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Abstract—In extremely large-scale multiple input multiple
output (XL-MIMO) systems, near-field beam training is an
essential way to acquire channel state information. To reduce
the high training overhead brought by the additional dis-
tance dimension of the near-field codebook, some overhead-
reduced near-field beam training schemes were proposed in
the literature. However, existing schemes ignore the correlation
between different near-field beams. In this paper, we propose
a Bayesian regression-based near-field beam training scheme,
which fully utilizes the correlation between near-field code-
words to reduce the training overhead. Specifically, inspired by
Bayesian regression, we model the received signal corresponding
to different near-field codewords as a Gaussian process and
determine the optimal codeword by iteratively updating the
posterior distribution and designing the codeword searching
order. Besides, different searching strategies are analysed and
compared. The proposed scheme only requires searching for a few
codewords instead of the entire codebook, which reduces the high
training overhead. Simulation results verify the effectiveness of
the proposed Bayesian regression-based near-field beam training
scheme, which significantly reduces the training overhead while
maintaining the high achievable rate performance.

Index Terms—Beam training, extremely large-scale MIMO
(XL-MIMO), near-field, Bayesian regression.

I. INTRODUCTION

In recent years, the extremely large-scale MIMO (XL-
MIMO) has been considered as one of the potential key
technologies in the sixth-generation (6G) communications [1].
To fully utilize the high multiplexing gain in XL-MIMO
systems, obtaining precise channel state information (CSI) is
especially crucial and beam training is an efficient way, which
searches codewords from a predefined codebook and selects
the optimal codeword [2].

However, in XL-MIMO systems, beam training will face the
challenge of additional high training overhead. Specifically,
with the increasing number of the array antennas causing
the enlargement of the near-field region, the near-field region
should be accurately modeled by the spherical-wave model
rather than the planar-wave model applied in far-field [3].
Unlike the far-field channel only determined by the angle,
the near-field channel is related to both angle and distance.
Accordingly, the near-field polar-domain codebook is proposed
in [4], where each codeword corresponds to a near-field beam
which could focus the beam on specific locations. Compared
to the far-field DFT codebook, the near-field polar-domain
codebook considers additional distance dimension so its size

is the product of the number of angle and distance sampling
grids. Therefore, it will bring extremely huge training overhead
if the exhaustive searching is performed.

To reduce the high training overhead of the exhaustive
searching scheme, several low-overhead near-field beam train-
ing schemes have been proposed. For example, a two-phase
near-field beam training scheme is proposed in [5], where in
the first phase the angle is searched and selected through the
DFT codebook and the distance is determined in the second
phase. Besides, some near-field hierarchical beam training
schemes are proposed [6], [7]. Specifically, it is performed
through the hierarchical codebook with different spatial resolu-
tion, where the resolution gradually increases as the searching
range gradually decreases. In addition, artificial intelligence
(AI) technologies such as neural networks and contrastive
learning are also applied in near-field beam training to reduce
the training overhead [8], [9].

However, the above near-field beam training methods usu-
ally overlooked the correlation between different near-field
beams. Specifically, the received signal corresponding to dif-
ferent near-field beams is highly correlated. In other words,
the measured received signal can not only provide the infor-
mation about its corresponding codeword, but also the other
codewords. Consequently, how to fully utilize the correlation
between near-field codewords to reduce the overhead of near-
field beam training is a critical problem.

To solve this problem, in this paper, we first apply Bayesian
regression [10] into near-field beam training and propose a
near-field Bayesian regression-based beam training (BRBT)
scheme, where the optimal near-field codeword can be deter-
mined by searching only a small number of codewords. Specif-
ically, we set the received signal corresponding to different
codewords as the objective function in Bayesian regression and
model the problem of selecting the optimal codeword in near-
field beam training problem as finding the maximum value
point of the posterior mean of the reconstructed objective func-
tion in Bayesian regression. During the entire process, the base
station (BS) transmits the pilot signal to the user and iteratively
update the posterior mean, covariance and variance according
to the received signal from user’s feedback. In each iteration,
the next searching codeword is determined by maximizing
the acquisition function corresponding to different searching
strategies. After completing multiple iterations of searching,
the optimal codeword is determined. Besides, we analyse and
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Near-field beamtraining

Far-field beamtraining

Fig. 1. Illustration of near-field beam training in XL-MIMO systems.

compare different searching strategies, which are particularly
important for the overall performance of the proposed scheme.
Simulation results demonstrate the superiority of the proposed
BRBT scheme, which can achieve nearly-optimal achievable
rate performance with low training overhead.

