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Abstract—By deploying a large number of antennas with sub-
half-wavelength spacing in a compact space, dense array systems
(DASs) can fully unleash the multiplexing and diversity gains
of limited apertures. To acquire these gains, accurate channel
estimation is necessary but challenging due to the large antenna
numbers. To overcome this obstacle, this paper reveals that a
well-designed observation matrix, that exploits the high spatial
correlation of DAS channels, is crucial for realizing near-optimal
channel estimation. To materialize this vision, we propose to
design the observation matrix by maximizing the mutual informa-
tion between received pilots and channels. An ice-filling algorithm
is proposed to solve the formulated problem. Its key idea is to
properly assign the observation vectors with the eigenvectors of
the channel covariance matrix in a greedy manner. Theoretical
analysis reveals that the proposed algorithm is equivalently a
quantized version of the water-filling principle, which guarantees
its near-optimal channel estimation performance. Finally, numer-
ical results confirm that our proposed designs outperform existing
channel estimation methods significantly.

Index Terms—Estimation theory, mutual-information maxi-
mization, dense array systems (DASs), observation matrix design.

I. INTRODUCTION

In recent years, dense array systems (DASs) have attracted
an increasing attention from the wireless communication com-
munity [1]. Different from a conventional antenna array with
a half-wavelength antenna spacing A/2, DASs deploy massive
antennas with sub-wavelength (e.g., A/8) spacing in a compact
area. With a nearly continuous antenna arrangement, DASs
promise to realize the ultimate control of electromagnetic
waves, which can fully unleash the multiplexing and diversity
gains of limited apertures [1]. Aligned with this vision, many
dense-antenna transceiver architectures have emerged, such as
continuous-aperture arrays, reconfigurable intelligent surfaces,
and movable antennas [2], [3].

The full exploitation of the gain of DASs relies on the
accurate estimation of channel state information (CSI), par-
ticularly when the number of radio frequency (RF) chains
is much smaller than the number of antennas in DASs. Up
to now, many estimators have been proposed to acquire the
CSI of large antenna arrays [4]-[8]. For example, when the
available pilot length is larger than the antenna number, the
classical non-parametric algorithms can be used, such as the
least square (LS) estimator. Leveraging the property of channel
sparsity, compressed sensing (CS)-based channel estimators are
studied to improve the estimation accuracy and reduce the pilot

overhead, such as the orthogonal matching pursuit (OMP)-
based estimator [4], the message passing (MP)-based estimator
[5], and the gridless sparse signal reconstructor [6]. By tuning
parameters using a large amount of channel data, the deep
learning approaches are also utilized to realize data-driven and
model-driven channel estimators [7]. Besides, beam alignment
techniques [8], including beam sweeping and hierarchical beam
training, have also been widely explored to acquire the implicit
CSI with low pilot overhead.

Although existing channel estimators [4]—[8] can be directly
adopted in DASs, they fail to fully exploit the high spatial
correlation of DAS channels, which are far from optimal.
Specifically, the observation matrices of existing schemes, used
for receiving pilots, are either randomly generated or set as
predefined codebooks, such as the Fourier matrix and identity
matrix. However, the extremely-dense deployment of DAS
antennas significantly increases the similarity of radio waves
impinging on antenna ports [1]. This similarity makes the
covariance matrices of DAS channels no longer diagonal but
highly structured. It is believed that properly manipulating the
observation matrices according to these structured covariance
matrices could remarkably boost the channel estimation accu-
racy in DASs [9], which motivates our work.

