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Abstract—By deploying a large number of antennas with sub-
half-wavelength spacing in a compact space, dense array systems
(DASs) can fully unleash the multiplexing and diversity gains
of limited apertures. To acquire these gains, accurate channel
estimation is necessary but challenging due to the large antenna
numbers. To overcome this obstacle, this paper reveals that a
well-designed observation matrix, that exploits the high spatial
correlation of DAS channels, is crucial for realizing near-optimal
channel estimation. To materialize this vision, we propose to
design the observation matrix by maximizing the mutual informa-
tion between received pilots and channels. An ice-filling algorithm
is proposed to solve the formulated problem. Its key idea is to
properly assign the observation vectors with the eigenvectors of
the channel covariance matrix in a greedy manner. Theoretical
analysis reveals that the proposed algorithm is equivalently a
quantized version of the water-filling principle, which guarantees
its near-optimal channel estimation performance. Finally, numer-
ical results confirm that our proposed designs outperform existing
channel estimation methods significantly.

Index Terms—Estimation theory, mutual-information maxi-
mization, dense array systems (DASs), observation matrix design.

I. INTRODUCTION

In recent years, dense array systems (DASs) have attracted

an increasing attention from the wireless communication com-

munity [1]. Different from a conventional antenna array with

a half-wavelength antenna spacing λ/2, DASs deploy massive

antennas with sub-wavelength (e.g., λ/8) spacing in a compact

area. With a nearly continuous antenna arrangement, DASs

promise to realize the ultimate control of electromagnetic

waves, which can fully unleash the multiplexing and diversity

gains of limited apertures [1]. Aligned with this vision, many

dense-antenna transceiver architectures have emerged, such as

continuous-aperture arrays, reconfigurable intelligent surfaces,

and movable antennas [2], [3].

The full exploitation of the gain of DASs relies on the

accurate estimation of channel state information (CSI), par-

ticularly when the number of radio frequency (RF) chains

is much smaller than the number of antennas in DASs. Up

to now, many estimators have been proposed to acquire the

CSI of large antenna arrays [4]–[8]. For example, when the

available pilot length is larger than the antenna number, the

classical non-parametric algorithms can be used, such as the

least square (LS) estimator. Leveraging the property of channel

sparsity, compressed sensing (CS)-based channel estimators are

studied to improve the estimation accuracy and reduce the pilot

overhead, such as the orthogonal matching pursuit (OMP)-

based estimator [4], the message passing (MP)-based estimator

[5], and the gridless sparse signal reconstructor [6]. By tuning

parameters using a large amount of channel data, the deep

learning approaches are also utilized to realize data-driven and

model-driven channel estimators [7]. Besides, beam alignment

techniques [8], including beam sweeping and hierarchical beam

training, have also been widely explored to acquire the implicit

CSI with low pilot overhead.

Although existing channel estimators [4]–[8] can be directly

adopted in DASs, they fail to fully exploit the high spatial

correlation of DAS channels, which are far from optimal.

Specifically, the observation matrices of existing schemes, used

for receiving pilots, are either randomly generated or set as

predefined codebooks, such as the Fourier matrix and identity

matrix. However, the extremely-dense deployment of DAS

antennas significantly increases the similarity of radio waves

impinging on antenna ports [1]. This similarity makes the

covariance matrices of DAS channels no longer diagonal but

highly structured. It is believed that properly manipulating the

observation matrices according to these structured covariance

matrices could remarkably boost the channel estimation accu-

racy in DASs [9], which motivates our work.

To achieve this goal, we propose to design the DAS’s

observation matrix by maximizing the mutual information

(MI) between the received pilots and channels. An ice-filling

algorithm is proposed to address the formulated problem. It

sequentially generates each column of the observation matrix

by maximizing MI increment between two adjacent pilot trans-

missions. An important insight is that the ice-filling algorithm

works like a quantized version of the well-known water-filling

principle. Specifically, the generated observation vectors are

selected from the eigenspace of channel covariance matrix.

