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Abstract—The low-altitude economy (LAE) has recently re-
ceived widespread attention from both academia and industry. To
facilitate and support the successful implementation of the LAE,
we fortunately find that the LAE and near-field communications
in extremely large-scale MIMO (XL-MIMO) systems are a
natural combination. Specifically, the LAE can utilize the near-
field beamfocusing characteristic to accurately focus the beam
energy to the positions of different unmanned aerial vehicles, and
utilize the new distance dimension to further enhance the entire
spectrum efficiency. However, most existing works on near-field
communications only consider the ideal scenario in a horizontal
plane and how to efficiently achieve near-field communications
for LAE is still a blank in the literature and faces several
challenges. To fill in this blank, inspired by the powerful large
language models (LLM) which can act as a general wireless
communications optimization solver, in this paper, we first apply
LLM to solve the spectrum efficiency maximization problem of
near-field communications for LAE. Specifically, our proposed
LLM-based scheme can accurately distinguish far-field and near-
field users and achieve joint optimization of precoding and power
allocation through elaborately designing adapters and finetuning
the pretrained GPT-2. Simulation results substantiate the efficacy
and excellence of our proposed scheme compared to the existing
benchmark schemes.

Index Terms—The low-altitude economy (LAE), large language
models (LLM), near-field communications.

I. INTRODUCTION

In recent years, the low-altitude economy (LAE) has at-
tracted significant attention from both industry and academia
across several countries [1]-[4]. In LAE, several flying equip-
ment such as unmanned aerial vehicles (UAVs) are employed
to foster various applications, such as urban transportation,
logistics, agriculture, and tourism' [5]. From the perspective
of wireless communications, the LAE networks utilize UAVs
to meet different communication task requirements, where the
airspace offers greater freedom of movement compared to
terrestrial networks. To ensure the successful implementation
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'Tt should be noted that in addition to UAVs, there are other types of flying
equipment such as electric vertical take-off and landing aircraft (¢VTOL) used
in LAE. For simplicity, UAVs are uniformly used instead in this paper.

of LAE, the stable and safe operation of UAVs is particularly
important. Specifically, the UAVs require seamless wireless
communication connections and accurate trajectory planning
and tracking.

To facilitate and support the successful implementation
of the LAE, extremely large-scale MIMO (XL-MIMO) has
been considered as one potential key technology [6]-[9].
Different from massive MIMO systems, XL-MIMO deploys
extremely large-scale antenna arrays (ELAA), which could
achieve higher spatial resolution and multiplexing gain. Be-
sides, in XL-MIMO systems, with the increasing number of
antennas at base station (BS), the near-field region is enlarged
and the near-field channel should be accurately modeled by
the spherical-wave model rather than the planar-wave model
applied in far-field. For instance, the near-field region of a
ELAA with 256 antennas at 30 GHz is approximately 326.5
meters [10], which aligns with practical urban cell sizes. The
near-field channel is related to both angle and distance, and it
presents additional focusing ability in distance domain, which
can concentrate the beam energy at specific locations like a
flashlight [11]. Consequently, the spherical-wave model based
near-field communications will bring great opportunities for
XL-MIMO systems.

Fortunately, we find that the LAE and near-field commu-
nications in XL-MIMO systems match naturally. Compared
to ground users, the UAVs are closer to BS antenna arrays
with practical height, therefore they are more probable to be
within the near-field region and thus benefit from near-field
communications. Specifically, the LAE can utilize the near-
field beamfocusing characteristic to accurately focus the beam
energy to the positions of different UAVs, thereby mitigating
their interference [12], [13]. Besides, unlike the classical far-
field spatial division multiple access (SDMA), the near-field
location division multiple access (LDMA) can serve UAVs at
identical angle but different distances simultaneously, which
enhances the entire spectrum efficiency of the LAE network
through extra distance dimension [14].

However, most existing works on near-field communications
only consider the ideal scenario in a horizontal plane for groud
equipments. While precoding and power allocation in near-
field communications have been studied, the LAE scenario
introduces unique challenges not fully addressed in prior work
as the scenarios and models of near-field communication for
LAE become quite complex. Consequently, how to efficiently
solve the spectrum efficiency maximization problem of near-
field communications for LAE is still a blank in the literature.
Specifically, as the near-field multi-user communications for
LAE requires the joint optimization of precoding and power
allocation for both UAV and ground users, more parameters
need to be optimized. Besides, the transition of the system
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model in LAE correspondingly leads to different near-field
regions for UAVs and ground users, where the far-field, near-
field, and far-field regions appear in sequence with the distance
from the BS increasing. Thus, it is necessary to distinguish
between far and near-field users of both UAVs and ground
users and group them for precoding and power allocation
optimization, which is however not easy to solve.