To achieve this goal, we propose to design the DAS’s
observation matrix by maximizing the mutual information
(MI) between the received pilots and channels. An ice-filling
algorithm is proposed to address the formulated problem. It
sequentially generates each column of the observation matrix
by maximizing MI increment between two adjacent pilot trans-
missions. An important insight is that the ice-filling algorithm
works like a quantized version of the well-known water-filling
principle. Specifically, the generated observation vectors are
selected from the eigenspace of channel covariance matrix.
Moreover, the number of times that one eigenvector of the
channel covariance is assigned to the observation matrix by
ice-filling is shown to be the quantization of the continuous
power allocated by water-filling. We prove that the quantization
error is smaller than one, which ensures the near-optimality
of the proposed ice-filling algorithm. Numerical simulations
demonstrate that our proposed IF algorithm can outperform
existing channel estimation methods significantly.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the narrowband channel
estimation of an uplink single-input multiple-output (SIMO)
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Fig. 1. An illustration of uplink channel estimation for a DAS.

system. The base station (BS) employs an M -antenna DAS,
which comprises an analog combining structure supported by
one RF chain, to receive the pilots from a single-antenna
user [4]. Let h € CM*1 be the channel vector and @ the
number of transmit pilots within a coherent time frame. The
received signal y, € C at the BS in timeslot ¢ is modeled as
Yq :wfhsq—kwfzq, (D)
where w, € CM*1 is the observation vector at the BS, s, the
pilot transmitted by the user, and z, ~ CN(05,0%Iy/) the
additive white Gaussian noise. As the observation vector wy
affects both the desired signal hs, and the noise z,, its power
has no impact on the estimation accuracy. Therefore, without
any loss of generality, we can normalize w, to ||w,|3 = 1,
which reshapes the noise distribution to wfz, ~ CN(0,0?).
Considering the total Q)-timeslot pilot transmission, the re-
ceived signal vector y := [y, - ,yQ]T is expressed as
y=WHh+z ()
where s, is assumed to be 1 for all ¢ € {1,---,Q},
W = [wy,---,wq] stands for the observation matrix, and
Z = [w{{zl, e ,wng] T As the power of w, is normalized
to 1, we have z ~ CN(0g, 0%1g).

This article adopts the classical Bayesian regression to
recover h [9]. Suppose the channel follows a Gaussian process
CN(0pr,2p), where 3, € CM*M characterizes the channel
covariance. Then, the estimated channel, fl, is determined by
the posterior mean of h given observation y:

-1
pnly = SaW (WL W +0%15) Ty, 3)

which is also known as the minimum-mean-square-error
(MMSE) estimator. The posterior covariance matrix is

Shy = Zn — ShW(WIS,W 4 0°Io) WIS, @)
Notably, the posterier covariance, characterizing the channel
estimation error, is a function of the prior covariance ¥y, and
the observation matrix W. Due to the extremely-high spatial
correlation exhibited by DAS channels, the prior covariance
3 would remarkably deviate from the identity matrix. This
deviation indicates that aligning the observation matrix W
with the subspace of 3y, could be greatly helpful in reducing
the channel estimation error. Motivated by this fact, this work
concentrates on the design of observation matrix W

III. MUTUAL INFORMATION MAXIMIZATION FOR
CHANNEL ESTIMATION IN DASS

In this section, we first formulate the observation matrix
design problem from the view of MI maximization. Then, the
water-filling principle is investigated to show the upper bound
of the formulated problem.

A. Problem Formulation

We adopt the MI between the received signal y and the
channel h to evaluate the quality of the designed observation
matrix. There are two reasons for using the MI as a metric.
First, MI tells the amount of information about the unknown
channel h we can gain from the received signal y [10]. The
second reason is that, according to the information-theoretic
properties of Bayesian statistics [11], the maximization of MI
is asymptotically the minimization of Cramer Rao Bound.

Given the distributions h ~ CN(0p,Xp) and z ~
CN(0g,0°1g), the MI is formulated as

ax I(y;h) = logdet <IQ + ;WHE},W) , (5
where I(-;-) denotes the MI, det(-) is the determinant of its
argument, and the feasible set of W is represented as W =
{W : ||w,|| = 1,Vq}. Notice that we mainly focus on the case
where both the amplitude and phase of the coefficients of w,
are adjustable. Extension to scenarios where only the phase of
W, is tunnable will be briefly discussed in Section IV-C.