Moreover, the number of times that one eigenvector of the
channel covariance is assigned to the observation matrix by

ice-filling is shown to be the quantization of the continuous
power allocated by water-filling. We prove that the quantization

error is smaller than one, which ensures the near-optimality

of the proposed ice-filling algorithm. Numerical simulations

demonstrate that our proposed IF algorithm can outperform

existing channel estimation methods significantly.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the narrowband channel

estimation of an uplink single-input multiple-output (SIMO)
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Fig. 1. An illustration of uplink channel estimation for a DAS.

system. The base station (BS) employs an M -antenna DAS,

which comprises an analog combining structure supported by

one RF chain, to receive the pilots from a single-antenna

user [4]. Let h ∈ C
M×1 be the channel vector and Q the

number of transmit pilots within a coherent time frame. The

received signal yq ∈ C at the BS in timeslot q is modeled as

yq = wH
q hsq +wH

q zq, (1)

where wq ∈ C
M×1 is the observation vector at the BS, sq the

pilot transmitted by the user, and zq ∼ CN (
0M , σ2IM

)
the

additive white Gaussian noise. As the observation vector wq

affects both the desired signal hsq and the noise zq , its power

has no impact on the estimation accuracy. Therefore, without

any loss of generality, we can normalize wq to ‖wq‖22 = 1,

which reshapes the noise distribution to wH
q zq ∼ CN (

0, σ2
)
.

Considering the total Q-timeslot pilot transmission, the re-

ceived signal vector y := [y1, · · · , yQ]T is expressed as

y = WHh+ z, (2)

where sq is assumed to be 1 for all q ∈ {1, · · · , Q},

W = [w1, · · · ,wQ] stands for the observation matrix, and

z :=
[
wH

1 z1, · · · ,wH
QzQ

]T
. As the power of wq is normalized

to 1, we have z ∼ CN (0Q, σ
2IQ).

This article adopts the classical Bayesian regression to

recover h [9]. Suppose the channel follows a Gaussian process

CN (0M ,Σh), where Σh ∈ C
M×M characterizes the channel

covariance. Then, the estimated channel, ĥ, is determined by

the posterior mean of h given observation y:

μh|y = ΣhW
(
WHΣhW + σ2IQ

)−1
y, (3)

which is also known as the minimum-mean-square-error

(MMSE) estimator. The posterior covariance matrix is

Σh|y = Σh −ΣhW
(
WHΣhW + σ2IQ

)−1
WHΣh. (4)

Notably, the posterier covariance, characterizing the channel

estimation error, is a function of the prior covariance Σh and

the observation matrix W. Due to the extremely-high spatial

correlation exhibited by DAS channels, the prior covariance

Σh would remarkably deviate from the identity matrix. This

deviation indicates that aligning the observation matrix W
with the subspace of Σh could be greatly helpful in reducing

the channel estimation error. Motivated by this fact, this work

concentrates on the design of observation matrix W

III. MUTUAL INFORMATION MAXIMIZATION FOR

CHANNEL ESTIMATION IN DASS

In this section, we first formulate the observation matrix

design problem from the view of MI maximization. Then, the

water-filling principle is investigated to show the upper bound

of the formulated problem.

A. Problem Formulation

We adopt the MI between the received signal y and the

channel h to evaluate the quality of the designed observation

matrix. There are two reasons for using the MI as a metric.

First, MI tells the amount of information about the unknown

channel h we can gain from the received signal y [10]. The

second reason is that, according to the information-theoretic

properties of Bayesian statistics [11], the maximization of MI

is asymptotically the minimization of Cramer Rao Bound.

Given the distributions h ∼ CN (0M ,Σh) and z ∼
CN (0Q, σ

2IQ), the MI is formulated as

max
W∈W

I(y;h) = log det

(
IQ +

1

σ2
WHΣhW

)
, (5)

where I(·; ·) denotes the MI, det(·) is the determinant of its

argument, and the feasible set of W is represented as W =
{W : ‖wq‖ = 1, ∀q}. Notice that we mainly focus on the case

where both the amplitude and phase of the coefficients of wq

are adjustable. Extension to scenarios where only the phase of

wq is tunnable will be briefly discussed in Section IV-C.

The observation matrix design problem in (5) resembles the

point-to-point multiple-input-multiple-output (MIMO) precod-

ing problem. Their major difference lies in the constraints im-

posed on W. For MIMO precoding, each column of W refers

to a precoding vector associated with one dedicated RF chain.

