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Abstract—The advance of Artificial Intelligence (AI) is contin-
uously reshaping the future 6G wireless communications. Partic-
ularly, the development of Large Language Models (LLMs) offers
a promising approach to effectively improve the performance and
generalization of AI in different physical-layer (PHY) tasks. How-
ever, most existing works finetune dedicated LLM networks for a
single wireless communication task separately. Thus, performing
diverse PHY tasks requires extremely high training resources,
memory usage, and deployment costs. To solve the problem,
we propose a LLM-enabled multi-task PHY network to unify
multiple tasks with a single LLM, by exploiting the excellent
semantic understanding and generation capabilities of LLMs.
Specifically, we first propose a multi-task LLM framework, which
finetunes LLM to perform multiple tasks including multi-user
precoding, signal detection, and channel prediction. Besides, the
multi-task instruction module, input encoders, as well as output
decoders, are elaborately designed to distinguish different tasks
and adapt LLM for different tasks in the wireless domain.
Moreover, low-rank adaptation (LoRA) is utilized for LLM
fine-tuning. To reduce the memory requirement during LLM
fine-tuning, a LoRA fine-tuning-aware quantization method is
introduced. Extensive numerical simulations are also displayed
to verify the effectiveness of the proposed method.

Index Terms—large language models (LLMs), multi-task LLM,
physical layer communications

I. INTRODUCTION

The deep integration of Artificial Intelligence (AI) with
wireless communications is one of the key features of Sixth-
Generation (6G) communications [1]. With the development of
6G communications, the application of AI becomes essential
to manage the exponentially growing data service. Attributed
to the strong feature extraction capability, AI, especially deep
learning (DL), has demonstrated great potential in a wide
range of physical-layer (PHY) communication tasks [2], in-
cluding channel state information (CSI) feedback [3], channel
estimation [4], channel prediction [5], signal detection [6], etc.
The AI Radio Access Network (AI-RAN) is anticipated to of-
fer reduced latency, improved bandwidth, spectrum efficiency,
and coverage. Moreover, significant efforts have been made by
the 3rd Generation Partnership Project (3GPP) to standardize
DL in wireless networks recently [7].

Despite the significant progress, existing DL empowered
methods still face some fundamental issues that limit their
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applications in practical communication networks. First, with
the dramatically increasing channel dimension and rapidly
changing wireless environment in 6G applications, it is dif-
ficult for existing DL methods to comprehensively recognize
patterns from complicated data distribution, due to their small
model size and simple network structure. This insufficiency
restricts their ability to provide reliable solutions in dynamic
real-world scenarios. Secondly, existing DL methods exhibit
a poor generalization capability to different wireless envi-
ronments. For instance, a channel prediction model trained
in an indoor scenario usually requires retraining when the
wireless environment is changed to urban. Fortunately, recent
advancements in large language models (LLMs) [8]–[10] have
provided a radical solution to the challenges of existing
DL methods. Bearing a huge amount of parameters, LLMs
possess the ability to capture universal knowledge, which has
demonstrated impressive language understanding and genera-
tion capabilities for various tasks in different domains.

Very recently, several initial studies [11]–[14] have been
conducted since 2024 to leverage LLMs for boosting the
performance of PHY communication systems. To be specific,
in [11] LLM is adopted to perform power allocation using
a few-shot learning approach. In this method, the channel
gains and the corresponding transmit power strategies are
provided as the input of LLM, also called “prompt” in the
society of AI. The paper [11] demonstrates that LLM can
automatically understand the principle of water-filling based
optimal power allocation without any retraining. The authors
in [12] effectively utilize LLMs to enhance AI-based CSI
feedback performance in various scenarios. They incorporate
the channel distribution as a prompt within the decoder to
further enhance channel reconstruction quality. Besides, in
order to obtain more accurate channel prediction and improve
the generalization capability, the authors in [13] propose an
LLM-driven channel prediction approach. [14] also unleashes
the strength of LLMs for time series forecasting to improve
the robustness of beam prediction. Moreover, a few review
papers [15]–[19] have explored the potential transformative
impact of LLMs and provide envisions for LLM-aided wireless
communications.

However, most existing works finetune dedicated LLM
networks for a single wireless communication task, such as
the previously mentioned channel prediction and CSI feed-
back, etc. In reality, wireless communication systems involve
a multitude of tasks, each with distinct requirements that
necessitate the adoption of LLMs. Given the huge model
size of LLM, designing and training dedicated models for
each task separately will lead to extremely high computational
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complexity, memory usage, and deployment costs.
To address the problem, we propose a LLM-enabled multi-

task PHY network which retains the advantages of LLMs
compared to small models while reducing training and deploy-
ment costs. Leveraging the excellent language understanding
and generation capabilities of LLMs, the framework unifies
multiple tasks with a single LLM. The main contributions of
this paper are summarized as follows1.

• We propose a multi-task LLM framework for PHY com-
munications. The framework enables us to input different
task requirements to LLMs with natural language, and
explore the global feature extraction ability of LLMs to
execute multiple tasks within one network. Particularly,
this work focuses on three of the typical tasks in PHY
communications: multi-user precoding, signal detection,
and channel prediction. The proposed framework can also
accommodate any other PHY tasks.

• For the design of the proposed framework, dedicated
modules are proposed to adapt the LLMs for multi-
ple tasks in the wireless domain. It mainly consists of
two components: multi-task instructions and task-specific
encoders and decoders. Specifically, first, in order to
distinguish and cope with different tasks and different
data formats of the tasks, we elaborately design multi-task
instructions as prompts of LLM; secondly, to bridge the
gap between the features of wireless data and those of the
LLM, task-specific encoders and decoders are proposed
to adapt the text-based pre-trained LLM.

• For the fine-tuning of the proposed framework, we in-
troduce low-rank adaptation (LoRA) [20], which freezes
the pre-trained model weights and injects trainable low-
rank matrices. Furthermore, to mitigate the computational
and memory demands of the proposed model, we employ
a LoRA fine-tuning-aware quantization method [21] that
simultaneously quantizes an LLM and finds a proper low-
rank initialization for LoRA fine-tuning.

• Extensive simulation experiments have been conducted to
verify the effectiveness of the proposed method. Our pro-
posed multi-task LLM outperforms the majority of task-
specific baselines across all tasks. Compared to dedicated
LLMs designed for each task, our proposed multi-task
LLM achieves comparable performance. In addition, the
LoRA and LoRA fine-tuning-aware quantization method
achieve significant resource reduction regarding the train-
able parameters, and memory usage. Lastly, the proposed
multi-task LLM exhibits superior few-shot learning and
generalization ability.

The rest of the paper is organized as follows. Section II
introduces the system model. Then, the three selected tasks,
namely multi-user precoding, signal detection, and channel
prediction, are formulated respectively. In Section III, the
design of the proposed multi-task PHY LLM is illustrated
in detail. Besides, Section IV elaborates on the fine-tuning
strategy of the proposed multi-task PHY LLM. Simulation

1Simulation codes will be provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

results are provided in Section V. Finally, Section VI concludes
this paper.

Notation: aH , AH denote the conjugate transpose of vector
a and matrix A, respectively; ∥a∥2 denotes the l2 norm of
vector a; ∥A∥F denotes the Frobenius norm of matrix A;
R,C denote the set of real numbers and complex numbers,
respectively; CN (µ,Σ) denotes the probability density func-
tion of complex multivariate Gaussian distribution with mean
µ and variance Σ.