Inspired by the recent great progress of large language
models (LLM) which has the potential to act as a general
optimization solver for diverse optimization problems in wire-
less communications [15]-[21], in this paper, we first apply
LLM to solve the spectrum efficiency maximization problem
of near-field communications for LAE. Our contributions are
summarized as follows?:

« New application scenario: It is pointed out that the LAE
and near-field communications can match ingeniously.
The UAVs in LAE can utilize the near-field beamfocusing
characteristics to achieve precise beam energy focusing,
which could focus energy at their locations based on both
angle 0 and distance r. Besides, they can utilize exploit
extra distance domain resources to further improve spatial
multiplexing and spectrum efficiency. Furthermore, they
are closer to BS antenna arrays with practical height,
thus enabling more UAVs to benefit from near-field
communications. To the best of our knowledge, this paper
is the first to investigate on near-field communications for
LAE.

e« New system model: Owing to the new application
scenario of near-field communications for LAE, unlike
the existing works on near-field communications, new
system model is adopted, where the height and tilting
angle of the BS antennas are considered. Further, as the
new system model has led to changes in near-field region
of the horizontal plane, we analyze and propose a concept
called the effective near-field region to redefine it, where
the horizontal plane is sequentially divided into far-field,
near-field, and far-field with the distance from the BS
increasing.

e New technology: To solve the challenging spectrum
efficiency maximization problem of near-field commu-
nications for LAE, we apply the novel and powerful
LLM to achieve the joint optimization of precoding and
power allocation. With powerful reasoning and inference
capabilities, LLM excels to tackle the complex, non-
convex optimization problem, leveraging their scalability
and adaptability to achieve superior performance. Specif-
ically, we propose the LLM-empowered near-field multi-
user communications scheme, which can jointly distin-
guish far-field and near-field users and design multi-user
precoding matrix. With elaborately designed adapters, by
finetuning the pretrained GPT-2, the proposed method
achieves near-optimal performance.

It should be emphasized that the three contribution points

are closely related: we first introduce a new application
scenario for LAE, exploiting its synergy with near-field com-

2Simulation codes are provided to reproduce the results in this paper: http:
/loa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

munications; this motivates a new XL-MIMO system model
tailored to LAE’s spatial characteristics, incorporating BS
height and tilting angle; and to tackle the unique optimization
challenges posed by this scenario and model, we propose a
new LLM-based technology to maximize spectral efficiency
efficiently.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, the effective near-
field region of horizontal plane is analyzed. The proposed
LLM-empowered near-field communications scheme is dis-
cussed in Section IV. Simulation results and conclusions are
presented in Section V and Section VI

Notation: C denotes the set of complex numbers; Upper-
case and lower-case boldface letters represent matrices and
vectors; ()71, ()T, (-)¥ denote the inverse, transpose, and
conjugate transpose, respectively; || denotes the absolute
operator; CN'(p,X) denotes the Gaussian distribution with
mean p and covariance 33; I denotes an identity matrix.

II. SYSTEM MODEL

A downlink XL-MIMO communication system is consid-
ered, where a BS deployed with a N-element uniform linear
array (ULA) serves K single-antenna users. It should be
pointed out that different from simple XL-MIMO system
modeling in the literature, we adopt more practical scenarios,
where the height and tilting angle of the BS antenna array
are considered. For simplicity, we adopt a simplified cartesian
coordinate model, i.e., the x-z plane in the x-y-z coordinate.
We emphasize that the simplified model in x-z plane differs
from conventional model in x-y plane. The model in x-z plane
involves the BS height hp and tilting angle 6;;, which is
more practical for urban deployments and should be carefully
considered for LAE’s near-field communications. It is also the
main difference of the system model in the new scenarios.
Thus, in this paper we simplify analysis by focusing on
horizontal distance and vertical height, critical for LAE’s near-
field communications, while ignoring y-direction variation for
concise expression. In contrast, the conventional x-y plane
model fail to consider the effect of BS height i p and tilting
angle 6y;;. For clear comparison, we also ignore the y plane
for conventional model, which is illustrated in Fig. 1.

As illustrated in Fig. 1, we denote (x,0), (z,,h;) and
(0,hp) as the coordinate of the ground users, UAV, and the
center of the ULA, respectively’. In addition, 6, denotes
the boresight angle of the BS, which is also called as tilting
angle [22]. Besides, 6 and 0; denote the vertical angle
of the ground users and UAV, i.e., 0, = tan_l(};—f) and

0, =
(zk, hy) to represgnt the coordinate of user k& uniformly and
the vertical angle of user k is 0 = tan‘l(%)

Let h;, € CV*! denotes the downlink channel of user k,
then its received signal could be expressed as

Yp = thWPs—i—n, (D

tan™

1(@) Without loss of generality, we use
T

3For simplicity, we adopt a quasi-static environment where UAVs and
ground users’ positions are fixed during the channel coherence time, as is
typical for precoding and power allocation in near-field communications.
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Fig. 1. Illustration of the system model and channel model.

where W = [w1, wo, ..., wx] € CV*X denotes the transmit
precoding matrix, P = diag{\/P1,+/Pa,...,/Px} € CExK
denotes the power allocation matrix satisfying Zszl P, <P,
P denotes the maximum transmit power, s denotes the power-
normalized transmitted signal with constraint E[ss”] = I and
n denotes the received noise following CA/ (0, 0?), where o2
denotes the variance of the noise.