The optimization of precoding vectors, leveraging multiple RF

chains, typically enforces the total-power-constraint on W,

i.e., ‖W‖2F = Q. In terms of the observation matrix design,

each column of W signifies an observation vector used for

receiving one pilot signal. As discussed in Section II, since

each observation vector wq amplifies both the desired signal

and the noise, it is subject to the pilot-wise power constraint,
i.e., ‖wq‖22 = 1. The distinction in the observation matrix

constraint differentiates the discussed problem in (5) from the

classical MIMO precoding.

B. Water-Filling Inspired Ideal Observation Matrix Design

Prior to addressing problem (5), we would like to consider an

ideal (but practically unachievable) situation to obtain an upper

bound of (5). Specifically, we temporarily make the assumption

that the noise vector z in (2) is independent of the observation

matrix W and its distribution is always CN (0Q, σ
2IQ) regard-

less of the power of wq . Under this assumption, the pilot-wise

power constraint, ‖wq‖22 = 1, is relaxed to the total power

constraint, ‖W‖2F =
∑Q

q=1 ‖wq‖22 = Q. In this case, problem

(5) is identical to the point-to-point MIMO precoding problem,

which can be optimally solved by the water-filling principle.
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Let the eigenvalue decomposition (EVD) of Σh be

UKΛKUH
K , where K is the rank of Σh, UK =

[u1,u2, · · · ,uK ], and ΛK = diag{λ1, λ2, · · · , λK} with

λ1 ≥ · · · ≥ λK > 0. The ideal observation matrix WIdeal is

given as WIdeal = UKP. Matrix P ∈ R
K×Q represents the

power allocation matrix expressed as P = [PK ,0K×(Q−K)]
with PK = diag{√p1, · · · ,√pK}. The power pk allocated to

each eigenvector is calculated by the water-filling principle:

pk = (β − σ2/λk)
+, ∀k ∈ {1, 2, · · · ,K}, (6)

where (x)+ = max{x, 0}, and the water-level β is properly

selected to meet the power constraint:
∑K

k=1 pk = Q. As a

result, WIdeal offers an upper bound of (5).

IV. PROPOSED ICE-FILLING ALGORITHM

This section elaborates on the observation matrix design in

practical scenarios. First, we propose an ice-filling algorithm to

solve problem (5), which is summarized in Algorithm 1. Then,

its relationship with the water-filling principle is revealed and

its near-optimality is proved.

A. Ice-Filling for Observation Matrix Design

In practical uplink channel estimation where the noise vector

z is amplified by the observation vector wq , the pilot-wise

power constraint, ‖wq‖ = 1, should be considered. In this

case, it is intractable to find the optimal solution to (5). To

overcome this challenge, we use a greedy method to obtain the

observation vectors pilot-by-pilot. Specifically, define Wt =
[w1,w2, · · · ,wt] as the observation matrix for timeslots 1 ∼ t,
where t < Q, and denote yt = WH

t h+zt as the corresponding

received signal. Given the current observation matrix Wt, our

algorithm aims to determine the next observation vector, wt+1,

by maximizing the MI increment from timeslot t to t + 1,

i.e., maxwt+1
I(yt+1;h)−I(yt;h). As proved in [12], the MI

increment is expressed as

I(yt+1;h)− I(yt;h) = log2

(
1 +

1

σ2
wH

t+1Σtwt+1

)
, (7)

where Σt represents the posterior covariance matrix of h given

the current observation yt, i.e.,

Σt = Σh −ΣhWt

(
WH

t ΣhWt + σ2It
)−1

WH
t Σh. (8)

Notably, the initial covariance, Σ0, is exactly the prior covari-

ance, Σh, since there is no observation when t = 0. According

to (7), the optimal wt+1 can be attained as

wt+1 = argmax
‖w‖=1

wHΣtw. (9)

Problem (9) is a standard Rayleigh quotient problem. Its

optimal solution is clearly the principal eigenvector of Σt, i.e.,

Σtwt+1 = λ(Σt)wt+1, where λ(.) denotes the largest eigen-

value of its argument. As a result, the columns of the observa-

tion matrix W can be sequentially generated by updating the

posterior covariance Σt and the observation vector wt using (8)

and (9) alternatively. Nevertheless, equations (8) and (9) require

to repeatedly calculate the inverse of WH
t ΣhWt + σ2It and

the EVD of Σt. To avoid these computationally inefficient

Algorithm 1 Ice-Filling-Based Observation Matrix Design

Input: Number of pilots Q, covariance Σh.