The observation matrix design problem in (5) resembles the
point-to-point multiple-input-multiple-output (MIMO) precod-
ing problem. Their major difference lies in the constraints im-
posed on W. For MIMO precoding, each column of W refers
to a precoding vector associated with one dedicated RF chain.
The optimization of precoding vectors, leveraging multiple RF
chains, typically enforces the total-power-constraint on W,
ie, [W|% = Q. In terms of the observation matrix design,
each column of W signifies an observation vector used for
receiving one pilot signal. As discussed in Section II, since
each observation vector w, amplifies both the desired signal
and the noise, it is subject to the pilot-wise power constraint,
ie., ||w,||3 = 1. The distinction in the observation matrix
constraint differentiates the discussed problem in (5) from the
classical MIMO precoding.

B. Water-Filling Inspired Ideal Observation Matrix Design

Prior to addressing problem (5), we would like to consider an
ideal (but practically unachievable) situation to obtain an upper
bound of (5). Specifically, we temporarily make the assumption
that the noise vector z in (2) is independent of the observation
matrix W and its distribution is always CN (0g, 0%I) regard-
less of the power of w,. Under this assumption, the pilot-wise
power constraint, ||w,||3 = 1, is relaxed to the total power
constraint, |[W||% = Zqul |w,|l3 = Q. In this case, problem
(5) is identical to the point-to-point MIMO precoding problem,
which can be optimally solved by the water-filling principle.
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Let the eigenvalue decomposition (EVD) of X, be
UKAKU%, where K is the rank of X,, Ug =
[ug,ug, - ,uk], and Ax = diag{A, Ao, -+, Ag} with
A1 > -+ > Mg > 0. The ideal observation matrix W'deal g
given as Wldeal — U P, Matrix P € RE*@ represents the
power allocation matrix expressed as P = [Py, 0k (o—k)]
with Py = diag{,/p1,--- ,/Px }. The power p; allocated to
each eigenvector is calculated by the water-filling principle:

pk:(ﬂfo'z/)‘k)JraVkG{le"' 7K}a (6)
where (z)* = max{r,0}, and the water-level 3 is properly
selected to meet the power constraint: Zszl pr = Q. As a
result, Wdeal offers an upper bound of (5).

IV. PROPOSED ICE-FILLING ALGORITHM

This section elaborates on the observation matrix design in
practical scenarios. First, we propose an ice-filling algorithm to
solve problem (5), which is summarized in Algorithm 1. Then,
its relationship with the water-filling principle is revealed and
its near-optimality is proved.

A. Ice-Filling for Observation Matrix Design

In practical uplink channel estimation where the noise vector
z is amplified by the observation vector w,, the pilot-wise
power constraint, |[w,| = 1, should be considered. In this
case, it is intractable to find the optimal solution to (5). To
overcome this challenge, we use a greedy method to obtain the
observation vectors pilot-by-pilot. Specifically, define W, =
[w1,Wa, -+, W] as the observation matrix for timeslots 1 ~ ¢,
where ¢ < @, and denote y; = W1 h+z, as the corresponding
received signal. Given the current observation matrix Wy, our
algorithm aims to determine the next observation vector, Wy 1,
by maximizing the MI increment from timeslot ¢ to ¢ + 1,
i.e., maxy,,, I(yi+1;h) —I(y:; h). As proved in [12], the MI
increment is expressed as

1
I(yi41;h) — I(y;; h) = log, <1 + U2Wﬁ_12twt+1) , (1)

where ¥, represents the posterior covariance matrix of h given
the current observation yy, i.e.,

%) = Bh — SuW (WES, W, +0°1,) T WES,.  (8)
Notably, the initial covariance, 3, is exactly the prior covari-
ance, X, since there is no observation when ¢ = 0. According
to (7), the optimal w;,; can be attained as

