying the M -point DFT on each

OFDM symbol (without CP), we obtain the received 2D block

YFT ∈ C
M×N in the frequency-time domain as

YFT = FMRCPR. (7)

The post-processing block is realized by a receive win-

dowing matrix Wrx ∈ C
M×N and the SFFT. The receive

windowing matrix Wrx multiplies YFT element-wise, i.e.,

YFT,W = YFT �Wrx. (8)

Then, the SFFT is applied for YFT,W to obtain the 2D data

block YDD ∈ C
M×N in the delay-Doppler domain as

YDD = FH
MYFT,WFN. (9)

Generally, the receive window is matched with the transmit

window, i.e., Wrx = Wtx∗ [13]. By combing (7)-(9),

YDD = RCPRFN. (10)

The received data block YDD is given by the phase com-

pensated 2D periodic convolution of the transmit data block

XDD with the delay-Doppler channel impulse response (CIR)

HDD ∈ C
M×N as shown in the following Lemma 1.

Lemma 1: We denote the (�+1, k+1+ N
2 )-th element of

YDD and XDD as Y DD
�,k and XDD

�,k , where � = 0, 1, · · · ,M−1

and k = −N
2 , · · · , 0, · · · , N2 − 1. Then Y DD

�,k is given by

Y DD
�,k

N→∞
=

M−1∑
�′=0

N
2 −1∑

k′=−N
2

XDD
�′,k′HDD

�−�′,k−k′w�,k−k′ + V DD
�,k ,

(11)

where w�,k−k′ = e
j2π

�(k−k′)
N(M+NCP) . V DD

�,k is the additive noise in

the delay-Doppler domain. HDD
�,k is the (�+ 1, k + 1+ N

2 )-th

element of the delay-Doppler CIR HDD and

HDD
�,k =

N∑
i=1

h(i−1)(M+NCP)+1,(�)M e
−j2π(i−1) k

N , (12)

where (�)M is the remainder after division of � by M . Note

that HDD
�,k = HDD

�+M,k+N , thus (11) can be regarded as periodic

convolution.

Proof: See [16].

We observe from (11) that the transmit data XDD
�′,k′ in the

delay-Doppler domain experiences roughly constant channel

HDD
�,k in the delay-Doppler domain. Since each transmit data

XDD
�′,k′ in the delay-Doppler domain is expanded onto the

whole frequency-time domain as shown in (1), it can exploit



the full diversity of the frequency-time channel. As a result,

OTFS has improved performance over the traditional OFDM

especially in high-mobility scenarios [8]–[10].

C. OTFS Massive MIMO

We explain how OTFS works in massive MIMO systems to

further increase the spectrum efficiency by using multi-user

MIMO. The BS is equipped with Nt antennas to simulta-

neously serve U single-antenna users. Downlink precoding

is performed to eliminate the inter-user interference. For

example, the zero-forcing Tomlinson-Harashima precoding is

adopted in [12]. After precoding, the transmit data block XDD

in the delay-Doppler domain will be modulated through the

OTFS modulation and transmitted at Nt antennas. At the user

side, the received signal is demodulated through the OTFS

demodulation. The main challenge for OTFS massive MIMO

is the downlink channel estimation due to the required high

pilot overhead. Next, we will focus on the downlink channel

estimation in massive MIMO systems.

III. PROPOSED 3D-SOMP BASED CHANNEL ESTIMATION

IN OTFS MASSIVE MIMO SYSTEMS

In this section, we first show the 3D structured sparsity

of OTFS MIMO channels. Then, we formulate the downlink

channel estimation problem as a sparse signal recovery prob-

lem and solve it through a 3D-SOMP algorithm.

A. 3D Structured Sparsity of Delay-Doppler-angle Channel

We consider the downlink time-variant channel consisting

of Np dominant propagation paths. Each dominant path is

composed of Ns subpaths. The si-th subpath of the i-th domi-

nant path has a complex path gain αsi and Doppler frequency

νsi . The delays of all subpaths of the i-th dominant path

can be regarded as the same τi [17]. We denote the physical

AoD of the si-th subpath as θsi . When a typical uniform

linear array (ULA) of antennas is considered, the spatial angle

associated with θsi is defined as ψsi = d
λ sin θsi [18], where

d is the antenna spacing and λ is the wavelength of the carrier

frequency. Typically, d = λ/2 and θsi ∈ [−π/2, π/2), thus

ψsi ∈ [−1/2, 1/2). The time-variant channel associated with

the (p+1)-th antenna (p = 0, 1, · · · , Nt−1) can be expressed

as [18]

hκ,�,p =

Np∑
i=1

Ns∑
si=1

αsie
j2πνsi

κTsprc(�Ts − τi)e
−j2πpψsi , (13)

where prc(τ) is the band-limited pulse shaping filter response

evaluated at τ and Ts =
1

MΔf is the system sampling interval.