Output: Designed observation matrix W.

1: Find the eigenvectors [u1,u2, · · · ,uK ] and the corre-

sponding eigenvalues [λ1, λ2, · · · , λK ] of Σ0 = Σh

2: Initialize: [λ0
1, λ

0
2, · · · , λ0

K ] = [λ1, λ2, · · · , λK ]
3: for t = 0, · · · , Q− 1 do
4: kt = argmaxk∈{1,2,··· ,K}{λt

k}
5: Eigenvector-assignment: wt+1 = ukt

6: Eigenvalue-update: λt+1
kt

=
λt
kt

σ2

λt
kt

+σ2

7: Eigenvalue-preserve: λt+1
k = λt

k for k �= kt
8: end for
9: Construct observation matrix: W = [w1,w2, · · · ,wQ]

10: return Designed observation matrix W

operations, we attempt to seek the simplest expressions of wt

and Σt. To this end, we first use the inverse of block matrix

to obtain an equivalent expression of Σt in (8):1

Σt = Σt−1 − Σt−1wtw
H
t Σt−1

wH
t Σt−1wt + σ2

. (10)

Equation (10) allows us to directly update Σt from Σt−1 and

wt without the need for matrix inversion. Then, if we further

consider the fact that the optimal wt is the principal eigenvector

of Σt−1, we can arrive at the most concise expression of Σt

as follows, which lays the foundation of ice-filling.

Theorem 1: If wt is the principal eigenvector of Σt−1, then

Σt in (10) can be rewritten as

Σt = Σt−1 − λ2(Σt−1)

λ(Σt−1) + σ2
wtw

H
t . (11)

Proof: Applying the property of the principal eigenvector

Σt−1wt = λ(Σt−1)wt, we get wH
t Σt−1wt = λ(Σt−1) and

Σt−1wtw
H
t Σt−1 = λ2(Σt−1)wtw

H
t , which together with

(10) give rise to (11).

Two crucial conclusions can be drawn from Theorem 1.

Remark 1: Given that wt is the principal eigenvector of
Σt−1, Theorem 1 indicates that the posterior covariances,
Σt and Σt−1, share the identical eigenspace. By further
considering the generality of t, the eigenvectors, {uk}Kk=1, of
the prior covariance, Σ0 = Σh, are inherited by all posterior
covariances, Σ1,Σ2, · · · ,ΣQ−1. Thereafter, all observation
vectors are picked from the eigenspace of Σh and we only
need to compute the EVD of Σh for one time.

Remark 2: In terms of the eigenvalues when updating
Σt−1 to Σt, only the principal eigenvalue, λ(Σt−1), of Σt−1

is squeezed to an eigenvalue of Σt given by

λ(Σt−1)− λ2(Σt−1)

λ(Σt−1) + σ2
=

λ(Σt−1)σ
2

λ(Σt−1) + σ2
, (12)

while the other eigenvalues are preserved.
As a result, updating the covariance matrix, Σt, is equivalent

to squeezing the eigenvalues within the identical eigenspace.

Our proposed ice-filling algorithm is thus intrinsically an

1Detailed proof of (10) can be found in Appendix A of [13].
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Fig. 2. Comparison between water-filling and ice-filling. The rank of the prior covariance, the number of antennas, and the total pilot length are set as K = 6,
M = 128, and Q = 16, respectively. The number inside each ice block represents the order in which the ice block is filled.

eigenvector-assignment-process, as presented in Algorithm 1.