Generally, the channel model could be separated into far
and near-field model according to the electromagnetic wave
propagation characteristics. The Rayleigh distance is usually
considered as the boundary, which is defined as R = 2? 2,
where D denotes the array aperture and A represents the carrier
wavelength [23]. In classical MIMO systems, the number of
the array elements is not large and the Rayleigh distance is
negligible, therefore planar-wave propagation model is applied
to model the far-field channel. The Saleh-Valenzuela model
is widely considered, and the far-field channel hfjr could be
represented as

N L
hgcar — \/Naoa(eo) + \/;l_zl Oéla(el), (2)

where «g, 0y, o, 0;, L denote the complex gain and the
angle-of-departure (AoD) of the line-of-sight (LoS) path, the
complex gain and the AoD of the non-line-of-sight (NLoS)
paths, and the total number of the NLoS paths, respectively.

For the ULA, the beam steering vector a(f) could be
represented as

1
a(f) Wi
where 0 € [—7/2, /2] denotes the physical direction.

In XL-MIMO systems, as the number of BS antennas
increases, the near-field region becomes larger accordingly
and the spherical-wave propagation model should be used to
characterize the near-field channel h;;**" as [10]:

L
N
hzear — \/ﬁaob(eo’ TO) + \/Zl_zl alb(Hla Tl)7 (4)

Moreover, b(6,r) denotes the near-field beam steering vector,
where 0 = 60, — 04; in our model. Unlike far-field beam
steering vector focusing the beam energy towards specific
directions, the near-field beam steering vector could focus the
beam energy on specific locations, which is also called the

N . . T
176J7T51H9’ L. ,ej(Nfl)w51n9:| , (3)

near-field beamfocusing vector [11]. For ULA, the near-field
beamfocusing vector b(f,r) could be represented as

1 2m
b@,’l‘ — {67 T(TO*T)’...
o =Tw
where 7, and r denote the distance between the user and the
n-th element and center of the BS antenna, respectively. The

ry, could be expressed as

eijow(TN‘lfr)} ! , (5

)

T = /12 — 2ndr sin 0 + n2d?
a 272 .2 (6)
(%)rfndsin9+7n d” cos 0,

2r
where approximation (a) is the Fresnel approximation, which
is derived by 1+ 2 = 1+5 — ‘”—82 +O(23). It can be obtained
from (4) and (5) that the near-field channel is determined by
both the angle and distance. Unlike the simple XL-MIMO
system modeling in [14], the near-field region of horizontal
plane becomes different in our adopted practical model, which
is analyzed in the following section.

III. EFFECTIVE NEAR-FIELD REGION

A concept called effective near-field region (ENFR) is
proposed in this section to define the near-field region of
horizontal plane in our adopted practical XL-MIMO sys-
tem model. Specifically, like the definition in [24] and
[25], we define the ENFR through the beamforming gain
loss. In the ENFR, the beamforming gain loss adopting
far-field beamforming vectors is lower than the predefined
threshold A, ie. 1 — |b(9,7j‘)Ha(9)| > A, where a(f) =
\/% [1,e7m0, ... eI N=Dm0]" denotes the far-field beam-
forming vector for the ULA. Therefore, the ENFR can be
defined through the following lemma.

Lemma 1. For our adopted practical XL-MIMO system model
discussed in Section II, the ENFR could be expressed as

hp hp }7 %)

TonpR = [ ,
ENFR tanf, ~tan 9;?

where 6, and 0?: are two solutions for sin 0y, cos? (0 —0yi) =
2
2};\?2%%)‘. Ba is the solution for |G(Ba)] = 1 — A, where

IGB)| = | [y e=727dt|/B.

Proof. First, we define 1(0,7) = |b(8, )" a(6)|, which could
be further expressed as

(N-1)/2

Z ejﬂ'nz d2 3\0:29
(®)

n=—(N—1)/2
= [F(z)],

p(.r) = |5
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Fig. 2. Comparison between the ENFR and ERD: (a) ENFR; (b) ERD

2 2 .
where x = dc}\%e. Besides, F'(x) could be expressed as

1 (N-1)/2 L,
F(z)=|—= Z el™m
n=—(N—-1)/2
1 /N/2 L,
N J_ny 9
V2xN/2
~ 722]\7/ ej%tzdt
V aT 0
=G(B),
where = ‘/%N = NQd;;f”. Thus, to satisfy 1 —

[b(6,7)7a(0)| > A, B > Ba is needed, where |G(Ba)| =
1-—A.
Therefore, we can substitute tanf, = ’;—f and r =

2 2 _ N2d2 cos2 0
Vi +hp into A = \/ S5, then we can get

sin 0y, cos? (O — O4it) = 2’}52%2%)‘. By solving it, we can get 0,
and 92‘, then (7) can be obtained and the proof is completed.

O

From Lemma 1, we can get that unlike existing works
distinguishing the far and near-field regions according to
effective Rayleigh distance (ERD), the ENFR in our adopted
practical model divides the entire space into three regions [25].
Specifically, the comparison between the ERD and ENFR is

illustrated in Fig. 2. It is shown that the horizontal plane
is sequentially divided into far-field, near-field, and far-field
with the horizontal distance from the BS increasing. When
the ground users are located in the ENFR, they can be
considered as near-field users that can benefit from near-field
beamfocusing.