II. SYSTEMS MODEL

We consider a multi-user (MU) multiple-input-single-output
(MISO)- orthogonal-frequency-division-multiplexing (OFDM)
system working in a time-division-duplex (TDD) mode. A
base station (BS) simultaneously serves K single-antenna
mobile users. The BS is equipped with a uniform planar array
(UPA) consisting of NT = Nh×Nv antennas, where Nh and
Nv denote the number of antennas along the horizontal and
vertical dimensions, respectively. To design a multi-task LLM
for the BS, we select typical tasks in PHY communications
for illustration based on the following rationales. First, to fully
demonstrate the multitasking capability of LLM, we aim to
select distinct tasks with varying objectives, data. Secondly, we
attempt to select tasks that are essential within the transceivers.
Nevertheless, these tasks should be challenging, necessary, and
suitable for Transformer-based LLMs to solve. Based on these
rationals, we choose downlink multi-user precoding, uplink
signal detection, and channel prediction for mobile devices,
respectively, in this work. The system models and problem
descriptions of these three tasks are presented below.

A. Multi-user Precoding

For downlink transmission scenario, the channel between
user k and the BS at the m-th subcarrier is denoted as hm

k ∈
CNt×1,m = 1, 2, · · · ,M . The received signal of user k at the
m-th subcarrier is given by

ymk = hm
k

H
K∑

k′=1

wm
k′xm

k′ + nm
k , (1)

where wm
k represents the beamforming vector for user k, xm

k

with E(|xm
k |2) = 1, is the transmitted symbol from the BS to

user k, and nm
k ∼ CN (0, σ2) denotes the additive Gaussian

white noise (AWGN) with zero mean and variance σ2.
Multi-user precoding aims to maximize the system sum

rate via the optimization of the transmit precoders. The total
power of all beamforming vectors is limited due to the BS
power budget. For simplicity, we design the beamformers
based on the channel of the central carrier-frequency hk, and
the problem is mathematically formulated as

max
W

K∑
k=1

log2(1 + γk), s.t.
K∑

k=1

∥wk∥2 ≤ Pmax, (2)

where W = [w1,w2, · · · ,wK ] is a set of beamforming
vectors and Pmax is the power budget. Besides, γk represents
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the received signal-to-interference-plus-noise ratio (SINR) at
user k. It is written as

γk =

∣∣hH
k wk

∣∣2∑K
k′=1,k′ ̸=k

∣∣hH
k wk′

∣∣2 + σ2
. (3)

As pointed out in [22], the optimal downlink beamforming
vectors for (2) follow the structure as

w∗
k =
√
pk

(
INT

+
∑K

k=1
λk

σ2hkh
H
k

)−1

hk∥∥∥∥(INT
+
∑K

k=1
λk

σ2hkhH
k

)−1

hk

∥∥∥∥
2

, ∀k, (4)

where pk is the power allocated to the k-th use, and λk is a
positive parameter and

∑K
k=1 λk =

∑K
k=1 pk = Pmax. The so-

lution structure in (4) provides the required expert knowledge
for the LLM-empowered beamforming design in (2). In con-
ventional approaches, the WMMSE algorithm has been widely
adopted as an effective solution. However, two fundamental
limitations persist in the WMMSE algorithm. First, WMMSE
inherently converges to a local optimal solution, resulting in
a performance gap compared to the globally optimal solution.
Secondly, the iterative nature of WMMSE and the inversion
of a high-dimensional matrix in each iteration introduce pro-
hibitive execution delays in real-time deployments. To address
these challenges, we introduce LLM for multi-user precoding.
Given this knowledge in (4), the LLM is only required to
learn 2K key parameters λ = [λ1, λ2, · · · , λK ] and p =
[p1, p2, · · · , pK ], instead of the whole K × N beamforming
matrix W = [w1,w2, · · · ,wK ]. Thus, the problem of DL-
based multi-user precoding can be reformulated as

P1: min
ΩPRE

K∑
k=1

log2(1 + γk), (5)

s.t. wk in (4), λ̂, p̂ = fΩPRE(H), (6)

where H = [h1,h2, · · · ,hK ]. Here, we suppose accurate
multi-user channel H can be acquired. p̂, λ̂ is learned from the
neural network with mapping function fΩPRE

, where ΩPRE is
the learnable parameters.

B. Signal Detection

During uplink transmission, the BS antenna array simulta-
neously receives the transmitted symbols from the K users.
For clarity, we introduce the superscript “̄·” to all parameters
related to the uplink transmission, e.g., ā. Specifically, we
denote the transmitted symbol vector from all users at the m-th
subcarrier as x̄m = [x̄m

1 , x̄m
2 , · · · , x̄m

K ] ∈ CK×1. Each element
is drawn from the P -QAM constellation, and then transmitted
over the channel. The received signal ȳm ∈ CNT×1 is

ȳm = H̄mx̄m + n̄m, (7)

where H̄m = [h̄m
1 , h̄m

2 . · · · , h̄m
K ] is the uplink channel of the

K users and n̄m ∼ CN (0, σ̄2INT
) is the AWGN at the m-th

subcarrier.
BS requires to recover the signals x̄m from the received

signal ȳm given H̄m. We adopt the minimum mean squared

error (MMSE) estimator to formulate the associated signal
detection problem as

P2: min
ΩDET

||ˆ̄xm − x̄m||2 (8)

s.t. ˆ̄xm = fΩDET
(H̄m, ȳm), (9)

where fΩDET
is the mapping function with variable parameters

ΩDET.

C. Channel Prediction
In mobile scenarios involving high-velocity users, it is

possible that the channel coherence time is shorter than the
channel estimation period. Under these circumstances, precise
channel prediction becomes crucial to mitigate the channel
aging phenomenon [23] in high-mobility communication en-
vironments with rapidly changing channels. In this work, we
aim to accurately predict the CSI of the next T2 time slots
given the CSI of the previous T1 time slots. The CSI of M
subcarriers at time t is represented in matrix form as

Ht
k = [h1,t

k ,h2,t
k , · · · ,hM,t

k ],∀k, t, (10)

where hm,t
k is the channel of user k, time t, and subcarrier m.

To evaluate the channel prediction accuracy, the normalized
MSE (NMSE) between predicted CSI by the network and
ground-truth CSI is selected as the metric. Utilizing the metric,
the channel prediction problem can be described as follows:

P3: min
ΩCP

∑T2

t=1 ∥Ĥt0+t −Ht0+t∥2F∑T2

t=1 ∥Ht0+t∥2F
(11)

s.t. (Ĥt0+1, ..., Ĥt0+T2) = fΩCP
(Ht0 , ...,Ht0−T1+1),

(12)

where Ĥt is the predicted CSI, and fΩCP
is the mapping

function of the network with trainable parameters ΩCP. Note
here we ignore the subscript since the channel prediction is
performed independently to each user.

III. THE FRAMEWORK OF THE PROPOSED PHYSICAL
LAYER MULTI-TASK LLM

In this paper, we propose an LLM-enabled PHY network to
unify multiple tasks (channel prediction, multi-user precoding,
and signal detection for instance) with a single network. The
proposed framework is illustrated in Fig. 1, including a multi-
task instruction module, an input encoder, an LLM backbone,
and an output decoder. To distinguish and cope with different
tasks, we design multi-task instructions as prompts of LLM,
which are processed by the pre-trained LLM embedder as part
of the LLM input. Besides, the wireless data is encoded by
task-specific encoders to make the feature of wireless data
understandable to a text-based pre-trained LLM, e.g., GPT-
2. The prompt and encoded wireless data are concatenated
together to serve as the inputs of the LLM. These inputs are
later fed into the LLM backbone. Note that the same LLM
backbone is used for all considered tasks. Finally, obtaining
the outputs of the LLM backbone, task-specific decoders are
utilized to generate desired outputs for different tasks.