We define {λt
1, λ

t
2, · · · , λt

K} as the eigenvalues of the posterior

covariance Σt, which are initialized as the eigenvalues of the

prior covariance Σh in Step 2. In each timeslot, we find the

largest eigenvalue from {λt
1, λ

t
2, · · · , λt

K} and index it by kt
in Step 4. Then, the corresponding eigenvector ukt

of Σh,

which is equivalent to the principal eigenvector of Σt, is

assigned to wt+1 in Step 5. Finally, according to Theorem
1, the selected eigenvalue λt

kt
is squeezed to

λt
kt

σ2

λt
kt

+σ2 , while

the other eigenvalues of Σt are preserved, in order to attain

the eigenvalues of the next covariance Σt+1. These steps are

repeatedly executed until all observation vectors are generated.

B. Ice-Filling Versus Water-Filling

We now put forward a more insightful interpretation to the

ice-filling algorithm. Generally speaking, it can be viewed as

a quantization of the water-filling principle in (6). Specifically,

the observation matrices generated by both the water-filling

and ice-filling schemes fall within the eigenspace of Σh.

Their distinction is that the ice-filling algorithm transforms the

continuous power-allocation process of water-filling into an

discrete eigenvector-assignment process. To see it more clearly,

we introduce the concept of “pilot reuse frequency” as follows.

Definition 1: The pilot reuse frequency nt
k ∈ Z

+, ∀k ∈
{1, 2, · · · ,K}, ∀t ∈ {1, 2, · · · , Q}, is defined as the number

of times that the k-th eigenvector, uk, of Σh is selected as

the observation vector by Algorithm 1 during timeslots 1 ∼
t, which satisfies

∑K
k=1 n

t
k = t. For ease of expression, we

denote nk := nQ
k as the final pilot reuse frequency.

Definition 1 allows us to derive the analytical expressions

of the eigenvalues {λt
k}Kk=1 of Σt. Specifically, the eigenvalue

update rule in step 6 of Algorithm 1 can be rewritten as:

λt+1
kt

=
λt
kt
σ2

λt
kt

+ σ2
⇔ σ2

λt+1
kt

= 1 +
σ2

λt
kt

. (13)

Equation (13) indicates that whenever the k-th eigenvector is

selected as an observation vector, the value of σ2/λt
k increases

by 1. For timeslot t, the k-th eigenvector has been selected by

nt
k times according to Definition 1. Thus, we can naturally

obtain the relationship between nt
k and σ2

λt
k

:

σ2

λt
k

= nt
k +

σ2

λk
⇔ nt

k =
σ2

λt
k

− σ2

λk
, k ∈ {1, · · · ,K}. (14)

The comparison between equations (14) and (6) allows us to

interpret the ice-filling algorithm as a quantization of the water-

filling algorithm, which is elaborated below.

Interpretation of ice-filling: As shown in Fig. 2, the water-

filling principle allocates Q units of water (power) to a vessel

with K channels, each having a unique base level σ2/λk,

k ∈ {1, 2, · · · ,K}. By controlling the uniform water level β,

the optimal power pk in (6) is determined by the gap between

the base level and the water level. In contrast, the ice-filling al-

gorithm transforms the total Q units of water into Q ice blocks,

each containing one unit of power and being used for one pilot

transmission. Our algorithm starts from an empty vessel and

fills one ice block onto the channel having the deepest base

surface σ2

λk0
. This operation is equivalent to finding the largest

eigenvalue λk0
from {λ1, · · · , λK}. Then, the eigenvector uk0

is assigned to the first observation vector w1, and ice level

of this channel increases from σ2

λk0
to σ2

λ1
k0

= σ2

λk0
+ 1. In

the subsequent time slots, the remaining Q− 1 ice blocks are

filled onto the channels locating at the deepest base surfaces

or ice levels, indexed by kt = argmink{σ2

λt
k
}, one by one. The

corresponding eigenvectors ukt are used for pilot transmission,

and the ice levels increase according to (14). Consequently,

the final pilot reuse frequencies {nk}Kk=1 are determined by

the number of ice blocks on top of each channel, and the ice

levels are given by { σ2

λQ
k

}Kk=1 = {nk + σ2

λk
}Kk=1.

The above interpretation reveals that the continuous power

pk is quantized into the pilot reuse frequency nk by ice-filling.

To see this quantization nature more clearly, we prove an upper

bound of quantization error in the following theorem.