Due to our consideration the height and tilting angle of
the BS antenna and the ENFR of horizontal plane, the multi-
user spectrum efficiency maximization problem in XL-MIMO
systems will be more complex. Incorporating BS height and
tilting angle introduces challenges absent in ideal horizontal
plane models, such as complex near-field boundaries varying
with 604; and hp, necessitating adaptive classification and
precoding for LAE’s user distribution. Thus, how to apply
LLM for empowering near-field multi-user communications
in XL-MIMO systems is a critical problem, which is analyzed
in the following section.

IV. LLM-EMPOWERED NEAR-FIELD MULTI-USER
COMMUNICATIONS

In this section, the spectrum efficiency maximization prob-
lem of near-field multi-user communications is first formu-
lated. Then, we illustrate the proposed model, as presented in
Fig. 3. Specifically, the proposed model can jointly distinguish
between far and near-field and design multi-user precoding
matrix, which is elaborated respectively as follows. Next, we
conclude the advantages of the proposed LLM-based scheme
over other conventional solvers.

A. Problem Formulation

Based on (1), the signal-to-interference-plus-noise ratio
(SINR) of user k could be represented as

Pk|h£1Wk|2

SINR = . (10)
iz Pihiw;|? + o2
Then, the achievable rate of the k-th user is:
Ry, = log,(1 4 SINRy). (11)

Thus, the spectrum efficiency maximization problem of
near-field multi-user communications could be expressed as:

{g)aig} %:Rk = zk:logz(l + SINRy,)
st. C1:Y 0 P <P,
Cy: Py 20, (12)
C3:an < ag,
Cy: Rg > Ruin,

Cs:||wi]]* = 1.

where . denotes the pre-set constant within [0,1] and ay
denotes the power allocation factor for the near-field users,
i.e., the transmit power allocated to near-field users is Py =
anP < a.P. Besides, R, denotes the minimum data rate
for each user. The constraint C7, Cy and C3 are the limitations
of transmit power. The primary purpose of C3 to enforce a
flexible power allocation mechanism that accounts for the dis-
tinct propagation properties of near-field and far-field regions
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in our practical XL-MIMO system model. C'3 allows the LLM
to dynamically adjust power allocation based on the number
of users in each region and their channel conditions, ensuring
efficient use of the total power budget while maximizing
overall spectral efficiency. Without C3, optimization could
disproportionately favor the one group (usually the near-field
users), affecting the fairness and the ability of the system to
serve a mixed user population effectively. The constraint Cy
represents the rate of every user every user should exceed the
minimum rate R.,;,. The constraint C5 are the normalized
constraint.

However, the problem (12) is non-convex and hard to get the
globally optimal solution, as the practical XL-MIMO system
model is considered and the constraint C'y is non-convex. To
solve it, a LLM-based scheme is proposed in the following
subsection, which can distinguish far and near-field users and
achieve joint optimization of precoding and power allocation.

B. Distinguishing Between Far and Near-Field Users

It should be emphasized that distinguishing between far and
near-field users is necessary [26]. If all users are identified
as far-field users, they will face serious spectrum efficiency
performance loss as the planar-wave based far-field model
becomes inaccurate in near-field region [11]. By contrast, if all
users are identified as near-field users, since the extra distance
dimension of near-field model, its corresponding computa-
tional and storage overhead is unacceptable and unnecessary
in practical systems. Besides, due to the difficulty in obtaining
the precise user distance, it is infeasible to distinguish them
by directly comparing their distance with the ERD.

It should be noted that the user classification directly
influences the precoding process by enabling tailored strategies
for each user group. For near-field users, it applies the near-
field beamfocusing vector, which accounts for both angle and
distance to maximize SNR through precise energy focusing.
For far-field users, it employs far-field beamsteering, opti-
mizing directional energy distribution. This dual approach,
combined with power allocation weighted by an in constraint
Cjs, ensures efficient resource use and interference mitiga-
tion, leveraging the distinct spherical-wave and planar-wave
propagation characteristics of near-field and far-field regions,
respectively.

Thus, in this subsection, we present how to achieve user
classification according to the proposed framework. The com-

User
classification

() Add & LayerNorm
:

The model framework of proposed LLM-empowered near-field multi-user precoding in LAE.

plex channel of the K users are concatenated to form the input
of the network, denoted as H = [hy, hy,--- ,hg] € CVN*K,
To facilitate network processing and convergence, the complex
channel H is rearranged in real matrix as X, € REX2N,
Then we perform batch normalization for the input Xj;, as
X"(‘T_“, where 1 and o represent the mean value and standard
deviation of a batch of corresponding input data. The normal-
ization process can effectively facilitate network training and
convergence. Then, an attention-based encoder is implemented
to capture the relation among the users and extract preliminary
features before LLM. The encoder comprises of L = 3 blocks
of trainable transformer decoder, as shown in Fig. 3. The
structure of each block includes a multi-head self-attention
module and a multilayer perceptron (MLP) module. The
normalized input as X, iS sequentially processed by the
multi-head self-attention module and MLP module. Then the
output of the encoder can be written as

Xen = Encoder(Xorm),

13)

where Encoder(-) represents the attention-based encoder. Ac-
quiring the encoded input X,, an embedding projection
module is applied to linearly project X, to align the hidden
dimensions with the backbone model, yielding Xep,p € RExd
where d is the hidden dimension of LLM backbone.