W1 = argmax WHEtW. 9

llwll=1

Problem (9) is a standard Rayleigh quotient problem. Its
optimal solution is clearly the principal eigenvector of X, i.e.,
Yiwir1 = A(Zy)wyey1, where A(.) denotes the largest eigen-
value of its argument. As a result, the columns of the observa-
tion matrix W can be sequentially generated by updating the
posterior covariance ¥, and the observation vector w; using (8)
and (9) alternatively. Nevertheless, equations (8) and (9) require
to repeatedly calculate the inverse of WH X, W, + ¢21; and
the EVD of X;. To avoid these computationally inefficient

Algorithm 1 Ice-Filling-Based Observation Matrix Design

Input: Number of pilots (), covariance Xy,.
Output: Designed observation matrix W.
1: Find the eigenvectors [uj,us,---,uk] and the corre-
sponding eigenvalues [A1, Aa, -+, Ag] of Xg = Xy

2: Initialize: [/\(1)7 )\8, s ,)\?{] = [/\17 Ao, 7)\K]
3: fort=0,---,Q—1do
4 k= argmaxgeq,2,... K}HAL)
5:  Eigenvector-assignment: w1 = Uy,
. Ay o?
6:  Eigenvalue-update: )\Zrl = #J:‘Q
7:  Eigenvalue-preserve: )\ZH =\ for k # k¢
8: end for
9: Construct observation matrix: W = [wq,wa, -+ , W]

10: return Designed observation matrix W

operations, we attempt to seek the simplest expressions of w;
and X;. To this end, we first use the inverse of block matrix
to obtain an equivalent expression of X; in (8):'
Et—lwtthzt—l
WFEt,lwt + 0'2 '
Equation (10) allows us to directly update 3; from ¥, _; and
w; without the need for matrix inversion. Then, if we further
consider the fact that the optimal wy is the principal eigenvector
of 3; 1, we can arrive at the most concise expression of 3;
as follows, which lays the foundation of ice-filling.

Theorem 1: If w, is the principal eigenvector of 3, 1, then
3 in (10) can be rewritten as

A (24-1) H
A(Et—1)+02Wtwt . (11)

Proof: Applying the property of the principal eigenvector
Sioawy = A(Bi_q)wy, we get w3, jwy = \(Z;_1) and
Soawewld S 1 = M(Z_1)wyw!l, which together with
(10) give rise to (11). [ |

Two crucial conclusions can be drawn from Theorem 1.

Remark 1: Given that w; is the principal eigenvector of
31, Theorem 1 indicates that the posterior covariances,
3 and 3X;_q, share the identical eigenspace. By further
considering the generality of t, the eigenvectors, {uk}i(:l, of
the prior covariance, Xy = Xy, are inherited by all posterior
covariances, 31,39, --- ,Xq_1. Thereafter, all observation
vectors are picked from the eigenspace of Xy and we only
need to compute the EVD of Xy, for one time.

Remark 2: In terms of the eigenvalues when updating
31 to X4, only the principal eigenvalue, \(X;_1), of X1
is squeezed to an eigenvalue of X, given by

)\2(216—1) _ )\(Zt_l)O'Q
)\(Etfl) + 02 o )\(Etfl) + 027
while the other eigenvalues are preserved.

As a result, updating the covariance matrix, 3, is equivalent
to squeezing the eigenvalues within the identical eigenspace.
Our proposed ice-filling algorithm is thus intrinsically an

=% (10)

=31

AMZ-1) = (12)

IDetailed proof of (10) can be found in Appendix A of [13].

796

Authorized licensed use limited to: Tsinghua University. Downloaded on October 12,2025 at 05:44:42 UTC from IEEE Xplore. Restrictions apply.