II. SYSTEM MODEL

A. Signal Model and Channel Model

As shown in Fig. 1, the single-cell downlink XL-MIMO
communication systems is considered, where the BS is
equipped with a N-element uniform linear array (ULA) and
serves one user with single-antenna. Without loss of generality,
we adopt the fully-digital precoding structure, where each
antenna is equipped with one RF chain, i.e., NRF = N .
The fully-digital precoding structure can be easily extended
to hybrid precoding structure.

Let h ∈ CN×1 denotes downlink channel between the BS
and the user, and the received signal y can be expressed as

y = hHws+ n, (1)

where w ∈ CN×1 denotes the transmit beamforming vector, s
denotes the power-normalized transmitted signal and n denotes
the received noise following the distribution CN

(
0, σ2

)
. It

should be emphasized that since the channel h is generally
dominated by the main path, we only need to search the
physical direction of the main path by beam training [6].
Therefore, in this paper only the main path is considered.

Generally, the channel model can be divided into the far-
field channel model and the near-field channel model by the
electromagnetic wave propagation characteristics. In the XL-
MIMO systems, the spherical-wave model should be used to
characterize the near-field channel. According to the widely-
adopted Saleh-Valenzuela channel model, the near-field chan-
nel h can be expressed as [4]

h =
√
Nαb(θ, r), (2)

where α denotes the complex path gain of the line-of-sight
(LoS) path, b(θ, r) denotes the near-field beam steering vector
and θ ∈ [−1, 1] denotes the spatial direction. Different from
the far-field beam steering vector focusing the beam energy
towards a specific direction, the near-field beam steering vector

is able to focus the beam energy on a specific location. So
the near-field beam steering vector is also called the near-
field beam focusing vector. For the ULA, the near-field beam
focusing vector b(θ, r) can be expressed as

b(θ, r) =
1√
N

[
e−jk(r(0)−r), · · · , e−jk(r(N−1)−r)

]T
, (3)

where k = 2π
λ is the wavenumber, r(n) denotes the distance

between the user and the nth BS antenna element and r
denotes the distance between the user and the center of the
BS antenna. The distance r(n) can be written as

r(n) =
√
r2 − 2ndrθ + n2d2

(a)
≈ r − ndθ +

n2d2

2r
(1− θ2),

(4)

where approximation (a) is the Fresnel approximation, which
is derived by the second-order Taylor expansion

√
1 + x =

1 + x
2 − x2

8 + O(x2). It can be obtained from (2) and (3)
that the near-field channel is not only related to the angle of
the user, but also to the distance between the user and the
BS. Before the downlink date transmission, the BS should
perform the beam training procedure to ensure that the beam
to be transmitted aligns with the main path.

B. Near-field Beam Training
For the given beamforming vector w, the achievable rate R

of the user can be expressed as

R = log2

(
1 +

|hHw|2

σ2

)
. (5)

The main purpose of the near-field beam training is to se-
lect the optimal codeword from the predefined codebook to
maximize the achievable rate R. The near-field beam training
problem can be formulated as

w∗ = arg max
w∈W

R, (6)

where W denotes the predefined near-field codebook. Ac-
cording to Algorithm 1 in [4], the near-field polar-domain
codebook can be represented as

W = [b(θ1, r
1
1), · · · ,b(θ1, r

S1
1 ), · · · ,b(θN , rSN

N )], (7)

where each column of the codebook W corresponds the
codeword focusing on a specific position, and Sn denotes
the number of sampled distances at the specific angle θn.
As illustrated in Fig. 1, different from the far-field beam
training only searching the angle of the user, the near-field
beam training searches both the angle and the distance. One
easy way to solve the near-field beam training problem (6) is
exhaustive searching scheme. However, due to the additional
distance dimension, the training overhead of the exhaustive
searching scheme is the product of angle samples and distance
samples, i.e., |W| = N

∑N
n=1 Sn. This high training overhead

is unacceptable in practical XL-MIMO systems. Therefore,
low-overhead near-field beam training schemes are needed
and our proposed Bayesian regression-based near-field beam
training scheme will be introduced in the following section.
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III. PROPOSED BAYESIAN REGRESSION-BASED BEAM
TRAINING SCHEME

In this section, we introduce the preliminary knowledge of
Bayesian regression, proposed the BRBT scheme and compare
different searching strategies of the proposed scheme.