The preprocessed multi-user channel then serves as the input
of LLM backbone:

Xrrm = LLM(Xemb), (14)

where LLM(+) denotes backbone networks of the LLM. With-
out loss of generality, the smallest version of GPT-2 [27] with
feature dimension d = 768 is chosen as the LLM backbone in
this work. It should be noted that, in the proposed method, the
GPT-2 backbone can be flexibly replaced with other LLMs,
such as Llama [28] and Qwen [29]. The rationale for the selec-
tion of LLM backbone is the trade-off between computational
complexity and performance. The backbone of GPT-2 is also
composed of stacked transformer decoders, as shown in Fig. 3.
During the training process, only addition, layer normalization
layers are fine-tuned for adapting the LLM to the specific task
while self-attention and Multilayer Perceptron (MLP) layers
are frozen to retain universal knowledge [30]. Finally, the
output projection module is designed to convert the output
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features of the LLM into the final user classification results:

Xout = Sigmoid(Linear(XrLm)), (15)

where Linear(-) is the linear projection and Sigmoid(-) con-
verts the output within the range [0, 1]. Hence, the output of
user identification is obtained as X, = Xout[:,0] € REXL
where Xcl indicates whether the user is located in far-field or
near-field region.

In the training process, the ground truth of user class
is available, which is denoted as X.. The mean square
error (MSE) is adopted as the loss function to minimize the
classification error, i.e.,

Lossa = || Xa — X[, (16)

where || - || is the I3 norm*.

C. Proposed LLM-based Multi-user Precoding

In this subsection, we elaborate on LLM-empowered near-
field multi-user precoding for LAE. As proven in [31], the
optimal downlink beamforming vectors for (12) without the
constraint C3, Cy follows the structure as

(In + Zszl %hkth)_lhk
(Iy + Sy 25hhfT)~Thyly’
k o k

where \j; is a positive parameter and Zszl Ar = P. Given
this knowledge, we only require to learn A = [A1, Ag, -+ , Ak]
rather than the entire high-dimension matrix W, to obtain
the normalized precoding vector. Therefore, for multi-user
precoding, we focus on learning the key features \ and power
allocation vector p = [Py, Pa, - - - , Px| with specific designs
to satisfy the constraint.

For traditional methods, WMMSE algorithm is widely
adopted to estimate the parameters. However, WMMSE inher-
ently converges to local optimal solution, resulting suboptimal
performance. Secondly, the iterative nature of WMMSE intro-
duce prohibitive execution delays in real-time deployments.
To address these challenges, we introduce LLM for multi-user
precoding in this work.

The main structure of the proposed network is shared with
that for user classification illustrated in the last subsection, and
thus we skip the repeated part here. After the output projection
module, A and p is obtained as A = Xoy[:, 1] € RE*1 and
p = Xout[:;2] € REXL Then p and A is scaled to meet
the constraint Zle A = Zszl P, = P. We further check
whether the constraint in C3 is satisfied; if not, p and X is
rescaled according to C'3. Obtaining the normalized p and A,
the recovery module is applied to acquire the precoding matrix
based on (17) and power allocation vector.

For multi-user precoding, we directly adopt the opposite
number of sum rate — > Ry as the loss function in an

wh= vk, (17

k
unsupervised learning way. Besides, to meet the requirement
in constraint C4, we add an additional penalty loss to ensure
the minimal rate is larger than R.;,. Denote the computed

4We train the classification model with MSE loss and cross-entropy,
respectively, and find the network trained with MSE loss outperforms that
trained with cross-entropy.

rate of the K users as R = [Ry, Ra, -+ , Rk|, and thereby
the penalty loss can be written as

penal = || max{Rmin — R, 0}||1, (18)
where || - ||1 is the I; loss of the vector. Thus the entire loss
function of the multi-user precoding is

Losspre = — (19)

Ry, + 1 penal,
k
where 7, presents the trade-off between sum rate performance
and the penalty for user fairness constraint. Note that a larger
v indicates stricter enforcement of user fairness constraints.
we set v; = 10 in this work, which sufficiently enforces user
fairness constraints, ensuring all user rates exceed required
thresholds. Therefore, the final loss function of the entire
network is

Loss = 72 Lossc + Losspre, (20)

where vy, balances the performance of the two subtasks (user
classification and multi-user precoding). A larger -y, prioritizes
classification performance, while a smaller +5 emphasizes
precoding optimization. Based on the experimental results,
v¥2 = 5 achieves a favorable balance between the two tasks,
yielding near-optimal performance for both simultaneously.