WSO01 IEEE ICC 2025 2nd Workshop on Intelligent Movable and Reconfigurable Antennas for Future Wireless Communication and

Sensing
=
Water-Filling F , , Ice-Filling
Lo? _ a?
5 Ice Level: B=m o
Water Level b
m
i
o2 e e o2 o2 e o2
2 M| k| A | A | A | A

Fig. 2. Comparison between water-filling and ice-filling. The rank of the prior covariance, the number of antennas, and the total pilot length are set as K = 6,
M =128, and Q = 16, respectively. The number inside each ice block represents the order in which the ice block is filled.

eigenvector-assignment-process, as presented in Algorithm 1.
We define {\}, A, -+, Al } as the eigenvalues of the posterior
covariance 3;, which are initialized as the eigenvalues of the
prior covariance Xy, in Step 2. In each timeslot, we find the
largest eigenvalue from {\}, A5, -+ AL} and index it by k;
in Step 4. Then, the corresponding eigenvector uy, of Eh,
which is equivalent to the principal eigenvector of 3, i

assigned to wy4 1 in Step 5. Finally, according to Theorem

1, the selected eigenvalue )\t is squeezed to /\t' while

+o 2
the other eigenvalues of ¥, are preserved, in orcier to attain
the eigenvalues of the next covariance 3, ;. These steps are

repeatedly executed until all observation vectors are generated.

B. Ice-Filling Versus Water-Filling

We now put forward a more insightful interpretation to the
ice-filling algorithm. Generally speaking, it can be viewed as
a quantization of the water-filling principle in (6). Specifically,
the observation matrices generated by both the water-filling
and ice-filling schemes fall within the eigenspace of Xj,.
Their distinction is that the ice-filling algorithm transforms the
continuous power-allocation process of water-filling into an
discrete eigenvector-assignment process. To see it more clearly,
we introduce the concept of “pilot reuse frequency” as follows.

Definition 1: The pilot reuse frequency nf € Z*,Vk €
{1,2,--- ,K},Vt € {1,2,---,Q}, is defined as the number
of times that the k-th eigenvector, uy, of 3y is selected as
the observation vector by Algorithm 1 during timeslots 1 ~
t, which satisfies 2521 nj, = t. For ease of expression, we
denote ny := ng as the final pilot reuse frequency.

Definition 1 allows us to derive the analytical expressions
of the eigenvalues {\} }X | of ;. Specifically, the eigenvalue

update rule in step 6 of Algorithm 1 can be rewritten as:
A\ o2 o2 o2
)‘?1 T L 71 = Lt
N, et T AL,
Equation (13) indlcates that whenever the k-th elgenvector is
selected as an observation vector, the value of o2 /! increases
by 1. For timeslot ¢, the k-th eigenvector has been selected by

(13)

nj, times according to Definition 1. Thus we can naturally
obtain the relationship between nj, and ¢~
2 o2 o2 o2
)\—z:n§€+)\—k®n§€:)\—2f)\—k
The comparison between equations (14) and (6) allows us to
interpret the ice-filling algorithm as a quantization of the water-
filling algorithm, which is elaborated below.

’ kE{l,,K} (14)

Interpretation of ice-filling: As shown in Fig. 2, the water-
filling principle allocates @) units of water (power) to a vessel
with K channels, each having a unique base level o2 [ Aks
k €{1,2,---, K}. By controlling the uniform water level 3,
the optimal power py in (6) is determined by the gap between
the base level and the water level. In contrast, the ice-filling al-
gorithm transforms the total @) units of water into () ice blocks,
each containing one unit of power and being used for one pilot
transmission. Our algorithm starts from an empty vessel and
fills one 1ce block onto the channel having the deepest base
surface )\k . This operation is equivalent to finding the largest
eigenvalue Ay, from {\1,- -, Ag}. Then, the eigenvector uy,
is assigned to the first observation vector Wi and ice level
of this channel increases from Z— + 1. In

2
m to /\1 =
the subsequent time slots, the remaining Q — 1 ice blocks are
filled onto the channels locating at the deepest base surfaces
or ice levels, indexed by k; = arg ming{{r } one by one. The
corresponding eigenvectors uy, are used for pilot transmission,
and the ice levels increase according to (14). Consequently,
the final pilot reuse frequencies {nj}_, are determined by
the number of ice blocks on top of each channel, and the ice

levels are given by {)\Q o ={m+¢ SV }k 1-

The above interpretation reveals that the continuous power
Dk 1s quantized into the pilot reuse frequency ny by ice-filling.
To see this quantization nature more clearly, we prove an upper
bound of quantization error in the following theorem.