Based on (12), we express the delay-Doppler CIR of the (p+
1)-th antenna (which is referred to as delay-Doppler-space CIR

HDDS
�,k,p in OTFS massive MIMO systems, where �, k and p

correspond to the delay, Doppler and spatial index) as follows

HDDS
�,k,p =

N∑
n=1

h(n−1)(M+NCP)+1,(�)M ,pe
−j2π(n−1) k

N . (14)

The delay-Doppler-angle channel HDDA
�,k,r is defined by apply-

ing inverse DFT for HDDS
�,k,p along the space-dimension p as

HDDA
�,k,r

Δ
=

Nt−1∑
p=0

HDDS
�,k,pe

j2π rp
Nt , (15)

where r = −Nt

2 , · · · , 0, · · · , Nt

2 − 1 is the angle index. By

combining (13)-(15),

HDDA
�,k,r =

Np∑
i=1

Ns∑
si=1

βsiΥN (νsiNT − k) (16)

× prc ((�)MTs − τi)ΥNt(r − ψsiNt),

where βsi = αsie
j2πνsi

Ts , ΥN (x) �
∑N

n=1 e
j2π x

N (n−1) =
sin(πx)
sin(π x

N )e
jπ

x(N−1)
N and T = (M +NCP)Ts.

The function ΥN (x) has the following characteristic:

|ΥN (x)| ≈ 0 when |x| � 1 [19]. Therefore, HDDA
�,k,r has

non-neglectable elements only if � ≈ τiMΔf , k ≈ νsiNT ,

and r ≈ ψsiNt. We arrange HDDA
�,k,r into a 3D tensor H ∈

C
M×N×Nt . Since the Doppler-spread νsi of the channel is

smaller than the system bandwidth, the 3D channel H is block-

sparse along the Doppler dimension, where the unique non-

zero block is centered around k = 0 [20], [21]. Since the

angle-spread of a dominant path is limited, the 3D channel H
is burst-sparse along the angle dimension with Np non-zero

bursts [16], [20]. The difference between the burst-sparse and

the traditional block-sparse is that the start position of the non-

zero bursts are not necessarily to be {1, 1 +D, 1 + 2D, · · · }
where D is the length of non-zero blocks [22]. To sum up,

the 3D channel tensor H is sparse along the delay dimension,

block-sparse along the Doppler dimension, and burst-sparse

along the angle dimension. This 3D structured sparsity can be

used to estimate the CSI with low pilot overhead.

B. Formulation of Downlink Channel Estimation

We denote the length of pilots along the Doppler dimension

and the delay dimension as Nν and Mτ . We propose to use

complex Gaussian random sequences as the training pilots.

To avoid interference between pilots and data caused by

the 2D periodic convolution in the delay-Doppler domain,

guard intervals are required. Note that the delay-Doppler-

angle channel H in OTFS massive MIMO systems has finite

support [0 : Mmax − 1] along the delay dimension and[−Nmax

2 : Nmax

2 − 1
]

along the Doppler dimension [13]. The

length of guard intervals should be Mg ≥ Mmax − 1 along

the delay dimension and
Ng

2 ≥ Nmax

2 − 1 along the Doppler

dimension. To reduce the overall pilot overhead in OTFS

massive MIMO systems, we propose the non-orthogonal pilot

pattern, i.e., the pilots transmitted at different antennas com-

pletely overlap in the delay-Doppler domain, but the training

sequences at different antennas are independently generated.

The training pilots in the delay-Doppler domain at the (p+
1)-th antenna are denoted as x�,k,p with � = 0, 1, · · · ,Mτ −1,

k = −Nν

2 , · · · , 0, · · · , Nν

2 − 1, and p = 0, 1, · · · , Nt − 1.