A. Preliminary Knowledge of Bayesian Regression

To recover the objective function f(x) only from few
samples, Bayesian regression is widely considered an efficient
solution, which can design the sampling order and recover
f(x) via its experiential kernels [10]. Specifically, the objec-
tive function f(x) can be modeled as a Gaussian stochastic
process GP (µ (x) , k (x,x′)), where any stochastic process
with finite dimensions follows the consistent multivariate
Gaussian distribution [11]. It is completely determined by the
mean function µ (x) and covariance kernel k (x,x′). Without
loss of generality, the squared exponential kernel is considered
in this paper, which can be expressed as

k(x,x′) = α2e
− ∥x−x′∥2

η2 , (8)

where α and η are adjustable hyperparameters. Based on (8),
the kernel matrix K can be expressed as

K =

k(x1,x1) · · · k(x1,xm)
...

. . .
...

k(xm,x1) · · · k(xm,xm)

 . (9)

After determining the kernel function, let yt =
[y1, · · · , yt]T denote t measurements for samples in St =
{x1, · · · ,xt}, where yi = f(xi)+ni and ni denotes the noise
following ni ∼ CN

(
0, δ2

)
. The objective function f(x) and

measurements yt follow the joint Gaussian distribution, which
can be expressed as[

f (x)
yt

]
∼ CN

([
µ (x)
µt

]
,

[
k (x,x′) (kt(x))H

kt(x) Kt + δ2It

])
, (10)

where kt =
[
k
(
x1,x

)
, · · · , k (xt,x)

]T
and µt =[

µ
(
x1

)
, · · · , µ (xt)

]T
. For given yt, the posterior distribution

of f(x) is also a Gaussian process, and its posterior mean,
covariance and variance can be expressed as

µt (x) = µ (x) +
(
kt(x)

)H (
Kt + δ2It

)−1 (
yt − µt

)
, (11)

kt (x,x′) = k (x,x′)−
(
kt(x)

)H (
Kt + δ2It

)−1
kt(x), (12)

σt(x) = kt (x,x) . (13)

Then, the sampling strategy can be formulated based on the
posterior mean (11), covariance (12) and variance (13), so the
next sampling point can be determined.

B. Proposed Bayesian Regression-based Beam Training

In near-field beam training problem, the received signal
corresponding to different near-field codewords is highly cor-
related. Inspired by this, we model the problem of selecting
the optimal codeword in near-field beam training problem as
finding the maximum value point of the objective function

UE

Transmit new pilot 

Data feedback 

Obtain corresponding 
received signal

      Update received signal :

BS
Determine the next codeword 
based on the searching strategy:

and

Bayesian  Regression: update
posterior mean and covariance 

Fig. 2. A flowchart of the proposed Bayesian regression-based near-field
beam training scheme.

in Bayesian regression and propose a novel near-field BRBT
scheme. Specifically, for different codewords wi, where i =
1, 2, · · · , |W|, the noiseless received signal vector g can be
expressed as

g = hHW, (14)

where g ∈ C1×|W|, W ∈ CN×|W| and |W| denotes the
number of codewords in near-field polar-domain codebook
as defined in (7). We can model g as a Gaussian progress
GP (0N ,Σ), where Σ ∈ C|W|×|W| denotes the squared
exponential kernel matrix, which can be expressed as

Σ(i, j) = α2e
−

∥wi−wj∥
2

η2 , (15)

where i, j ∈ {1, · · · , |W|}. Let Ω denotes the index of the
previous searched codewords and gΩ ∈ Cdim(Ω) denotes the
corresponding received signal, where gΩ = g (Ω) + nΩ with
nΩ ∼ CN (0dim(Ω), σ

2Idim(Ω)). Therefore, similar to (10), the
joint distribution of g and gΩ can be expressed as[

g
gΩ

]
∼ CN

([
0N

0dim(Ω)

]
,

[
Σ Σ (:,Ω)

Σ (Ω, :) Σ (Ω,Ω) + σ2Idim(Ω)

])
.