It should be noted that the derivation of the ENFR in Section
IIT contributes to the optimization problem (12) by enabling
precise classification of near-field and far-field users, shaping
constraint C'3 and informing tailored precoding strategies.
ENFR’s replacement of ERD impacts spectral efficiency by
accurately identifying near-field users for beamfocusing. The
ENFR ensures optimal power allocation and beamforming,
improving the solution’s effectiveness.

D. Advantages of LLM-based Scheme Over Conventional
Solvers

While traditional optimization solvers (e.g., convex relax-
ation, gradient descent) or other data-driven methods (e.g.,
CNNs) may also be able to address the above optimization
problem, our LLM-based scheme offers distinct advantages:

a) Scalability and Complexity Handling: Equipped with
large parameter size, one of the most notable advantages
of LLMs is their powerful fitting ability to handle complex
optimization problem. For near-field communication problems
in LAE, LLMs, such as GPT-2, efficiently process high-
dimensional, variable-length data (e.g., channel matrix H).
Traditional solvers, in contrast, struggle with the non-convex
optimization problem and computational cost as dimensions
grow. The performance of traditional data-driven methods
may also degrade with more complex problem and high-
dimensional channel, since the relatively small model size
limits their ability to extract efficient and global features from
the data.

b) Adaptability to Dynamics: Fine-tuning with adapters
allows LLMs to adapt quickly to LAE’s changing conditions,
unlike traditional static solvers or less flexible neural networks.
This is critical for real-time optimization may enable more
efficient and versatile deployment.
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¢) Generalization Capability: Leveraging pretrained knowl-
edge, LLMs exhibit excellent generalization ability for multi-
ple tasks and scenarios, approximating near-optimal solutions
for non-convex problems across tasks and scenarios. In this
work, it can achieve near-optimal performance for both power
allocation and multi-user precoding tasks, as illustrated in Sec-
tion V. On the other hand, the traditional data-drive methods
exhibit poor generalization ability and lack multitasking capa-
bility, requiring retraining when the CSI distribution changes.

So far, we have analyzed our proposed LLM-based scheme
for near-field multi-user communications. Simulation results
are presented to substantiate the efficacy and superiority of
proposed LLM-based scheme in the following section.

V. SIMULATION RESULTS
A. Simulation Setups

In this section, simulation results are presented to verify the
performance of our proposed scheme. Specifically, a downlink
XL-MIMO system is considered, where N = 256, hg = 15 m
and 6;;; = 5°. Besides, we set the carrier frequency is 30 GHz
and the antenna spacing is d = % = 0.5 cm. For the user
distribution, they are distributed randomly, where the range of
xp and hy are [0,200 m] and [0,30 m]. The maximal user
number is set as 10, while the noise power is o2 = 0.01.
For multi-user precoding tasks, we assume that we have got
the perfect channel state information (CSI). In practice, CSI
estimation errors can affect the system’s performance, and in
practice, several near-field channel estimation schemes have
been proposed to achieve near-perfect CSI [10]. For example,
a representative near-field channel estimation scheme was
proposed in [10], where it fully utilizes polar-domain sparsity
of the near-field channel to achieve compressed sensing-based
estimation, achieving high accuracy with low pilot overhead.

A training dataset comprising 8,000 samples, a validation
dataset comprising 1,000 samples and a testing dataset com-
prising 1,000 samples are constructed respectively, according
to the channel model in [10], [32]. For the hyper-parameters
in network training, we set number of training epoch as 500,
the batch size as 100, and learning rate as 0.0001. In this
work, we utilize Adam optimizer for model training with
betas = (0.9,0.999), weight_decay = 0.0001. Besides, all
the training and inference of the proposed model is conducted
on an NVIDIA GeForce RTX 4090 24GB GPU.

In addition, some benchmark comparison schemes are con-
sidered as follows: (1) Capacity [33], where dirty-paper coding
is utilized to achieve the capacity of the multiple-antenna
Gaussian broadcast channel; (2) CNN [31], where a CNN-
based scheme for the optimization of downlink beamforming
is adopted. We further improve the scheme to achieve joint
user classification and multi-user precoding; (3) Transfomer,
where we employ the sequence-to-sequence mapping capa-
bility of Transformer to implement user classification and
multi-user near-field precoding simultaneously. (4) Near-field
NOMA [34], where non-orthogonal multiple access (NOMA)
scheme is utilized in near-field communications with a dy-
namic power allocation algorithm; (5) Near-field LDMA [14],
where the near-field polar-domain analog codebook and zero-
forcing (ZF) digital precoding scheme with equal power
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Fig. 4. The normalized beamforming gain with far-field beamforming vector
in our adopted model.

allocation are applied; (6) Far-field SDMA, where the DFT
codebook is adopted unlike the near-field LDMA.