According to (11), the received pilots y�,k in the delay-Doppler

domain at the user side can be expressed as

y�,k =

Nt−1∑
p=0

Mg−1∑
�′=0

Ng
2 −1∑

k′=−Ng
2

w�−�′,k′HDDS
�′,k′,px�−�′,k−k′,p + v�,k,

(17)

where w�−�′,k′ = e
j2π

(�−�′)k′
N(M+NCP) . Using (15), we have

HDDS
�,k,p =

Nt
2 −1∑

r=−Nt
2

HDDA
�,k,r e

−j2π rp
Nt . (18)

By substituting (18) into (17) and expressing z�−�′,k−k′,r =∑Nt−1
p=0 e−j2π rp

Nt x�−�′,k−k′,p, we have

y�,k =

Nt
2 −1∑

r=−Nt
2

Mg−1∑
�′=0

Ng
2 −1∑

k′=−Ng
2

w�−�′,k′HDDA
�′,k′,rz�−�′,k−k′,r + v�,k.

(19)

To simplify the expression, we rewrite (19) into the vector-

matrix form. We arrange y�,k and HDDA
�′,k′,r into column vectors

y ∈ C
MτNν×1 and hr ∈ C

MgNg×1. As a result, (19) can be

rewritten in vector-matrix form

y =

Nt
2 −1∑

r=−Nt
2

W � Zc,rhr + v, (20)

where Zc,r ∈ C
MτNν×MgNg is the 2D periodic convolu-

tion matrix with the (�Nν + k + Nν/2 + 1, �′Ng + k′ +
Ng/2 + 1)-th element of Zc,r being equal to z�−�′,k−k′,r.

W ∈ C
MτNν×MgNg is a matrix with the (�Nν + k+Nν/2+

1, �′Ng+k
′+Ng/2+1)-th element being w�−�′,k′ . By denoting

Ψ =
[
W � Z

c,−Nt
2
, · · · ,W � Zc,0, · · · ,W � Z

c,
Nt
2 −1

]
and

h =
[
hT
−Nt

2

, · · · ,hT
0 , · · · ,hT

Nt
2 −1

]T
, (20) can be expressed as

a compressive sensing problem

y = Ψh+ v. (21)

Note that h can be inversely vectorized to obtain a truncated

delay-Doppler-angle channel Hg ∈ C
Mg×Ng×Nt , i.e., Hg =

invec{h}, which is composed of the non-zero part of H with

� = 0, 1, · · · ,Mg − 1, k = −Ng

2 , · · · , 0, · · · , Ng

2 − 1, and r =
−Nt

2 , · · · , 0, · · · , Nt

2 − 1. In the next subsection, we propose

a 3D-SOMP algorithm to recover the channel vector h (or the

truncated 3D channel Hg) in (21).

C. 3D-SOMP Algorithm

The proposed 3D-SOMP algorithm is presented in Algo-
rithm 1. Different from the traditional OMP algorithm, to

use the 3D structured sparsity of h (or Hg), we rearrange the

correlation vector e as a tensor E ∈ C
Mg×Ng×Nt as in step 6.

For the sake of presentation, we first introduce some notations

of a N -dimensional (N ≥ 3) tensor M ∈ C
I1×I2×,··· ,×IN .

Algorithm 1 Proposed 3D-SOMP Algorithm

1: Input:
1) Measurements y; 2) Sensing matrix Ψ

2: Initialization:
i = 0, Ω = ∅, h(i) = 0, r = y −Ψh(i)

3: for i ≤ Np do
4: i = i+ 1
5: e = ΨHr
6: E = invec{e}
7: eτ (m) = ‖E(1)(m, :)‖
8: m

(i)
τ = arg maxmeτ (m)

9: eν(n) = ‖E(m(i)
τ , n, :)‖

10: n
(i)
ν = arg minn

∥∥∥eν
(

Ng

2 − n :
Ng

2 + n− 1
)∥∥∥, s.t.