(16)
Thus, for given gΩ, the posterior mean µΩ, covariance ΣΩ

and variance σΩ can be obtained:

µΩ = Σ(:,Ω)
(
Σ(Ω,Ω) + σ2Idim(Ω)

)−1
gΩ, (17)

ΣΩ=Σ−(Σ(Ω, :))
H (

Σ(Ω,Ω)+σ2Idim(Ω)

)−1
Σ(Ω, :), (18)

σΩ = ΣΩ(n, n). (19)

To summarize, the flowchart and overall framework of the
proposed Bayesian regression-based near-field beamtraining
scheme is shown in Fig. 2 and Algorithm 1, respectively.
Specifically, the BS selects the codeword and transmits the
corresponding pilot signal to the user. Then, the user updates
the received signal gΩ and reports the data feedback to the
BS. It should be noted that the feedback data in the proposed
scheme is the actual value not a binary sequence. Next, the BS
can update the posterior mean µΩ, covariance ΣΩ, variance
σΩ and determine the next codeword based on the searching
strategy. Specifically, different searching strategies correspond
to different acquisition functions V (x), which determine the
searching order of codewords and the accuracy of the posterior
predictive distribution in Bayesian regression [12]. In each

2025 IEEE International Conference on Communications (ICC): Wireless Communications Symposium

1726
Authorized licensed use limited to: Tsinghua University. Downloaded on September 30,2025 at 07:47:37 UTC from IEEE Xplore.  Restrictions apply. 



iteration, the acquisition function is maximized to determine
the next codeword, the Gaussian process is updated and the
process is iterated. It should be emphasized that selecting the
appropriate searching strategy is particularly important for the
overall performance of the proposed scheme, which will be
discussed in the following subsection.

Algorithm 1 Overall Framework of the proposed BRBT
Inputs: Near-field polar-domain codebook W , kernal matrix

Σ, number of pilots Tmax.
Output: Optimal codeword w∗.

1: Initialization: Ω = ⊘.
2: for t = 1, 2, · · · , Tmax do
3: Received signal power update: gΩ = g (Ω) + nΩ.
4: Posterior mean µΩ, covariance ΣΩ and variance σΩ

update according to (17), (18) and (19).
5: Determine the next codeword by maximizing the ac-

quisition function V (x) according to the searching
strategy: xt+1 = argmax

x∈Ωt

V (x).

6: Index of searched codewords update: Ωt ∪ xt+1.
7: end for
8: Determine the index of the optimal codeword based on

the maximum point of µΩ and select the corresponding
codeword as the optimal codeword w∗.

9: return Optimal codeword w∗.

C. Comparison between Different Searching Strategies

As discussed before, the searching strategy is the key
factor affecting the performance of the proposed scheme. In
this subsection, different searching strategies of the proposed
BRBT scheme are analysed and compared.

1) Exploitation-based Strategy: The goal of near-field
beam training is to select the optimal codeword which maxi-
mizes the user’s received signal power. In other words, we only
need to determine the maximum value point of the posterior
mean of the reconstructed objective function gΩ and select
its corresponding codeword without accurately reconstructing
the entire objective function [10]. Thus, the exploitation-based
searching strategy can be directly applied, which tends to
search the regions of the objective function likely to provide
improvement based on the current best searching result.

Without loss of generality, we define GΩT
=

[gΩ1
,gΩ2

, · · · ,gΩT
], where gΩt

= g(wt) + nt,
nt ∼ CN

(
0, δ2

)
, wt denotes the selected codeword at

timeslot t and T < |W|. For simplicity, we use xt to
represent wt. For the exploitation-based searching strategy,
we should search points where the posterior mean is largest
and the acquisition function V exploit(x) can be expressed as

V exploit(x) = µx. (20)

Therefore, the exploitation-based searching strategy can be
expressed as

xt+1 = argmax
x∈Ωt

V exploit
t (x) = argmax

x∈Ωt

µt(x), (21)

where Ωt = {x1, . . . ,xt}. Subsequently, we can update Ωt

by Ωt ∪xt+1, iterate the above process and select the optimal
codeword. The main strength of this searching strategy is that
it may obtain the extreme point quickly. However, it may
face the risk of plunging into a local optimal solution, which
seriously affects the overall performance of the BRBT scheme.