We describe each component of the framework as follows.
It is worth noting that, in this paper, we select three typical
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Fig. 1. The model framework of our method. In this figure, “CP” denotes
channel prediction, “Det” denotes signal detection, and “Pre” denotes multi-
user precoding.

tasks suitable for DL methods in PHY communications, while
the proposed method can be smoothly extended to other PHY
tasks. Besides, we mention that although the encoders and
decoders are designed specifically for each task, the parameter
sizes of these modules are much smaller than the LLM
backbone. The LLM backbone, which takes up the majority
of the total parameter size, is shared among different tasks.

A. Multi-task Instruction Template
When training a single unified model for multiple different

tasks, a basic and critical problem is how to distinguish each
task. Thanks to the remarkable text understanding capability,
LLM allows users to input task requirements with natural
language. Therefore, we can design a multi-task instruction
template with task-specific tokens as prompts to make each
task easily distinguishable. Next, we introduce our multi-task
instruction template in detail.

We structure the instruction template into three parts, which
are denoted as follows,

[Task Identifier]Task description < Instruction > .
(13)

The first part is the task identifier token, the second part is the
task and data description, and the third part is the instruction
input. Task Identifier provides a distinct identifier for each
task to reduce the ambiguity across various tasks. Based on
the task identifier, the model can distinguish different tasks
and activate the corresponding modules of the encoder and
decoder. Task and Data Description attempts to input basic
wireless domain knowledge to the model. It improves the
LLM’s comprehension of the targeted task and is promising
to accelerate convergence during training. Take multi-user
precoding as an example, the designed task description is
presented by “For the collected dataset, we consider a BS with
128 antennas to serve 8 single antenna users simultaneously”.
The third part Instruction gives a direct and clear objective
of the task. Again, for instance, the instruction for multi-
user precoding is “<Instruction> Design the precoding matrix
given channels of the users, to maximize the sum rate of the
multiple users.”.

The designed prompt is then fed to the pre-trained LLM
embedder as part of the input of the LLM. The prompt
embedding is denoted as Xemb

prompt,n for task n, where n is
the task index, denoting one of CP, Det and Pre.

B. Input Encoders

Adapting text-based pre-trained LLM to multiple commu-
nication domain tasks is another challenging problem. To
be specific, first, there is a huge gap between the specific
characteristics of the data in the communication domain and
the natural language. Therefore, directly applying a general-
domain LLM to these communication tasks may lead to poor
performance. Secondly, the formats, distributions, and feature
spaces of the data also differ significantly among the tasks.
Therefore, task-specific encoders are required to perform task
alignment operations, enabling the same LLM backbone to
handle different tasks.

In this subsection, we elaborate on the designed input
encoder modules. To facilitate multi-task feature extraction,
the design of task-specific encoders is mainly based on two
principles: task-customized and lightweight. To be specific,
the encoder architecture should be customized according to
each task’s data characteristics and objectives to optimize
feature extraction capabilities for different tasks. Besides,
given the task-specific nature of these modules, we attempt to
design the encoders as lightweight as possible to avoid high
computational overheads. Next, we elaborate on the design of
input encoders in detail.

1) Encoder for multi-user precoding: Since neural net-
works generally deal with real numbers, we first convert the
complex multi-user channel into real tensors Xin

Pre ∈ RK×2Nt

as input. For multi-user precoding, the encoder should perform
joint feature extraction from multi-user CSI while capturing
inter-user channel correlations. The Transformer architecture
is particularly suitable for this objective due to its inherent
strength in modeling relational patterns through self-attention
mechanisms. Thus, we employ a shallow Transformer encoder
composed of L = 3 blocks. The structure of each block is pre-
sented in Fig. 2, including a multi-head self-attention module
and a multilayer perceptron (MLP) module. Input Xin

Pre is first
processed by the multi-head self-attention module:

X
att(1)
Pre = LayerNorm(ATT(Xin

Pre) +Xin
Pre), (14)

where ATT(·) denotes the multi-head self-attention,
LayerNorm(·) denotes the layer normalization across the
feature dimension, applied after residual connections. Then
the MLP module is performed as

X
mlp(1)
Pre = LayerNorm(MLP(X

att(1)
Pre ) +X

att(1)
Pre ), (15)

which serves as the input of the next block. MLP(·) denotes
the MLP processing. Denote the output of the transfomer as
X

mlp(3)
Pre . Then a linear layer is used to project Xmlp(3)

Pre into
the language model space

Xemb
Pre = Linear(X

mlp(3)
Pre ). (16)

2) Encoder for signal detection: The input of the signal
detection encoder contains the uplink channel H̄m and the

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3626010

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 04,2025 at 03:24:50 UTC from IEEE Xplore.  Restrictions apply. 



5

Fig. 2. Detailed illustration of encoders and decoders.

received signal ȳm. Given their distinct statistical distribu-
tions, we thereby perform initial feature extraction for CSI
and received symbols, respectively. Specifically, the encoder
rearranges the channel H̄m as one token XHin

Det ∈ RK×2Nt .
Then, a shallow vision transformer-based encoder consisting
of L = 3 transformer blocks is employed to extract features
from the 2D channel matrix:

XHvit
Det = VIT(XHin

Det), (17)

where VIT(·) denotes the vision transformer encoder [24]. We
also extract shallow features from the rearranged real received
signal Xyin

Det by an MLP module

Xymlp
Det = MLP(Xyin

Det). (18)

In the simulation parts, we find that integrating received sig-
nals of several time slots into one sample effectively improves
the training performance compared to treating them as multiple
samples. Therefore, we utilize received signals of L0 = 8 time
slots in one sample in practice. Then, the extracted features of
the channel and received data are concatenated and projected
to the input format of LLM:

Xemb
Det = Linear([XHvit

Det ,X
ymlp
Det ]). (19)

3) Encoder for channel prediction: Consider that the CSI
Ht ∈ CNt×M of at time t is the high-dimensional structural
data, directly predicting the matrix by the network will bring
significant complexity. The complexity can be unacceptable
for future 6G systems with a large number of antennas and
subcarriers. Inspired by [13], we parallelize the channel predic-
tion for different antennas. That is to say, we predict the CSI of
each transmitter antenna separately. Thereby, the input sample
of j-th antenna, for j ∈ {1, 2, · · · , NT }, can be converted
into a real tensor Xin

CP ∈ RT1×2M . To facilitate convergence
of network training, we first perform batch normalization for
the input data as Xin′

CP. Then the normalized input Xin′

CP is
divided into T ′

1 = ⌈T1

N ⌉ non-overlapping patches of size N
along the temporal dimension [25]. The patching operation
helps to capture the local temporal features, and the patched
input is denoted as Xpat

CP ∈ RT ′
1×N×2M . The input necessitates

an encoder architecture employing operations that effectively
capture high-dimensional features. Thus, we adopt the CSI
attention module proposed in [26], to extract preliminary
temporal and frequency features before LLM:

XCA
CP = CSIATTL(Xpat

CP), (20)

where CSIATTL represents the CSI attention module cas-
caded L times. Finally, to align with the input format of LLM
backbone, XCA

CP is rearranged to XCA′

CP ∈ RT ′
1×2MN and then

mapped to the feature dimension of the pre-trained LLM with
a single fully-connected layer:

Xemb
CP = Linear(XCA′

CP ). (21)

C. LLM Mainbody
In this paper, we adopt GPT-2 [8] as the LLM backbone

for our proposed multi-task PHY framework. It should be
emphasized that our framework allows for seamless integration
of alternative LLMs, including but not limited to LLAMA [9]
and QWen [27]. The decision of model architecture and scale
requires evaluation of the trade-off between computational
complexity and performance.