B. Performance Analysis

First, the normalized beamforming gain with far-field beam-
forming vector in our adopted model is illustrated in Fig. 4,
where the predefined threshold is A = 0.1 and the dashed blue
line is plotted to show it. It should be noted that here A = 0.1
is selected as the normalized beamforming gain loss threshold,
representing a 10% degradation. This value balances the extent
of the near-field region with performance, aligning with typical
thresholds in near-field XL.-MIMO studies [7]. It can be shown
as the distance increases, the normalized beamforming gain
exhibits a pattern of initially declining followed by a rise.. In
other words, for the adopted 3D XL-MIMO system, the ENFR
of horizontal plane is located between two far-field regions,
which verifies the accuracy of Lemma 1.

Then to analyze convergence rate of neural network training,
we depict the training loss, as well as validation loss, of the
proposed model over training epochs in Fig. 5. We can observe
that the overall trend of training loss declines with the increase
of training epoch. When the training epoch reaches about 30,
the training loss function gradually converges. To mitigate
overfitting, we utilize a validation set for model selection.
Specifically, the final model is chosen based on the lowest
validation loss, ensuring robustness and generalization. For
example, as illustrated in Fig. 5, the model in Epoch 304
achieves the lowest validation loss and is selected for testing.

Besides, the results of different schemes for distinguishing
between far and near-field users is presented in Table I. It
can be demonstrated that our proposed LLM-based scheme
exceeds classical CNN-based scheme and transformer-based
scheme, and achieves near-optimal classification accuracy for
distinguishing between far and near-field users in high SNR
regime. To further assess the robustness of proposed LLM-
based classifier, we evaluate the classification accuracy when
only imperfect CSI with noise can be obtained. The test
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TABLE I
CLASSIFICATION ACCURACY VS. SNR.

Schemes 0 dB 5dB 10dB 15dB 20dB
Proposed scheme 0.9478 0.9852 0.9904 0.9909 0.9918
CNN [31] 0.8030 0.8221 0.8281 0.8289 0.8291
Transformer 0.9214 0.9436 09579 0.9631 0.9732
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SNR ranges from 0 dB to 20 dB. The proposed method
can obtain classification accuracy over 99% if SNR is larger
than 10 dB, achieving 17% higher accuracy compared to
CNN-based approach. When the SNR is relatively low, 0 dB
for instance, the classification accuracy is still about 95%,
indicating the strong robustness of LLM-based scheme.
Furthermore, performance comparison of our proposed
scheme with the benchmark schemes from multiple perspec-
tives are shown in detail from Fig. 6 to Fig. 9. Fig. 6 illustrate
the spectrum efficiency performance against user number K,
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Fig. 8. Spectrum efficiency against Ry,

which increases from 5 to 10. The minimum data rate is
Rumin = 0.6 bps/s/Hz, the maximal ratio of power allocated to
near-field users o, = 0.4, and transmit power and noise power
is set as P = 0 dBW, o2 = —20 dBW, respectively. As the
user number increases, the spectrum efficiency increases with
further exploitation of multiplexing gain. However, this trend
does not extend indefinitely. Beyond K ~ N, efficiency would
saturate due to limited spatial degrees of freedom and in-
creased interference, aligning with Shannon’s channel capacity
limits [35]. As shown in Fig. 6, considering both the angle and
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distance information, near-field LDMA and near-field NOMA -
based methods achieve higher spectrum efficiency than far-
field SDMA considering only angle information. Besides, the
deep learning-based methods further improve the performance,
and the proposed method outperforms other baselines for all
user numbers. This verifies the potential of LLM in solving
the complex near-field multi-user precoding problem for LAE.
It is worth noting that, transformers and transformer-based
LLMs, inherently possess the ability to process variable-
length sequences, thus our proposed scheme can be directly
applied to different number of users without requiring any
modifications. In contrast, for traditional CNN-based methods,
to accommodate varying numbers of users, input data under
different user numbers must be zero-padded to match the shape
of the maximum user number.

Fig. 7 presents the impact of maximal near-field power
ratio on spectrum efficiency. We assume the user number as
K = 10, while the other simulation settings are the same
as those in Fig. 6. Since the majority of existing methods,
including near-field LDMA, near-field NOMA and far-field
SDMA scheme, fail to consider this factor, we only present
the spectrum efficiency performance without constraint C's
in (12), i.e. ax = 1, which is shown as horizontal lines. Then
we mainly focus on the comparison of the proposed scheme
with CNN-based scheme and transformer-based scheme. As
an increases from O to 0.5, the spectral efficiency grows with
the relaxation of constraints on ay. This is primarily because
stricter power allocation constraints for near-field users limit
the solution space available to the network, thereby degrading
the spectral efficiency. When ay is greater than 0.5, the
spectral efficiency tends to remain constant, indicating that
an is not a dominant factor affecting performance at this
point. As illustrated in Fig. 7, thanks to LLMs’ superior
feature extraction and robustness for complex scenarios, pro-
posed LLM-based method achieves higher spectrum efficiency
performance than CNN-based approach and transformer-based
approach.