2) Exploration-based Strategy: Another method to select
the optimal codeword is to first reconstruct the objective
function globally well, then determine the estimated max-
imum value point of the posterior mean of the objective
function and choose its corresponding codeword [13]. Thus,
the exploration-based searching strategy can be applied, which
tends to search the regions of high uncertainty. In other words,
its goal is to reconstruct the entire unknown objective function
as accurately and quickly as possible.

Specifically, to reduce the uncertainty of the estimated
objective function, the main objective is to maximize the
mutual information (or the information gain) between g and
gΩ, which can be expressed as

max I(gΩ;g) = H(gΩ)−H(gΩ|g)

= log

∣∣∣∣Idim(Ω) +
1

σ2
ΣΩ

∣∣∣∣ , (22)

where H(·) denotes the entropy and for a Gaussian distri-
bution, H(N(µ,Σ)) = 1

2 log |2πeΣ|. However, solving the
problem (22) is NP-hard. It can be approximated by an ef-
ficient greedy algorithm based on Gaussian process regression
(GPR) [13]. Specifically, we set F (Ω) = I(gΩ;g) and set the
posterior variance as the acquisition function, i.e.,

V explore(x) = σx. (23)

Therefore, the exploration-based searching strategy can be
expressed as

xt+1 = argmax
x∈Ωt

V explore
t (x) = argmax

x∈Ωt

σt(x), (24)

where Ωt = {x1, . . . ,xt}. Besides, this strategy can guarantee
at least a constant fraction of the optimal information gain after
T rounds of searching [13], i.e.,

F (ΩT ) ≥ (1− 1

e
) max
|Ω|≤T

F (Ω), (25)

where ΩT = {x1, . . . ,xT }. The main strength of this
exploration-based strategy is that it can reconstruct the en-
tire objective function accurately and quickly by gradually
reducing the uncertainty which prevents plunging into a local
optimal solution. However, it may search for many ”worthless
points” and increase searching overhead.

3) Exploration-exploitation Balanced Strategy: Based
on the above analysis, a exploration-exploitation balanced
strategy should be adopted, which can dynamically trade
off between bringing performance improvement and reducing
uncertainty when determining the next codeword. Thus, corre-
sponding acquisition function V balanced(x) of the exploration-
exploitation balanced strategy should be determined and three
effective functions are discussed as follows.
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A) Probability of improvement (PI): A typical acquisition
function of this strategy is called probability of improvement
[10], which can be expressed as

PI(x) = P (g(x) ≥ g(x+) + ξ)

= Φ

(
µx − g(x+)− ξ

σx

)
,

(26)

where Φ(·) denotes the normal cumulative distribution func-
tion (CDF), g(x+) = argmax

xi∈Ωt

g(xi), and ξ denotes the ad-

justable parameter. It is recommended in that ξ should decrease
gradually throughout the entire search process. Specifically,
when ξ is enough high early, it tends to search the regions of
high uncertainty and the exploration-based strategy dominates.
When ξ becomes 0, the exploration-exploitation balanced
strategy is transformed into the exploitation-based strategy.

B) Expected improvement (EI): Another acquisition func-
tion of the exploration-exploitation balanced strategy is ex-
pected improvement, which considers both the probability and
degree of the improvement [10]. Specifically, the expected
improvement acquisition function can be expressed as

EI(x)=

{
(µx−g(x+)−ξ)Φ(Z)+σxϕ(Z), σx > 0
0, σx = 0,

(27)

where

Z =

{
µx−g(x+)−ξ

σx
, σx > 0

0, σx = 0,
(28)

ϕ(·) and Φ(·) denote the probability density function (PDF)
and CDF of the standard normal distribution and ξ is the
adjustable parameter like in (26).