The architecture of GPT-2 consists of stacked classical
transformer decoders, which is presented in Fig. 3. Note that
in the proposed multi-task PHY network, the LLM backbone
takes up most of the model parameters. And the backbone
and its parameters remain shared across all tasks. In contrast,
the encoders and decoders, though designed specifically for
each task, only occupy a very small portion of the network.
To be specific, the parameter size of the GPT-2 backbone is
124 million, while the parameter size of all other modules,
is only about 18 million. Obtaining the LLM backbone, the
embeddings of data of task n and the corresponding prompt
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Fig. 3. The illustration of a transformer block in GPT-2.

are concatenated as XI
n = [Xemb

prompt,n,X
emb
n ]]. Then the input

of each task is individually fed to the shared LLM backbone.
The output of task n can be obtained by

XLLM
n = LLM(XI

n). (22)

The outputs of three tasks are processed by output decoders
and then utilized for joint optimization.

D. Output Decoders

Similar to input encoders, to facilitate multiple downstream
tasks simultaneously, task-specific decoders are required to
convert the output features of the LLM into the final results for
different tasks. Here, we elaborate on the output decoders of
the three tasks sequentially. Note that for output decoders, we
discard the prefix portion that is associated with the instruction
prompt, while we only retain the output presentations of the
data for the decoder.

1) Decoder for multi-user precoding: As discussed in
Section II A., the multi-user precoding problem can be
transformed into the learning of the parameters λ =
[λ1, λ2, · · · , λK ] and p = [p1, p2, · · · , pK ]. Therefore, an
MLP module comprising two fully-connected (FC) layers is
adopted to generate 2K values, including the power allocation
vectors λ̂ and p̂. The output of the MLP module XO

Pre ∈ RK×2

can be written as

XO
Pre = MLP(XLLM

Pre ), (23)

where λ̂ = XO
Pre[:, 1] and p̂ = XO

Pre[:, 2]. Then the scaling
layer scales the results of the output layer λ̂ and p̂ to meet
the power constraint by:

p̂∗ =
Pmax

∥p̂∥1
p̂ and λ̂∗ =

Pmax

∥λ̂∥1
λ̂. (24)

2) Decoder for signal detection: For signal detection, we
employ two FC layers to transform the dimension of the XO

LLM

to the number of antennas:

Xmlp
Det = MLP(XLLM

Det ). (25)

Then Xmlp
Det is rearranged XO

Det ∈ RK×2 to where the first and
the second dimension respectively correspond to the real part
and the imaginary part.

3) Decoder for channel prediction: We utilize an MLP
module as the decoder to predict the channel. The output is
presented by

Xmlp
CP = MLP(XLLM

CP ). (26)

Last, Xmlp
CP is de-normalized to generate the final output of the

network, i.e.,

Xnorm
CP = σCPX

mlp
CP + µCP, (27)

where µCP and σCP is the mean and variance of the channel
matrix. Then the tensors are rearranged to XO

CP ∈ RT2×M×2

to separate the real and imaginary part of the predicted
channel.

IV. THE FINE-TUNING STRATEGY OF THE PROPOSED
PHYSICAL LAYER MULTI-TASK LLM

Considering the huge parameter size of LLMs, directly
fine-tuning all the parameters of the proposed network is
impractical. To address this issue, this section focuses on the
computationally efficient fine-tuning of the proposed PHY
multi-task LLM. First, we introduce LoRA [20] for LLM
fine-tuning, which inserts low-rank adapters into the LLM
backbone to finetune the pre-trained LLM for PHY tasks.
Then, to mitigate the computational and memory demands of
the proposed model, we employ a LoRA fine-tuning-aware
quantization method [21] that performs LLM quantization
while concurrently properly initializing the low-rank adapters
for LoRA-based fine-tuning. Moreover, the multi-task loss as
well as the training schedule are illustrated.

A. LoRA for LLM Mainbody
Existing strategies of using LLMs in the wireless communi-

cation domain can be divided into two categories. The first is
direct application of pretrained LLM [11] or only LayerNorm
fine-tuning [13], which limits the adaptability to wireless tasks.
The other strategy is full-parameter finetuning [3]. It enables
LLMs specific to wireless communications, but introduces
prohibitive cost in practice.

Therefore, in this work, we introduce an efficient LLM
fine-tuning technique, LoRA [20], for the proposed multi-
task LLM, enhancing tunable capacity while maintaining
efficiency. To be specific, LoRA is a parameter-efficient tech-
nique that freezes the pre-trained model weights and injects
trainable rank decomposition matrices into each layer. The use
of LoRA mainly brings two advantages. Firstly, due to the
immense parameter size of LLMs, full-parameter fine-tuning
could be impractical. LoRA circumvents this by only fine-
tuning low-rank weight matrices, with a significantly reduced
number of parameters. Secondly, LoRA prevents the problem
of catastrophic forgetting of the original knowledge during
fine-tuning. This is attributed to the fact that the newly learned
knowledge has a lower rank than the original knowledge. As
a result, LoRA facilitates the use of the universal modeling
and generalization capability of pre-trained LLMs to achieve
multiple tasks with a single model.
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Specifically, we focus on the fine-tuning of parameters of
linear projection layers in both multi-head attention module
and MLP module of the transformer block, including query
matrices Wq , key matrices Wk, value matrices Wv , output
projection matrices in multi-head attention module Wo and
two linear projection matrices in MLP module Wup, Wdown,
as illustrated in Fig. 3. LoRA updates two rank decomposition
weight matrices A and B that are attached to a frozen pre-
trained weight matrix W. In this case, the original weight W
is modified as

W←W +ABT , (28)

where W ∈ Rd1×d2 , A ∈ Rd1×r, B ∈ Rd2×r, and r ≪
min{d1, d2}. Generally, we initialize the weights as follows:

A ∼ N (0, σ2), B = 0. (29)

As mentioned above, during the fine-tuning, we freeze W
while updating A and B. Since r << min(d1, d2), the number
of parameters for fine-tuning A and B, i.e., rd1 + rd2, is
significantly less than that of the full weight matrix, d1d2.
The reduced parameter size thus makes the LoRA-based fine-
tuning much efficient.

Besides, according to [28], learning task-specific Layer
Normalization can significantly improve the performance for
various tasks while only adding a few parameters, so we
also finetune the parameters of normalization layers in all
transformer blocks.

B. LoRA Fine-tuning-aware Quantization

Despite the usage of LoRA, extensive computational and
memory demands of LLM-based models still pose significant
challenges for both fine-tuning and inference, especially for
resource-restricted equipment in wireless communications. To
reduce the storage demands of pre-trained models, quan-
tization acts as an essential compression strategy. Its key
idea is to transform the original weights with high precision
into a finite set of discrete values. For instance, convert-
ing model parameters from the original 16-bit floating-point
format (FP16) to a 4-bit integer format leads to a 75%
decrease in storage overhead. However, it is worth noting that
quantized network parameters might degrade the performance
of the aforementioned LoRA fine-tuning strategy. Particularly,
consider a quantized weight matrix Q = q(W), where q(·)
denotes the quantization operator. If the low-rank adapters A
and B are initialized by (29) and then attached to Q, the initial
weight matrix Q+ABT naturally diverges from the original
pre-trained parameters W because of the variations caused
by the quantization process. Such unavoidable variations may
negatively influence the initial setup of the LoRA fine-tuning
procedure. What’s more, wireless tasks demand rigorous nu-
merical precision than text generation. Thus, the influence of
quantization in wireless domains remains unverified.