Theorem 2: Considering the k-th pilot reuse frequency, 7,
and the k-th optimal power, py, we have

In — pi| < 1. 15)
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Proof: (See Appendix A). [ ]
Remark 3: Theorem 2 rigorously proves that the de-
viation of ny from py is less than 1, rendering the pilot
reuse frequency a good approximation of the optimal power
allocation. Particularly, when the total pilot length Q) is large,
the relative error between ny and py tends to zero because
% pik @t 0. This guarantees the near-optimality
of the proposed ice-filling algorithm.

C. Extension to Analog Combiner with Phase Shifters

We now briefly discuss the extension of ice-filling algorithm
to the analog combining architecture realized by phase-shifters
(PSs). In this context, only the phase of the coefficients of
w, is tunable, ie., |wy,,| = 1/VM, m € {1,2,--- M}.
The most straightforward method is to project the designed
observation matrix by Algorithm 1, W, onto the feasible set

of PS combiner: WFS = ﬁeiéw.

V. SIMULATION RESULTS

In this section, simulation results are provided to verify
the effectiveness of the proposed ice-filling design. The per-
formance is evaluated by the normalized mean square error
(NMSE), defined as NMSE = E(||h — h||2/||h[2).

1) Simulation Setup: The standard 3GPP TR 38.901 channel
model is used for simulations. The number of clusters is set
to 23 and that of rays per cluster is set to 20. Each cluster
has an angular spread of 5° and a delay spread of 30 ns.
The path gains are generated from the distribution CA(0, 1).
The uniform planar array (UPA) is considered. The number
of antennas is set to M = 128, and the numbers of horizontal
antennas and vertical antennas are set to M, = 16 and M, = 8§,
respectively. The antenna spacing is set to % by default. The
signal-to-noise ratio (SNR) is defined as SNR = E (||h||?) /o2,
of which the default value is 10 dB.

Six benchmark schemes are considered for comparison. 1)
LS: The LS method is applicable when the pilot length is
larger than the number of antennas. In this scheme, we set
the pilot length as () = M and the observation matrix as a
Fourier matrix. 2) MMSE with random W: The classical
Bayesian regression in (3) is used to recover the channel, where
an randomly generated observation matrix W of Q-pilot length
is used. 3) VAMP: The vector approximate message passing
(VAMP) [5], a state-of-the-art CS algorithm, is leveraged to
estimate the sparse channel. 4) Proposed ice-filling: The
observation matrix, W, designed by ice-filling is used to
enhance the performance of classical Bayesian regression in
(3). 5) Proposed ice-filling with PSs: The ice-filling designed
matrix is first projected as WFS = —L /W and then
used for Bayesian regression in PS-based analog combiners. 6)
Ideal water-filling: We regard the observation matrix W1dea!
generated by the water-filling principle as an ideal case. To
implement it, the noise vector, z, in (2) is ideally assumed
to be independent of the observation matrix W!deal and its
distribution is fixed as CN' (0, 0%1().

LS

10k VAMP
—p—MMSE with random W
51 —&— Proposed ice-filling with PSs

—6— Proposed ice-filling
- =+~ -Ideal water-filling

5
SNR [dB]

(a) NMSE versus SNR

LS
VAMP
—p— MMSE with random W
—&— Proposed ice-filling with PSs
—e— Proposed ice-filling
- == -Ideal water-filling

40

Pilot length @
(b) NMSE versus pilot length @

Fig. 3. The impact of SNR and pilot length on NMSE performance.

Note that the pilot length for the LS method is Q = M =
128, while that for the other schemes is () = 64 by default.