C) Gaussian process upper confidence bound (GP-UCB):
Additionally, Gaussian process upper confidence bound is
widely used as the acquisition function, which measures the
quality of the codeword searching by quantifying regret [13].
Specifically, the goal of BRBT can be expressed as

x∗ = argmax
x∈W

g(x), (29)

where x∗ denotes the optimal codeword. One equivalent
method for (29) is to minimize the cumulative regret, which
can be expressed as

RT =

T∑
t=1

rt, (30)

where rt = g(x∗) − g(xt). However, solving (29) or mini-
mizing the RT is NP-hard. Thus, GP-UCB can be applied as
the acquisition function, which can be expressed as

GP−UCB(x) = µt−1(x) +
√
βtσt−1(x), (31)

where βt is a adjustable hyperparameter, which balances
exploration and exploitation. Besides, βt is usually set as:
βt = 2 log(|W|t2π2/6δ), where δ ∈ (0, 1). Different from the
classical multi-armed bandit problem, the regrets of the GP-
UCB algorithm is highly correlated to the kernel matrix Σ. It
has be proven in [13] that the cumulative regret of GP-UCB

algorithm is bounded and sublinear for T with high probability,
which means each round of regret could gradually decrease to
choose the better point, i.e., limT→∞

RT

T = 0.
For the computational complexity of the GP-UCB algo-

rithm, it is mainly composed of the iterative update of
GP−UCB(x) and selecting optimal codeword after the itera-
tion. Specifically, for the iterative update of GP−UCB(x), its
computational complexity is O

(
T 2

(
T 2 + |W|T + |W|2

))
,

according to (18) and (31). For selecting optimal codeword
after the iteration, the computational complexity is O (|W|).

IV. SIMULATION RESULTS

In this section, simulation results are carried out to verify
the performance of the proposed near-field BRBT scheme.
The number of the BS antennas is N = 256, the carrier
frequency is 30 GHz and the spacing between array elements is
d = λ

2 = 0.5 cm. For simplicity, we consider the single-user
beam training scenario and the user is randomly distributed
in a sector, where the spatial angle range and distance range
are [−π

3 ,
π
3 ] and [4 m, 80 m], respectively. The complex path

gain of the LoS path is α ∼ CN (0, 1). Moreover, for the
proposed near-field BRBT scheme, we set the hyperparameters
of the squared exponential kernel as α2 = 1 and η2 = 2

∆index
,

where ∆index =
√

∆2
θ +

1
∆2

r
, ∆θ and ∆r denote the angle and

distance sampling steps of the near-field codebook. Without
loss of generality, in this paper we adopt the exploration-
exploitation balanced strategy and select GP-UCB as the
acquisition function for the proposed near-field BRBT scheme
and set δ = 0.1 of βt.

First, the achievable rate performance of different schemes
against the beam training overhead is shown in Fig. 3, where
SNR = 10 dB and the beam training overhead increases
from 0 to 1280. It can be shown that the proposed near-field
Bayesian regression-base beam training scheme only needs 50
overhead to almost achieve the performance of the near-field
exhaustive searching scheme, which can reduce almost 96%
of the overhead of the near-field exhaustive searching scheme.
Specifically, for the near-field two-phase and hierarchical
beam training scheme, their beam training overhead are still
strongly related to the size of the codebook and are usually
unacceptable when the size of the codebook in XL-MIMO
systems is large. For our proposed scheme, it can perform
well with low overhead. This is because it fully utilizes the
correlation between different codewords and when the number
of transmitting pilots increases, the reconstructed objective
function in Bayesian regression becomes more accurate and
the optimal codeword can be quickly determined.

Besides, the achievable rate performance of different
schemes against the SNR is shown in Fig. 4. Specifically, it
can be shown that the proposed scheme can almost achieve
the performance of the near-field exhaustive searching scheme
and outperform the near-field two-phase and hierarchical beam
training scheme. For the near-field two-phase scheme in [5],
as it applies DFT codebook in the first phase, the near-field
energy spread effect affects the accurracy of angle searching
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Fig. 3. Achievable rate performance vs. the beam training overhead.

and causes the performance loss. For the near-field hierarchical
scheme in [6], as the wide beam is easily affected by noise,
it faces the serious performance degradation at low SNR. The
proposed scheme can exclude the influence of the above two
factors and perform well.