To solve the problem, we adopt a LoRA-fine-tuning-aware
method to smoothly integrate quantization into the procedure
of LoRA fine-tuning. The main idea is to approximate the
original high-precision pre-trained weights by alternatively
applying quantization for LLMs and proper low-rank initial-
ization for LoRA fine-tuning. This initialization strategy effec-

Full-precision 

LoRA

LoRA Fine-tuning-aware 

Quantization

F
in

e-
tu

n
in

g Pre-trained

Weights  

(FP16)
!

"

#

$

Quantized 

Weights  

(NF4)
!

"

#

$

Initialization

based on

Algorithm 1

In
fe

re
n

ce

FP16 FP16 FP16

FP16

NF4

Fig. 4. The comparison of LoRA fine-tuning-aware quantization with tradi-
tional full-precision LoRA.

tively reduces the gap between the quantized and full-precision
model, leading to enhancement in fine-tuning performance.

The key procedures of the LoRA fine-tuning-aware quan-
tization method are presented in Fig. 4. During the ini-
tialization of LoRA fine-tuning, a quantized weight matrix
Q ∈ Rd1×d2 with N -bit precision, along with the low-rank
adapters A ∈ Rd1×r, B ∈ Rd2×r are designed to closely
approximate the original full-precision pre-trained parameter
matrix W ∈ Rd1×d2 . Mathematically, the model weight
initialization problem can be formulated as:

P4: min
Q,A,B

∥W −Q−ABT ∥F . (30)

This problem can be efficiently solved by alternatively con-
ducting quantization and singular-value decomposition. The
step-by-step procedures provided in Algorithm 1 and the
details are as follows.

Quantization Step: In the i-th iteration, the quantiza-
tion process is applied to the residual between the pre-
trained parameter matrix W and the low-rank approximation
Ai−1B

T
i−1, yielding the quantized weight matrix Qi

Qi = qN (W −Ai−1B
T
i−1), (31)

where qN (·) : R 7→ {0, 1, · · · , 2N − 1} maps a high-
precision weight matrix, e.g., a matrix with 16-bit floating
point numbers, to an N -bit quantized matrix. Typically, the
quantization process can be expressed as

Q = round((2N − 1)F (W)), (32)

where F (·) : R 7→ [0, 1] is a normalization function. In this
work, we utilize the 4-bit NormalFloat Quantization (NF4)
proposed in [29] to model the normalization function. It
assumes W ∼ N(0, σ2) and hence F (W) = Φ(W/σ), where
Φ(·) is the cumulative distribution function of the standard
normal distribution. Besides, other quantization methods can
also be involved, such as uniform quantization.

SVD Step: After obtaining the i-th quantized weight Qi,
SVD is applied to the residual of the quantization, denoted by
Ri = W −Qi:

Ri =

d∑
j=1

σi,jui,jv
T
i,j , (33)
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where d = min{d1, d2}, σi,1 ≥ σi,2 ≥ . . . ≥ σi,d are the
singular values of Ri, ui,j , vi,j are the associated left and right
singular vectors of Ri. We then obtain a rank-r approximation
of Ri by Ai−1B

T
i−1, where

Ai = [
√
σi,1ui,1, . . . ,

√
σi,rui,r], (34)

Bi = [
√
σi,1vi,1, . . . ,

√
σi,rvi,r]. (35)

After obtaining the initialization, LoRA fine-tuning can be
performed as described in Section III-C.

Moreover, during the inference, we merge the quantized
backbone with the finetuned adapters to acquire the final
output. If the deployed device is resource-limited, the merged
model can be further quantized before deployment; otherwise,
the full-precision model can be deployed directly.

Algorithm 1 The initialization of LoRA fine-tuning-aware
quantization.
Input: Full-precision pre-trained weight W, LoRA rank r,

N -bit quantization function qN (·), iteration number Iter.
1: Initialize A0 ← 0,B0 ← 0;
2: for i = 1 to Iter do
3: Obtain quantized weight Qi ← qN (W −Ai−1B

T
i−1);

4: Obtain low-rank approximation Ai,Bi ← SVD(W −
Qi) based on [34]-[35];

5: end for
Output: QIter, AIter, and BIter.

C. Multi-task Loss Function and Training Schedule

During the training stage, we jointly train the selected tasks,
and the multi-task loss function is written as

Loss =
∑
n

αnLossn, (36)

where Lossn is loss function of task n, which are linearly
combined with task weights αn. In this work, we set αCP = 1,
αDet = 5, and αPre = 0.2. It is worth noting that the backbone
of the pre-trained LLM is frozen, while the other parameters
of the network, together with the LoRA adapters, are trainable.
Then the proposed network updates the parameters of LoRA
adapters using the corresponding loss. The detailed loss func-
tions for each task are illustrated below.

For multi-user precoding, the loss function can be directly
derived from the original optimization objective, i.e., we
employ negative sum rate as the optimization objective in an
unsupervised learning manner:

LossPre = −
K∑

k=1

log2(1 + γk). (37)

However, as the calculation of the sum rate is complicated,
involving many complex matrix operations, both the loss
calculation and the corresponding gradient computation would
be time-consuming. Thereby, inspired by [30], a two-stage
training method can be employed, namely supervised learning
and unsupervised learning, respectively. In the supervised
learning stage, we can first generate the power allocation
vectors p and λ using the WMMSE algorithm as the label.
Then, the supervised learning will employ the MSE loss

function to make the power allocation vectors, p̂ and λ̂,
generated by LLM as close to p and λ as possible, i.e.,

LossPre =
1

2K

(
∥p− p̂∥22 + ∥λ− λ̂∥22

)
. (38)

Nevertheless, the WMMSE algorithm achieves only local
optimality, making (38) insufficient for fully addressing the
fundamental objective of problem P3. To enhance the overall
rate performance, additional network training is implemented
using an unsupervised learning manner.

In the signal detection task, the original transmitted data is
rearranged as XDet ∈ RK×2, which serves as ground truth of
the network output. Then we choose MSE loss for the training,

LossDet =
1

2K
∥XDet −XO

Det∥2F . (39)

For channel prediction, the ground truth of the predicted
CSI is also available. We transform the complex CSI matrix
to real ground truth XCP ∈ RT2×M×2, and MSE is adopted
as the loss function to minimize the prediction error, i.e.,

LossCP =
1

2MT2
∥XCP −XO

CP∥2F . (40)

V. SIMULATION RESULTS

In this section, extensive numerical simulations are pre-
sented to verify the effectiveness of the proposed method.
Firstly, we elaborate on the simulation setup. Then the perfor-
mance of three selected tasks, i.e., channel prediction, multi-
user precoding, and signal detection, is evaluated respectively.
Besides, the performance of LoRA fine-tuning-aware quanti-
zation is compared with the full-precision model. Then, we
analyze the impact of the designed multi-task instruction and
different LLM backbones, respectively. Finally, the few-shot
learning and generalization ability of the proposed multi-task
LLM are evaluated.