In addition, we evaluate the impact of the minimum rate

Ryin to the spectrum efficiency performance, as illustrated
in Fig. 8. The minimum rate R,;, changes from 0 to
1 bps/s/Hz, where Ry, = 0 implies that no constraint
for Ruin is imposed. The user number is set as K = 10,
and other parameters remain the same as Fig. 6. Similar to
Fig. 7, traditional methods mainly lack constraints on the
minimal rate to guarantee the fairness among users, and they
exhibit horizontal performance lines with R,,;, = 0. With
the increase of Ry, the spectrum efficiency performance
gradually drops with more emphasis on user fairness, rather
than merely on spectrum efficiency. Therefore, a proper Rpin
can be selected to strike a balance between performance and
fairness, and in this work we set Ry = 0.6 bps/s/Hz for
other simulations. LLMs acquire the ability to handle complex
optimization problems with constraints on power allocation
and user fairness, that are difficult for traditional optimization
methods, thereby achieving satisfying performance for near-
field multi-user precoding in LAE.

In Fig. 9 we compare the spectrum efficiency perfor-
mance under different BS transmit powers, which grows
from —10 dBW to 10 dBW. Besides, we assume R, =
0.6 bps/s/Hz, a, = 0.4, 0> = —20 dBW and K = 10. As
presented in Fig. 9, the proposed LLM-based scheme achieves
near-optimal spectrum efficiency performance and outperforms
other benchmark schemes for the entire transmit power range.
Owing to the increasing size of network, LLM-based method
exhibits superior optimization and generalization capabilities
and outperforms other deep learning-based methods in terms
of performance. Moreover, Al-based methods achieve higher
spectrum efficiency than traditional codebook-based methods
(i.e. near-field NOMA, near-field LDMA as well as far-field
SDMA-based methods) due to their feature extraction capa-
bilities and increased degrees of freedom in solution space.

In summary, based on the analysis from Fig. 6 to Fig. 9, it
can be concluded that our proposed scheme can demonstrate
excellent performance under various parameter settings, which
verifies the strong robustness and generalization ability of the
proposed LLM-based scheme.

Moreover, we evaluate the performance of our proposed
LLM-based scheme across a range of 5 values. As mentioned
before, o balances the performance of the two subtasks. The
simulation result for different values of ~o is illustrated in
Table. III, where ~» increases from 0.2 to 30. The following
simulation result is averaged for different SNRs from 5 dB
to 25 dB, and we set Ry, = 0.6 bps/s/Hz, a. = 0.4,
02 = —20 dBW and K = 8. As shown in the table, with
the increase of 79, the classification performance progressively
improves until reaching the model’s maximum attainable per-
formance, after which it remains stable. Conversely, the sum
rate of the precoding task initially remains stable but gradually
diminishes with further increases in ~,. According to the
simulation results, setting o within [5, 10] is proper.

Finally, We compare the model training and inference time,
as well as the computational complexity of the proposed
method with other DL-based baselines to assess the difficulty
of deploying the model in practical scenarios, as shown in
Table II. All experiments are conducted on the same machine
with batch size 100. The CNN-based method, with the smallest
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TABLE II
NETWORK PARAMETERS (TRAINING PARAMETERS/TOTAL PARAMETERS) AND THE TRAINING/INTERFERENCE TIME PER BATCH

Metric CNN Transformer Proposed scheme
Network parameters (1 x 105)  0.92/0.92  13.15/13.15 5.95/129.56
Training time (ms) 13.81 70.91 59.92
Inference time (ms) 11.71 62.80 52.56
TABLE III
COMPARISONS OF PERFORMANCE WITH DIFFERENT Y2
Yo 0.2 0.5 1 2 5 10 15 20 30

sum rate 27.877 27.860 27.876 27.881 27.876 27.875 27.607 27.657 27.462
accuracy 0961 0969 0982 0989 0992 0991 0992 0992 0991

model size, achieves the fastest training and inference time.
However, it cannot achieve satisfactory performance for both
user classification and multi-user precoding. While our LLM-
based scheme incurs higher computational complexity than
the CNN-based approach, its superior performance, including
accurate user classification accuracy and enhanced spectrum
efficiency, justifies this trade-off between performance and
cost. These gains are critical for 6G near-field XL-MIMO
systems, where high data rates and reliability are paramount.
Techniques such as antenna selection or hardware acceleration
can further optimize complexity, ensuring practical deployabil-
ity. Besides, it is worth noting that the training and inference
time of the proposed method is even shorter than that of the
Transformer, although the total parameter size is much larger
than Transformer. It is mainly due to the inference acceleration
specific to the GPT model. Therefore, the proposed method
is a promising method to deploy in practical communication
networks.

VI. CONCLUSIONS

In this paper, we first apply LLM to solve the spectrum
efficiency maximization problem of near-field communications
for LAE. By elaborately designing adapters and finetuning
the pretrained GPT-2, our proposed LLM-based scheme can
accurately distinguish far-field and near-field users and achieve
joint optimization of precoding and power allocation. Sim-
ulation results substantiate the efficiency of the proposed
scheme, which it could demonstrate excellent performance
under various parameter settings. For the future research, how
to apply LLM to solve other physical layer communications
for near-field communications in LAE will be a promising
problem. For example, LLM-empowered near-field sensing,
integrated sensing and communications (ISAC) and distributed
beamforming for LAE may be critical future research direc-
tions [36]-[39].
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