V. CONCLUSIONS

In this paper, we first apply Bayesian regression into near-
field beam training and propose a Bayesian regression-based
near-field beam training scheme. Different from the existing
near-field beam training schemes, the proposed scheme models
the problem of selecting the optimal codeword in near-field
beam training problem as finding the maximum value point
of the posterior mean of the objective function in Bayesian
regression, which fully utilized the correlation between near-
field codewords to reduce the training overhead. Simulation
results confirm that the efficiency of the proposed scheme,
which only requires searching for a few codewords instead of
the entire codebook to select the optimal codeword.

10 12 14 16 18 20 22 24 26 28 30

SNR (dB)

9

10

11

12

13

14

15

16

17

18

A
c
h
ie

v
a
b
le

 R
a
te

 (
b
is

/s
/H

z
)

Far-field exhaustive beam training

Near-field exhaustive beam training

Two-phase near-field beam training

Near-field hierarchical beam training

Proposed Bayesian regression-based beam training

19 19.5 20 20.5 21

13

13.5

14

14.5

Fig. 4. Achievable rate performance vs. the SNR.

ACKNOWLEDGMENT

This work was funded by the National Science Fund for
Distinguished Young Scholars (Grant No. 62325106).

REFERENCES

[1] Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K. B.
Letaief, and H. V. Poor, “A tutorial on extremely large-scale MIMO for
6G: Fundamentals, signal processing, and applications,” IEEE Commun.
Surv. Tutor., 2024.

[2] K. Chen, C. Qi, C.-X. Wang, and G. Y. Li, “Beam training and tracking
for extremely large-scale MIMO communications,” IEEE Trans. Wireless
Commun., vol. 23, no. 5, pp. 5048–5062, May 2024.

[3] M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO
communications for 6G: Fundamentals, challenges, potentials, and future
directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.

[4] M. Cui and L. Dai, “Channel estimation for extremely large-scale
MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4,
pp. 2663–2677, Apr. 2022.

[5] Y. Zhang, X. Wu, and C. You, “Fast near-field beam training for
extremely large-scale array,” IEEE Wireless Commun. Lett., vol. 11,
no. 12, pp. 2625–2629, Dec. 2022.

[6] Y. Lu, Z. Zhang, and L. Dai, “Hierarchical beam training for extremely
large-scale MIMO: From far-field to near-field,” IEEE Trans. Commun.,
vol. 72, no. 4, pp. 2247–2259, Apr. 2024.

[7] X. Shi, J. Wang, Z. Sun, and J. Song, “Spatial-chirp codebook-based
hierarchical beam training for extremely large-scale massive mimo,”
IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 2824–2838, Aug.
2024.

[8] W. Liu, H. Ren, C. Pan, and J. Wang, “Deep learning based beam
training for extremely large-scale massive MIMO in near-field domain,”
IEEE Commun. Lett., vol. 27, no. 1, pp. 170–174, Jan. 2023.

[9] X. Zhang, H. Zhang, C. Li, Y. Huang, and L. Yang, “Environment-
specific beam training for extremely large-scale MIMO systems via
contrastive learning,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2638–
2642, Oct. 2023.

[10] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[11] Z. Zhang, J. Zhu, L. Dai, and R. Heath Jr, “Successive bayesian
reconstructor for channel estimation in fluid antenna systems,” arXiv
preprint arXiv:2312.06551, 2024.

[12] S. Yang, B. Liu, Z. Hong, and Z. Zhang, “Bayesian optimization-based
beam alignment for mmwave MIMO communication systems,” in 2022
IEEE PIMRC. IEEE, 2022, pp. 825–830.

[13] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-
theoretic regret bounds for gaussian process optimization in the bandit
setting,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3250–3265, May
2012.

2025 IEEE International Conference on Communications (ICC): Wireless Communications Symposium

1729
Authorized licensed use limited to: Tsinghua University. Downloaded on September 30,2025 at 07:47:37 UTC from IEEE Xplore.  Restrictions apply. 