A. Simulation Setup and Training Details

For the experimental setup, we utilize the QuaDRiGa
channel generator [31], implementing the 3GPP Urban
Macro (UMa) propagation model [32] under non-line-of-sight
(NLOS) conditions. The channel consists of 21 scattering
clusters, each containing 20 propagation paths. We consider a
multi-user MISO-OFDM system, where a BS simultaneously
serves K = 4 ∼ 8 moving users. BS employs a UPA
comprising Nh = 16 elements in horizontal and Nv = 8
in vertical, while users are configured with single-antenna
receivers. The antenna spacing is maintained at half the
wavelength at the center frequency. The users are uniformly
distributed within angle range [−π/2, π/2], and distance range
[ρmin, ρmax] = [20 m, 100 m]. We suppose a time-division
duplex (TDD) system, where the center frequency of the
channel is set as 2.4 GHz. The bandwidth of the channel is
8.64 MHz, comprising M = 48 subcarriers, i.e., the frequency
interval of subcarriers is 180 kHz. The dataset is partitioned
into training and testing subsets, containing 50,000 and 10,000
samples per task, respectively. The model undergoes training
for 500 epochs over the dataset. Besides, the rank of LoRA is
set as 16, and the batch size is 100.
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For the channel prediction problem, we predict the future
CSI of T2 = 4 time slots based on the historical CSI of
T1 = 16 time slots. We suppose that the users are initialized
with random positions and follow linear movement patterns.
The velocity distribution for mobile users spans uniformly
from 10 km/h to 100 km/h. To enhance the robustness against
noise, the SNR is uniformly sampled between 0 dB and 20
dB during the training stage, to account for both the low-
noise and high-noise scenarios. For uplink signal detection,
we suppose the transmitted data is generated from 16-QAM
modulation symbol. Similarly, the received signal is corrupted
by noise with SNR uniformly distributed between 0 dB and
20 dB during the fine-tuning.

B. Performance Evaluation for Channel Prediction

1) Baselines and Performance Metric: To evaluate the
performance, we compare the proposed multi-task LLM with
the following benchmarks.

• Transformer: [5] introduces a parallelized channel predic-
tion framework based on transformer to predict future CSI
in parallel, and thus avoid error propagation problems.

• RNN: A Recurrent Neural Network (RNN) [33] is a
typical neural network used for processing sequences and
is commonly utilized in channel prediction tasks. In the
experiments, we configure the RNN with four layers.

• LSTM: The long short-term memory network
(LSTM) [34] incorporates specialized memory units and
gating mechanisms to effectively capture long-range
temporal dependencies. Our implementation utilizes a
four-layer LSTM structure for predictive modeling.

• GRU: As an enhanced version of LSTM, the gated
recurrent unit (GRU) [35] introduces simplified gating
operations to mitigate gradient-related challenges during
training. Similarly, the GRU-based model utilized in this
work consists of 4 layers.

• LLM4CP: LLM4CP [13] represents a pioneering effort in
finetuning layer normalization parameters of pre-trained
LLM, i.e., GPT-2, for the channel prediction task.

• Single-task LLM: We also train the proposed network on
a single task to better compare the performance with the
proposed multi-task LLM.

In channel prediction evaluation, the NMSE serves as a
crucial indicator for assessing prediction precision, making it
an essential measurement criterion in our experiments.

2) Performance Analysis: The evaluation dataset for chan-
nel prediction comprises 10 distinct velocities spanning from
10 km/h to 100 km/h, with each velocity containing 1000 data
samples. As illustrated in Fig. 5, the NMSE performance of
our proposed multi-task LLM framework is compared against
various baseline methods across different user velocities. The
historical CSI data is added by Gaussian white noise with
SNR = 20 dB. Experimental results demonstrate a consistent
degradation in NMSE performance across all methods as
user mobility increases. This phenomenon can be attributed
to the accelerated channel variation and reduced coherence
time associated with higher velocities, which consequently
amplifies the complexity of accurate channel estimation. Fig. 5
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Fig. 5. The NMSE performance of the proposed method and other baselines
versus different user velocities.
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Fig. 6. The NMSE performance of the proposed method and other baselines
versus different SNR.

reveals that attention-based methods achieve relatively higher
performance than traditional AI methods, validating the po-
tential of attention-based methods in the channel prediction
task. Equipped with excellent modeling capability of LLM,
the proposed model, finetuned on the channel prediction task
only, consistently outperforms other baselines among testing
velocities. The proposed single-task LLM achieves better
performance than LLM4CP since we apply LoRA finetuning
to parameters of both the multi-head attention module and
the MLP module in the LLM backbone, except for finetuning
parameters of layer normalizations. With elaborately designed
multi-task instruction, the proposed LLM-enabled multi-task
model obtains comparable channel prediction accuracy with
the single-task one, which verifies the effectiveness of the
proposed multi-task LLM.

In Fig. 6, the robustness against noise of the proposed
method is evaluated, where the SNR of noise in historical
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Fig. 7. The sum rate performance of the proposed method and other baselines
versus different BS transmit powers.

CSI is growing from 0 dB to 30 dB. The NMSE performance
has been averaged over all test speeds. It can be observed that
for all schemes, increased SNR conditions lead to improved
NMSE performance in prediction accuracy. Thanks to the
generalization ability of LLMs, the proposed method exhibits
high robustness performance against CSI noise. It achieves the
lowest NMSE performance in the entire SNR regime.

C. Performance Evaluation for Multi-user Precoding

1) Baselines and Performance Metric: For multi-user pre-
coding, the following methods are selected as baselines, in-
cluding traditional methods and deep learning-based methods.

• ZF: Eigen-based zero-forcing (ZF) algorithm [36] is a
computationally efficient approach, which derives the
precoding matrix through the Moore-Penrose pseudo-
inverse operation applied to the channel matrix.

• WMMSE: As mentioned above, the WMMSE algo-
rithm [37] is one of the most popular iterative algo-
rithms. The method can achieve satisfactory sum rate
performance while suffering from high computational
complexity. The iterative number is set as 20.

• CNN: In [30], the authors propose a CNN-based frame-
work for the optimization of downlink beamforming.

• Single-task LLM: Similarly, we train the proposed net-
work on multi-user precoding only.

The sum rate of users, which is the objective of multi-user
precoding, is utilized as the performance metric to evaluate
the multi-user precoding task.

2) Performance Analysis: The sum rate performance
against different BS transmit power is plotted in Fig. 7.
The noise power is set as σ2 = −10 dBW, the maximal
transmit power of BS Pmax increases from −10 to 10 dBW.
Besides, the user number is set as 4. As illustrated in Fig. 7,
with the increase of the BS transmit power, the sum rates
of all methods increase accordingly. As depicted in Fig. 7,
the ZF-based method, though with low complexity, achieves
unsatisfactory performance. The iterative algorithm WMMSE

Fig. 8. The sum rate performance of the proposed method and other baselines
versus different user numbers.

improves the sum rate, while it is still possible to fall into
local optimal solutions, inducing an obvious gap from the
capacity. With the powerful network and carefully designed
training strategy, the deep-learning-based methods, including
the CNN-based method and LLM-based method, are promis-
ing in conquering the problem and further improving the
performance. Specifically, the proposed model, both trained
on a single task and trained on multiple tasks, achieves near-
optimal performance for all transmit power and outperforms
other benchmark schemes for the entire transmit power range.
Owing to the increasing size of the network, the LLM-based
method exhibits superior optimization and generalization ca-
pabilities and outperforms the CNN-based method.

In Fig. 8, we illustrate the sum rate performance against the
user number, which ranges from 4 to 8. The transmit power
and noise power are set as 0 dBW and -10 dBW, respec-
tively. As the user number increases, the spectrum efficiency
increases with further exploitation of multiplexing gain. We
observe from Fig. 8 that the proposed multi-task LLM-based
method enjoys a higher sum rate performance, compared to
existing methods for different numbers of users. This verifies
the effectiveness and scalability of the proposed method. It
is worth noting that LLMs inherently possess the ability to
process variable-length sequences; thus, our proposed scheme
can be directly applied to different numbers of users without
requiring any modifications. In contrast, for traditional AI
methods, to accommodate varying numbers of users, input data
under different user numbers must be zero-padded to match
the shape of the maximum user number.

D. Performance Evaluation for Signal Detection

1) Baselines and Performance Metric: To validate the
effectiveness of the proposed method, several methods are
implemented as baselines.