Theorem 2: Considering the k-th pilot reuse frequency, nk,

and the k-th optimal power, pk, we have

|nk − pk| < 1. (15)
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Proof: (See Appendix A).

Remark 3: Theorem 2 rigorously proves that the de-
viation of nk from pk is less than 1, rendering the pilot
reuse frequency a good approximation of the optimal power
allocation. Particularly, when the total pilot length Q is large,
the relative error between nk and pk tends to zero because
|nk−pk|

pk
< 1

pk

Q→+∞
= 0. This guarantees the near-optimality

of the proposed ice-filling algorithm.

C. Extension to Analog Combiner with Phase Shifters

We now briefly discuss the extension of ice-filling algorithm

to the analog combining architecture realized by phase-shifters

(PSs). In this context, only the phase of the coefficients of

wq is tunable, i.e., |wq,m| = 1/
√
M , m ∈ {1, 2, · · · ,M}.

The most straightforward method is to project the designed

observation matrix by Algorithm 1, W, onto the feasible set

of PS combiner: WPS = 1√
M
ej∠W.

V. SIMULATION RESULTS

In this section, simulation results are provided to verify

the effectiveness of the proposed ice-filling design. The per-

formance is evaluated by the normalized mean square error

(NMSE), defined as NMSE = E(‖h− ĥ‖2/‖h‖2).
1) Simulation Setup: The standard 3GPP TR 38.901 channel

model is used for simulations. The number of clusters is set

to 23 and that of rays per cluster is set to 20. Each cluster

has an angular spread of 5◦ and a delay spread of 30 ns.
The path gains are generated from the distribution CN (0, 1).
The uniform planar array (UPA) is considered. The number

of antennas is set to M = 128, and the numbers of horizontal

antennas and vertical antennas are set to Mx = 16 and My = 8,

respectively. The antenna spacing is set to λ
8 by default. The

signal-to-noise ratio (SNR) is defined as SNR = E
(‖h‖2)/σ2,

of which the default value is 10 dB.

Six benchmark schemes are considered for comparison. 1)
LS: The LS method is applicable when the pilot length is

larger than the number of antennas. In this scheme, we set

the pilot length as Q = M and the observation matrix as a

Fourier matrix. 2) MMSE with random W: The classical

Bayesian regression in (3) is used to recover the channel, where

an randomly generated observation matrix W of Q-pilot length

is used. 3) VAMP: The vector approximate message passing

(VAMP) [5], a state-of-the-art CS algorithm, is leveraged to

estimate the sparse channel. 4) Proposed ice-filling: The

observation matrix, W, designed by ice-filling is used to

enhance the performance of classical Bayesian regression in

(3). 5) Proposed ice-filling with PSs: The ice-filling designed

matrix is first projected as WPS = 1√
M
ej∠W, and then

used for Bayesian regression in PS-based analog combiners. 6)
Ideal water-filling: We regard the observation matrix WIdeal

generated by the water-filling principle as an ideal case. To

implement it, the noise vector, z, in (2) is ideally assumed

to be independent of the observation matrix WIdeal, and its

distribution is fixed as CN (0Q, σ
2IQ).
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Fig. 3. The impact of SNR and pilot length on NMSE performance.

Note that the pilot length for the LS method is Q = M =
128, while that for the other schemes is Q = 64 by default.

2) Simulation Results: The impact of the pilot length and

SNR on the NMSE performance is investigated in Fig. 3.

In Fig. 3(a), the SNR ranges from −10 dB ∼ 15 dB. In

Fig. 3(b), the pilot length, Q, increases from 8 to 68 (except

for the LS scheme with a fixed Q = 128). Thanks to the

careful design of observation matrix, the proposed ice-filling

schemes remarkably outperform existing benchmarks under all

considered SNRs and pilot lengths. In particular, a 10 dB

NMSE gap between ice-filling and MMSE with random W, as

well as a 15 dB gap between ice-filling and VAMP, are visible.

Moreover, the NMSE curves of ice-filling method tightly align

with the ideal water-filling’s curves, demonstrating the near-

optimal performance of ice-filling. Another finding is that the

NMSE gap between the ice-filling and ice-filling with PSs is no

higher than 0.5 dB. This validates that our ice-filling algorithm

can be smoothly generalized to PS-based analog combiners.