‖eν
(
Nt

2 − n : Nt

2 + n− 1
) ‖≥ ε‖eν‖

11: Λ
(i)
ν =

{
Ng

2 − n
(i)
ν , · · · , Ng

2 , · · · , Ng

2 + n
(i)
ν − 1

}
12: eθ(r) =

∥∥∥E (
m

(i)
τ ,Λ

(i)
ν , r

)∥∥∥
13: dθ = LHeθ
14: gθ(r) = ‖Dθ(r, :)‖
15: ps = arg maxrgθ(r)

16: Λ
(i)
θ = {ps, ps + 1, · · · , ps +D − 1}

17: Ω = Ω ∪ (m
(i)
τ ,Λ

(i)
ν ,Λ

(i)
θ )

18: h(i)|Ω = Ψ†
Ωy, h(i)|Ωc = 0

19: r = y −Ψh(i)

20: end for
21: Output:

Recovered channel vector ĥ = h(Np).

The mode-n fiber is obtained by fixing all indexes but the n-

th index of M, i.e., M(i1, i2, · · · , in−1, :, in+1, · · · , iN ). The

slice is obtained by fixing all but two indexes of M. Finally,

the mode-n unfolding matrix M(n) ∈ C
In×I1I2···In−1In+1···IN

is obtained by arranging all the mode-n fibers as the columns

of M(n).

Our proposed 3D-SOMP algorithm identifies the 3D sup-

port (indexes of non-zero elements) of Hg in an one-by-

one fashion. The support of each dominant path of the

channel is estimated in each iteration. In the i-th iteration,

the algorithm starts by obtaining the mode-1 unfolding matrix

E(1) ∈ C
Mg×NgNt of tensor E . By calculating the �2-norm of

row vectors of E(1), the correlation vector eτ ∈ C
Mg×1 along

the delay dimension is obtained in step 7. Thus, the delay-

dimension index m
(i)
τ of the i-th dominant path can be obtain

by finding the largest element of eτ as in step 8.

Then, the user fixes the delay-dimension index m
(i)
τ and

focuses on the slice E(m(i)
τ , :, :) ∈ C

Ng×Nt . The correlation

vector eν ∈ C
Ng×1 along the Doppler dimension is obtained

in step 9. Note that the truncated 3D channel Hg is block-

sparse along the Doppler dimension. The length of the unique

non-zero block is estimated in step 10, such that the Doppler-

dimension support Λ
(i)
ν of the i-th dominant path is obtained

as in step 11.

Finally, we focus on E
(
m

(i)
τ ,Λ

(i)
ν , :

)
to obtain the angle-



dimension support of the i-th dominant path. Similarly, the

angle-dimension correlation vector eθ ∈ C
Nt×1 is obtained

in step 12. Since the truncated 3D channel Hg is burst-sparse

along the angle dimension. The length of the non-zero burst is

assumed as D. The user needs to estimate the start position of

the non-zero burst. The burst sparsity is first transformed into

the traditional block sparsity through a lifting transformation

method following [22]. In this method, a burst-sparse vector of

size Nt×1 is connected to a block-sparse vector with a higher

diemnsion NtD × 1 via a lifting matrix L ∈ {0, 1}Nt×NtD.

The start position of the non-zero burst in the burst-sparse

vector is corresponding to the support of the non-zero block in

the higher-dimensional block-sparse vector. The ((p− 1)D +
q)-th column of L (p = 1, 2, · · · , Nt and q = 1, 2, · · · , D)

only has one non-zero element 1 at location p⊕ q where

p⊕ q =

{
p+ q, if p+ q ≤ Nt,
p+ q −Nt, if p+ q > Nt.

(22)

To transform the burst sparsity of the truncated 3D channel Hg

along the angle dimension into the traditional block sparsity,

the angle-dimension correlation vector eθ is modified by the

lifting matrix L as in step 13. Then we can obtain the start

position ps of the non-zero burst in step 14-15. Therefore, the

angle-dimension support corresponding to the i-th dominant

path can be obtained as Λ
(i)
θ = {ps, ps + 1, · · · , ps +D − 1}

in step 16.

After obtaining the delay-Doppler-angle 3D support Ω =

Ω∪
(
m

(i)
τ ,Λ

(i)
ν ,Λ

(i)
θ

)
in step 17, the user can partially estimate

the channel h(i) through the LS as in step 18. Finally,

the residual measurements is computed by subtracting the

contribution of h(i) in step 19.