• LMMSE: Linear minimum mean-squared error
(LMMSE) detector is a classical method for achieving
signal detection with low complexity.
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Fig. 9. The NMSE performance of the proposed method and other baselines
versus different SNRs.

• DNN: In [38], a data-driven model which inputs the
channel as well as the received data and outputs the
original data through a deep learning network.

• DetNet: The detection network (DetNet) in [39] unfolds
the iterations of a projected gradient descent algorithm to
recover the data.

• OAMP-Net: A famous model-driven deep learning net-
work proposed in [6], which incorporates deep learning
into the orthogonal AMP (OAMP) algorithm for accurate
signal detection.

• Single-task LLM: The proposed network is finetuned only
on the signal detection task.

In this work, we utilize NMSE and symbol error ratio (SER)
as metrics to evaluate the performance of signal detection.
NMSE loss is the direct performance metric to present the
accuracy of data recovery. It should be noted that the reason for
employing the data recovery accuracy rather than only choos-
ing the bit error ratio (BER) or SER to optimize and evaluate
the model is described below. In the practical communication
link, the objective of signal detection is to recover the data
as accurately as possible, which can be utilized to compute
the log-likelihood ratio (LLR) for demodulation and channel
decoding to enable reliable communications. Besides, obtain-
ing the recovered signal, we also demodulate the transmitted
symbol by minimum Euclidean distance decision, and then
SER is employed to evaluate the performance in this case.

2) Performance Analysis: In Fig. 9, the NMSE performance
of the proposed multi-task LLM on signal detection under
different SNRs is presented. We also compare the performance
with several baselines. As illustrated in Fig. 9, the DNN-based
method presents poor performance since it directly inputs
the data to the black-box-based network, while ignoring the
domain knowledge and structure of the problem and data. Be-
sides, despite the low computational complexity, the LMMSE-
based method also shows relatively high NMSE performance.
The model-based methods, including DetNet [39] and OAMP-
Net [6], significantly improve the data recovery accuracy; the
OAMPNet [6] achieves higher performance than the LLM-

based method in the high SNR regime with better utilization
of the statistical information of noise. Moreover, the proposed
multi-task LLM can accurately recover the transmitted data,
especially in the low SNR regime. It can be observed that
the performance of multi-task LLM is comparable to that of
single-task LLM, suggesting the potential of multi-task LLM
networks in wireless communications.

The SER performance against SNR is depicted in Fig. 10.
When the SNR is lower than 8 dB, the proposed multi-task
LLM network outperforms other baselines, which indicates
that the generalization capability of LLMs endows the pro-
posed method with high robustness against noise. As the SNR
increases, the OAMPNet [6] achieves the best performance,
since it fully utilizes the statistical information of noise. Based
on this observation, we provide two comments as follows.
First, for the scenarios where the power of noise σ2 can be
obtained, future works can consider effectively incorporating
statistical information of the channel and noise as prompts to
further improve the performance of the LLM-based method,
especially in high SNR regimes. Secondly, there are still many
cases where the statistical information of noise may not be
obtained in the practical system. In these cases, OAMPNet
may fail to achieve satisfactory performance.

Finally, we present a brief comparison of the performance
of single-task LLM and multi-task LLM after the specific
illustration of three selected tasks. Due to the increasing
complexity of joint optimization and the inherent trade-offs
across tasks, single-task LLMs slightly outperform the multi-
task LLM. Fortunately, the observed performance gap re-
mains marginal, even with near-identical precoding perfor-
mance achieved in multi-task implementations versus single-
task implementations. On the other hand, the multi-task frame-
work significantly reduces memory usage and deployment
overhead. For example, the proposed unified model in this
work simultaneously addresses three distinct tasks with merely
one-third of the parameter count required by individual task-
specific models. Therefore, this favorable trade-off between
model efficiency and task performance substantiates the
feasibility and critical value of multi-task frameworks for
practical deployment scenarios.

E. Performance evaluation for LoRA-fine-tuning-aware quan-
tization

For fair and convenient comparison, in the above subsec-
tions, we mainly utilize the model based on full-precision
LoRA fine-tuning for performance evaluation. Then, in this
subsection, we focus on the impact of LoRA-fine-tuning-
aware quantization. The performance comparison of the pro-
posed model with full-precision LoRA fine-tuning and the
model with LoRA-fine-tuning-aware quantization is presented
in Table I. For the full-precision model, the model parame-
ters are stored and computed in a floating-point format. On
the contrary, the model with LoRA-fine-tuning-aware quan-
tization transforms the LLM backbone into a 4-bit integer
format, which indicates significant storage reduction during
fine-tuning. Besides, the iterative number for initialization is
set as Iter = 5. It is noted here that during LoRA fine-
tuning, the quantized weight is temporarily dequantized to
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TABLE I
COMPARISON OF THE MODEL WITH LORA-FINE-TUNING-AWARE QUANTIZATION WITH OTHER BASELINES.

Quantization method NMSE for CP NMSE for DET Sum rate for PRE
Full-precision -18.98 dB 0.0336 29.3086 bit/s/Hz

LoRA-fine-tuning-aware quantization -18.86 dB 0.0256 29.2343 bit/s/Hz

• “CP” denotes channel prediction, “DET” denotes signal detection, and “PRE” denotes multi-user precoding.

TABLE II
COMPARISON OF THE MODEL WITH DIFFERENT LLM BACKBONE.

LLM backbone NMSE for CP NMSE for DET Sum rate for PRE Trainable/Total parameters
GPT-2 -18.98 dB 0.0336 29.3086 bit/s/Hz 21.76/145.37 M

GPT-2(6) -18.07 dB 0.0467 28.7653 bit/s/Hz 20.16/101.73 M
- -14.03 dB 0.2314 27.2334 bit/s/Hz 18.58/58.08 M

• “CP” denotes channel prediction, “DET” denotes signal detection, and “PRE” denotes multi-user precoding.
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Fig. 10. The SER performance of the proposed method and other baselines
versus different SNRs.

the simulated high-precision weight (16-bit floating-point) to
facilitate accurate computation.

The results are shown in Table I. For the channel prediction
task, the NMSE is averaged for different speeds and SNRs;
for the signal detection task, the performance is averaged
for different SNRs; for the multi-user precoding task, we set
user number as 4, the power of noise and transmit power
are set as -10 dBW and 0 dBW, respectively. As shown in
Table I, the model with LoRA-fine-tuning-aware quantization
achieves comparable performance with the proposed full-
precision model. We can conclude from the results that the
introduced LoRA-fine-tuning-aware quantization successfully
approximates high-precision weights by the quantized weights
and low-rank adapters, and thus the performance degradation
resulting from quantization is negligible.

Next, we provide quantitative analysis of the reduced re-
source consumption brought by LoRA and quantization, from
aspects including training time, and trainable/total parame-
ters. The proposed model without LoRA fine-tuning contains
143.02 M parameters, consisting of 124.44 M parameters

in the GPT-2 backbone and 18.58 M parameters in other
modules. If full-parameter fine-tuning is directly employed,
the trainable parameters are 143.02 M. Based on the proposed
LoRA fine-tuning strategy, the trainable parameter number
in the GPT-2 backbone drops sharply from 124.44 M to
3.18 M, while the total trainable parameter is 21.76 M.
The significantly reduced trainable parameters can reduce
the training time, computational complexity, as well as GPU
memory usage. Specifically, since training/inference time and
GPU memory vary across different GPU/CPU configurations,
sequence lengths, batch sizes, etc, we report the comparison on
the channel prediction task with batch size 100 as an example
using NVIDIA GeForce 24G RTX4090 GPUs. Compared with
full-parameter finetuning, the training time per batch of LoRA
fine-tuning reduces from 72 ms to 56 ms.