2) Simulation Results: The impact of the pilot length and
SNR on the NMSE performance is investigated in Fig. 3.
In Fig. 3(a), the SNR ranges from —10dB ~ 15dB. In
Fig. 3(b), the pilot length, @, increases from 8 to 68 (except
for the LS scheme with a fixed @ = 128). Thanks to the
careful design of observation matrix, the proposed ice-filling
schemes remarkably outperform existing benchmarks under all
considered SNRs and pilot lengths. In particular, a 10 dB
NMSE gap between ice-filling and MMSE with random W, as
well as a 15 dB gap between ice-filling and VAMP, are visible.
Moreover, the NMSE curves of ice-filling method tightly align
with the ideal water-filling’s curves, demonstrating the near-
optimal performance of ice-filling. Another finding is that the
NMSE gap between the ice-filling and ice-filling with PSs is no
higher than 0.5 dB. This validates that our ice-filling algorithm
can be smoothly generalized to PS-based analog combiners.

In Fig. 4, the curves of the achieved NMSE performance
versus the ratio of antenna spacing and wavelength, i.e., ‘7{,
are plotted. We can observe that, as the normalized antenna
spacing 4 decreases from 3 to 1%, the NMSEs for all channel
estimators excluding LS method declines rapidly. For example,
the NMSE achieved by the proposed ice-filling algorithm is
decreased by about 10 dB when the antenna spacing ranges
from A/2 to A/8. This is because a smaller antenna spacing
leads to stronger channel correlations, which results in a
more informative covariance X5 for more precise channel
reconstruction.
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Fig. 4. NMSE versus the ratio of antenna spacing and wavelength.

VI. CONCLUSIONS

This paper incorporated the observation matrix design into
DAS channel estimation. An ice-filling algorithm is proposed
to generate the observation vectors. The algorithm was proved
to be a quantization of water-filling principle with a quantiza-
tion error smaller than 1, demonstrating its near-optimality.
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APPENDIX A: PROOF OF THEOREM 2

Theorem 2 can be proved by the contradiction method.
Suppose there exists an index k such that ny > pg + 1. Due
to the constraint that S 1 ng = S.r pr = Q, there must
exists k' such that k' # k and ny < pys, otherwise Zszl g
will be larger than Zle pi- Note that pgs is non-zero since
prr > ny > 0. In this context, the water level can be expressed

as = pp + —2 and the k’-th ice level ; should be smaller

AZ
than [ because
o2 o2 o2
[ < P+ — . 16
\2 ng /\ - <pw+ " =p (16)

Then, consider the k-th ice level "—Q Since ny > pr + 1, we
have the following inequality: g

J2 o2 o2 o2 + o2
= —> — 4+ 1= - — — +1

Proof: Since nf, > 0, the k-th eigenvector is selected by
the ice-filling algorithm at least once. Let ¢ < t denote the
latest timeslot before ¢ when the k th elgenvector is selected

for pilot transmission such that nk =n! —1 and nt t=nt.

Suppose there exists &’ such that )\TQ < ; 1, then we have
o? () o2 (C) o? o?

- < 1= -2, (@0

VAR )\kJrnk /\k+nk % (20)

where (b) holds because the ice-level o2 / A 2 is non- decreasing
w.r.t the timeslot ¢, and (c) holds because + n,c = /\t The
inequality (20) contradicts the elgenvector selectlon pr1nc1ple
of the ice-filling algorithm that )\k is the largest over the
eigenvalue set {\}, -, A% }. Therefore, 02 /AL, should be no
less than 0% /A, — 1 for all &/, which completes the proof. M

Comparing (18) and (19), it is clear that (18) contradicts
Lemma 1 given that ny > pi + 1 > 0. Therefore, nj should
be smaller than pi + 1. We can use the similar contradiction
method to prove that ny > pi — 1, which is omitted due to
space constraint. As a result, we get |ng — pr| < 1.
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