In Fig. 4, the curves of the achieved NMSE performance

versus the ratio of antenna spacing and wavelength, i.e., d
λ ,

are plotted. We can observe that, as the normalized antenna

spacing d
λ decreases from 1

2 to 1
16 , the NMSEs for all channel

estimators excluding LS method declines rapidly. For example,

the NMSE achieved by the proposed ice-filling algorithm is

decreased by about 10 dB when the antenna spacing ranges

from λ/2 to λ/8. This is because a smaller antenna spacing

leads to stronger channel correlations, which results in a

more informative covariance Σh for more precise channel

reconstruction.
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Fig. 4. NMSE versus the ratio of antenna spacing and wavelength.

VI. CONCLUSIONS

This paper incorporated the observation matrix design into

DAS channel estimation. An ice-filling algorithm is proposed

to generate the observation vectors. The algorithm was proved

to be a quantization of water-filling principle with a quantiza-

tion error smaller than 1, demonstrating its near-optimality.
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APPENDIX A: PROOF OF THEOREM 2

Theorem 2 can be proved by the contradiction method.

Suppose there exists an index k such that nk ≥ pk + 1. Due

to the constraint that
∑K

k=1 nk =
∑K

k=1 pk = Q, there must

exists k′ such that k′ �= k and nk′ < pk′ , otherwise
∑K

k=1 nk

will be larger than
∑K

k=1 pk. Note that pk′ is non-zero since

pk′ > nk′ ≥ 0. In this context, the water level can be expressed

as β = pk′ + σ2

λk′ and the k′-th ice level σ2

λQ

k′
should be smaller

than β because

σ2

λQ
k′

= nk′ +
σ2

λk′
< pk′ +

σ2

λk′
= β. (16)

Then, consider the k-th ice level σ2

λQ
k

. Since nk ≥ pk + 1, we

have the following inequality:

σ2

λQ
k

= nk +
σ2

λk
≥ pk +

σ2

λk
+ 1 =

(
β − σ2

λk

)+

+
σ2

λk
+ 1

(a)

≥ β + 1, (17)

where the inequality (a) holds because
(
β − σ2

λk

)+

≥ β − σ2

λk
.

Combining equations (16) and (17), we arrive at

σ2/λQ
k > σ2/λQ

k′ + 1. (18)

We introduce the following lemma to show the irrationality of

inequality (18).

Lemma 1: For the k-th eigenvalue λt
k obtained at the t-th

timeslot, if nt
k > 0, we have the inequality

σ2/λt
k′ + 1 ≥ σ2/λt

k, (19)

hold for all k′ ∈ {1, 2, · · · ,K}.

Proof: Since nt
k > 0, the k-th eigenvector is selected by

the ice-filling algorithm at least once. Let t′ < t denote the

latest timeslot before t when the k-th eigenvector is selected

for pilot transmission such that nt′
k = nt

k − 1 and nt′+1
k = nt

k.

Suppose there exists k′ such that σ2

λt
k′

< σ2

λt
k
− 1, then we have

σ2

λt′
k′

(b)

≤ σ2

λt
k′

(c)
<

σ2

λk
+ nt

k − 1 =
σ2

λk
+ nt′

k =
σ2

λt′
k

, (20)

where (b) holds because the ice-level σ2/λt
k′ is non-decreasing

w.r.t the timeslot t, and (c) holds because σ2

λk
+ nt

k = σ2

λt
k

. The

inequality (20) contradicts the eigenvector selection principle

of the ice-filling algorithm that λt′
k is the largest over the

eigenvalue set {λt′
1 , · · · , λt′

K}. Therefore, σ2/λt
k′ should be no

less than σ2/λt
k − 1 for all k′, which completes the proof.

Comparing (18) and (19), it is clear that (18) contradicts

Lemma 1 given that nk ≥ pk + 1 > 0. Therefore, nk should

be smaller than pk + 1. We can use the similar contradiction

method to prove that nk > pk − 1, which is omitted due to

space constraint. As a result, we get |nk − pk| < 1.
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