Furthermore, though the involvement of LoRA-fine-tuning-
aware quantization may not affect the trainable and total
parameter number, it significantly reduces the memory usage
for the LLM backbone. As mentioned before, quantization of
the LLM backbone from float format into a 4-bit integer format
introduces significant storage reduction during fine-tuning. It
is worth noting that the advantages introduced by both LoRA
and quantization will be more significant and essential as the
size of the LLM backbone further increases.

F. Impact of multi-task instruction
In this subsection, we analyze the influence of the proposed

multi-task instruction module in Section III-A on the perfor-
mance and convergence rate of neural network training. It is
worth noting that, in order to distinguish different tasks, uti-
lizing multi-task instruction (especially the task identifier part)
as prompts is indispensable for the proposed multi-task PHY
network to understand different task requirements; besides, the
domain knowledge in the task description and instruction part
may accelerate convergence. For single-task LLMs, although
it is possible to neglect the prompt, introducing the designed
instruction with wireless data can involve domain knowledge
to facilitate task-specific adaptation of LLMs.

In Fig. 11, we take the signal detection task, for instance, to
illustrate the training loss in MSE against the training epoch.
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Fig. 11. Training losses of different methods against epoch.

In this figure, we depict the training loss of the proposed
model trained for multiple tasks with prompts, the proposed
model trained for multiple tasks with only task identifier in
prompts, the proposed model trained for a single task with
prompts, and the proposed model trained for a single task
without prompts in the first 200 epochs. We can observe that
the overall trends of all losses are declining with the increase
of training epochs. The training loss of single-task LLM
converges faster than its multi-task counterpart, due to the
complete optimization focus on a single task. Furthermore, the
proposed model with designed prompts achieves satisfactory
performance faster than the proposed model without prompts.
Therefore, it is indicated that the incorporation of designed
multi-task instruction as prompts significantly accelerates the
network fine-tuning and improves the LLM’s adaptability to
downstream tasks.

G. Impact of LLM backbone

Finally, in this subsection, the influence of the LLM back-
bone on the performance is evaluated. In this work, we employ
GPT-2 as the backbone. To analyze the impact, we compare
the selected backbone with the following benchmarks. Firstly,
we employ the first six transformer blocks of GPT-2 as the
backbone, while other modules remain the same. The method
is denoted as “GPT-2(6)”. Secondly, the LLM backbone is
directly removed, which means that the output of the encoders
is directly fed into the designed decoders.

We summarize the simulation results in Table II. Similarly,
as stated in Section V-E, the NMSE is averaged within
different SNRs and speeds for channel prediction and is
averaged within different SNRs for signal detection. Besides,
user number is set as 4, the power of noise and transmit power
are set as -10 dBW and 0 dBW for multi-user precoding. It
can be observed from Table II that the performance achieved
in different tasks improves with the introduction of the LLM
backbone. For instance, the NMSE performance for channel
prediction of the proposed method with GPT-2 backbone is
18.98 dB, while the performance drops 5 dB when removing
the backbone. Furthermore, due to the increasing size of the

LLM backbone, the model with complete GPT-2 backbone
outperforms the model with only the first six transformer
blocks of the GPT-2 backbone, although it can still achieve
the multi-task PHY network. Therefore, we can adopt a
proper LLM backbone to balance the computational costs and
performance.

H. Few-shot learning capability

The few-shot learning capability allows deep learning mod-
els to achieve strong performance with very limited training
data, and thus empowers efficient and swift real-world ap-
plications. It is indispensable for wireless communication de-
ployments where massive wireless data collection and network
training are costly or even impractical. In this part, we evaluate
the few-shot learning ability of the proposed methods. We
utilize 10% dataset(i.e., 5000 samples), respectively, to train
the proposed model and other baselines.

In Table III, we provide the NMSE performance of the
channel prediction task of models trained on the full dataset
and 10% dataset for comparison. The results are averaged over
all test SNRs and speeds. Pre-trained on extensive datasets,
LLMs acquire rich general knowledge, eliminating the need
for training from scratch for downlink tasks. By fine-tuning
only minimal parameters via LoRA with limited channel
prediction data samples, LLMs demonstrate strong few-shot
learning capabilities without significant overfitting despite
their scale. Experimental results confirm that LLM-based
approaches, including LLM4CP, proposed single-task LLM
and multi-task LLM, outperform conventional DL models even
when trained on merely 10% of the dataset. Besides, the
proposed single-task and multi-task LLMs achieve the most
accurate channel prediction for all different data numbers.

I. Generalization Experiments

Generalization ability is also crucial for models to deploy
in real-world scenarios. It denoted the capability of models
to maintain performance in new communication scenarios or
against noise without retraining. To illustrate the generalization
ability, we provide two case studies. First, for multi-user
precoding, we assume accurate multi-user channel can be
obtained. However, the estimated channel may be corrupted by
noise, and thus the beamformers can only be acquired based
on inaccurate multi-user channel. Therefore, the robustness of
the proposed method against noise is evaluated with imperfect
channel for multi-user precoding. Secondly, in order to elab-
orate on the cross-scenario generalization ability, we directly
apply the model trained in the UMa scenario to the 3GPP
Urban Micro (UMi) scenario without any additional training
process for the channel prediction task.

For multi-user precoding, the sum rate performance of
the proposed method and other baselines versus SNR of the
estimated channel is presented in Fig. 12. The user number
is set as 4, and the transmit power and noise power are set
as 0 dBW and -10 dBW, respectively. As the SNR of the
estimated channel increases from 0 dB to 30 dB, the sum
rates of all methods increase. The advantages of the proposed
multi-task LLM over other baselines are even more evident
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TABLE III
FEW-SHOT LEARNING PERFORMANCE OF CHANNEL PREDICTION TASK (NMSE IN DB).

Dataset Multi-task LLM Single-task LLM LLM4CP Transformer RNN LSTM GRU
Full -18.98 -19.33 -15.65 -12.80 -8.75 -8.11 -8.32
10% -13.96 -14.74 -11.36 -9.39 -7.80 -5.96 -7.28
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Fig. 12. The sum rate performance of the proposed method and other baselines
with imperfect multi-user channel for multi-user precoding.
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Fig. 13. The zero-shot generalization performance for the channel prediction
in the UMi scenario.

in low SNR regions, indicating the superior robustness of the
proposed multi-task LLM against noise. Fig. 13 elaborates the
NMSE performance of channel prediction in the UMi scenario
with the model trained in the UMa scenario. Except for the
scenarios, we keep the other settings unchanged. The proposed
model surpasses other baselines in terms of the NMSE met-
ric, demonstrating its strong generalization capability across
different channel distributions.

VI. CONCLUSIONS

In this paper, we propose an LLM-enabled multi-task PHY
network to unify multiple tasks with a single LLM. Multi-task
instruction module, input encoders, as well as output decoders,

are elaborately designed to distinguish multiple tasks and adapt
the features of different formats of wireless data for the feature
of LLM. Moreover, to reduce the memory requirements of
the proposed model, a LoRA fine-tuning-aware quantization
method is introduced. Simulation results have verified the
effectiveness of the proposed method. The proposed LLM
framework is promising to perform different tasks using a
single model, significantly saving the redundancy and costs of
the practical deployment of LLM. It makes an initial attempt
to provide a more adaptable, comprehensive, and intelligent
PHY network with the aid of LLMs. Future works can be
focused on incorporating more tasks into the network. Besides,
further improvement of LoRA and quantization specifically
designed for the wireless domain can be considered for
subsequent research. Moreover, implementing a unified data
encoder/decoder framework to extract task-discriminative fea-
tures across diverse tasks could further enhance architectural
consistency in the multi-task LLM framework.
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