According to CS theory [23], [24], the length of mea-

surements MτNν is ∝ S log(L), where S and L are the

sparsity level and length of the sparse vector h. According

to the problem formulation in the last subsection, S =
NmaxNpD and L = NgMgNt. Therefore, the pilot overhead

MτNν of our proposed channel estimation technique is ∝
NmaxNpD log(NgMgNt). Note that the number of dominant

paths is usually small, e.g., Np = 6 [20]. Since the angle

spread of a dominant path is usually limited, the length of

non-zero block D along the angle dimension is usually much

smaller than the number of BS antennas Nt, e.g., D ≈ Nt/10
[20]. The lengths of guard intervals Ng and Mg can be set as

Nmax and Mmax. For the traditional impulse based channel

estimation technique (extended to OTFS massive MIMO sys-

tems [14]), the pilot overhead is ∝ NtNmaxMmax. Therefore,

the required pilot overhead of the proposed 3D-SOMP based

channel estimation is much lower than that of the previously

proposed impulse based channel estimation.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the

proposed 3D-SOMP based channel estimation technique, in

terms of the normalized mean square error (NMSE) of channel

estimation. The traditional impulse based channel estimation

TABLE I
SYSTEM PARAMETERS FOR SIMULATION

Parameter Values
Carrier frequency (GHz) 2.15

Duplex mode FDD
Subcarrier spacing (kHz) 15

Cyclic prefix duration (us) 16.6
FFT size 1024

Transmission bandwidth (# of resource blocks) 50
Size of a OTFS frame (M,N) (600, 12)

# of BS antennas 8 ∼ 64
# of user antennas 1

Channel model:3GPP standardized channel model Urban macro cell
# of dominant channel paths 6

# of sub-paths per dominant path 20
User velocity (km/h) 360

technique extended to MIMO systems is presented as a bench-

mark [14]. We also present the NMSE of the traditional OMP

based channel estimation technique for comparison, where the

OMP algorithm is used to recover h in (21). We simulate

the standardized spatial channel model in 3GPP considering

the urban macro cell environment [17]. The detailed system

parameters are summarized in Table I. We define the pilot

overhead ratio η as the ratio between the number of resource

units for pilot transmission and the number of total resource

units in the delay-Doppler domain.

In Fig. 1, we show the NMSE performance comparison

against the pilot overhead ratio η. The number of BS antennas

is 16 and the SNR is 5 dB. We observe that to achieve

that same NMSE performance, the required pilot overhead of

the proposed 3D-SOMP based channel estimation technique

is smaller than that of the traditional impulse based channel

estimation technique. This is because that non-orthogonal pilot

pattern is used in the proposed channel estimation technique

to reduce the pilot overhead. Moreover, the proposed 3D-

SOMP based channel estimation technique outperforms the

traditional OMP based technique when the same pilot overhead

is considered. This is because that the proposed 3D-SOMP

algorithm uses the 3D structured sparsity of the delay-Doppler-

angle channel in OTFS massive MIMO systems.

In Fig. 2, we present the NMSE performance comparison

against the number of BS antennas Nt. The pilot overhead

ratio is set as 50% and the SNR is 5 dB. We observe that the

NMSE performance of the traditional impulse based channel

estimation technique severely degrades (NMSE is larger than

10−1) when the the number of BS antennas increases larger

than 8. This is due to insufficient pilot overhead when the

number of BS antennas is large. Interference from adjacent

impulses degrades its NMSE performance. On the contrary,

the proposed 3D-SOMP based channel estimation technique

works well with a large number of BS antennas. Moreover,

the proposed 3D-SOMP based channel estimation technique

outperforms the traditional OMP based channel estimation

technique for the considered numbers of BS antennas.
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Fig. 1. The NMSE performance comparison against the pilot overhead ratio
η. The number of BS antennas is 16 and the SNR is 5 dB.
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Fig. 2. The NMSE performance comparison against the number of BS
antennas. The pilot overhead ratio is 50% and the SNR is 5 dB.

V. CONCLUSIONS

In this paper, we studied the OTFS modulation for massive

MIMO systems for the first time with the focus on chan-

nel estimation. Specifically, we transformed the time-variant

massive MIMO channels into the delay-Doppler-angle 3D

channel in OTFS massive MIMO systems. We found that

the 3D channel is structured sparse, i.e., sparse along the

delay dimension, block-sparse along the Doppler dimension,

and burst-sparse along the angle dimension. By using the 3D

structured sparsity, we proposed a 3D-SOMP algorithm, which

can achieve accurate CSI with low pilot overhead.
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