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Abstract— Electromagnetic information theory (EIT) is one of
the emerging topics for 6G communication due to its potential to
reveal the performance limit of wireless communication systems.
For EIT, the research foundation is reasonable and accurate
channel modeling. Existing channel modeling works for EIT in
non-line-of-sight (NLoS) scenario focus on far-field modeling,
which can not accurately capture the characteristics of the
channel in near field. In this paper, we propose the near-field
channel modeling scheme for EIT based on electromagnetic
scattering theory. We model the channel by using non-stationary
Gaussian random fields and derive the analytical expression
of the correlation function of the random fields. Furthermore,
we analyze the characteristics of the proposed channel model,
e.g., channel degrees of freedom (DoF). Finally, we design a
channel estimation scheme for near-field scenario by integrating
the electromagnetic prior information of the proposed model.
Numerical analysis verifies the correctness of the proposed
scheme and shows that it can outperform existing schemes like
least square (LS) and orthogonal matching pursuit (OMP).

Index Terms— Electromagnetic information theory (EIT),
near field, channel modeling, Gaussian random field, channel
estimation.

I. INTRODUCTION

TO IMPROVE the system performance, various promising
technologies, including reconfigurable intelligent surfaces

(RISs) [1], [2], continuous-aperture multiple-input multiple-
output (CAP-MIMO) [3], [4], and near-field communi-
cations [5], [6], have been recently investigated for the
sixth-generation (6G) communication. All these technologies
try to explore new sources of degrees of freedom (DoF) or
capacity gain for performance improvement. The performance
gain actually comes from more accurate understanding and
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precise manipulation of electromagnetic fields which convey
information [7]. Therefore, combining classical electromag-
netic theory and information theory to provide modeling and
capacity analysis tools is of great importance for exploring
the fundamental performance limit of wireless communication
systems, which leads to the interdisciplinary subject called
electromagnetic information theory (EIT) [8]. By integrating
deterministic physical theory and stochastic mathematically
theory [9], EIT is expected to provide new insights into system
models, degrees of freedom, capacity limits, etc., from the
electromagnetic perspective.

A. Prior Works

The existing research directions of EIT includes channel
modeling schemes [10], [11], [12], DoF analysis [13], [14],
[15], mutual information and capacity analysis [16], [17],
[18], etc. Among these directions, channel modeling is the
fundamental part. Without precise channel model, DoF and
capacity of EIT can not be accurately analyzed.

For the channel modeling schemes of EIT, one approach
is line-of-sight (LoS) modeling scheme directly derived
from Maxwell’s equations, and the channel is expressed
by the Green’s function in free space [10], [11] or
considering reflection from a surface [12]. Another approach
considers non-line-of-sight (NLoS) channel, which obeys the
electromagnetic scattering theory [19]. Compared to LoS
channel, NLoS channel is more general and can support larger
degrees of freedom in wireless communication. Due to the
complexity and uncertainty of the scattering environment,
the NLoS channel is often modeled by random fields,
whose statistical characteristics are derived from the scattering
environment [20]. For example, an isotropic statistical channel
model was derived in [21], where correlation exists between
different points of the received field. This model can be
viewed as an extension of the traditional independent and
identically distributed (i.i.d.) Rayleigh fading channel model.
Furthermore, a more general scheme for constructing small-
scale fading channel was provided in [22], where the
received electromagnetic field was expanded by Fourier plane
waves. This model is based on the spatially stationary
fields, where the correlation function of the random fields
only depends on the distance vector between two points.
Further work in [23] discussed the MIMO model under the
same assumption and simulated the capacity change with
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the antenna density [20]. An extended work [24] derived
approximate analytical correlation function based on [22],
leading to a non-isotropic channel model.

The above works have well analyzed the model of
spatially stationary channel for EIT. The spatial stationarity
is mathematically equivalent to the independence of the
incoming waves at different angles. In the far-field, each
scatterer corresponds to a single direction for the incident
waves on the receiver, which matches this assumption
well. However, for the use of middle-band, millimeter-
wave and terahertz technologies, and extremely large antenna
aperture [25], near-field effect becomes obvious and such
approximation is not accurate any more, where spatially non-
stationary model can better capture the channel characteristics.
Approximating the channel model in the near field by spatially
stationary fields may introduce non-negligible errors in
channel estimation, antenna pattern design, capacity analysis,
etc. Therefore, an accurate channel modeling scheme for the
EIT in NLOS scenarios is needed.

B. Our Contributions

Different from the existing works, in this paper, we propose
a near-field spatially non-stationary channel modeling scheme
and the corresponding channel estimation scheme for EIT.1

Specifically, the contributions of this paper are summarized as
follows:
• We propose a near-field channel modeling scheme for

EIT based on the electromagnetic scattering theory. The
channel is modeled by zero-mean Gaussian random fields,
so its correlation function can fully describe the channel.
Then, an approximate analytical expression of the corre-
lation function of the channel is derived, and its approx-
imation accuracy is verified by numerical simulations.

• We analyze the characteristics of the proposed near-field
channel model. We show how to generate one sample
of the random field channel model. Then, we show the
fitness of our analytical model to the channel generated
by widely used clustered delay line (CDL) model by
using quasi-Newton algorithm. Finally, we analyze how
the parameters of the model affect the accuracy and
degree of freedom (DoF) of the channel.

• We design a channel estimation scheme by integrating
the electromagnetic prior information of the proposed
channel model. Numerical simulations show that the
designed channel estimation scheme outperforms existing
schemes like LS and OMP.

C. Organization and Notation

Organization: The rest of this paper is organized as follows.
In Section. II, we provide the electromagnetic model of
NLoS channel based on the electromagnetic scattering theory.
Then, in Section. III, we derive an approximated analytical
expression of the correlation function of the channel based
on the electromagnetic model. In Section. IV, we analyze the
characteristics of the proposed model, including fitness to CDL

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html

model, DoF, etc. Based on the proposed model, in Section. V
we design a near-field channel estimation scheme and verify
its correctness by numerical simulations. Finally, in Section.
VI we provide the conclusions and possible future directions
of our work.

Notation: bold uppercase characters denote matrices; bold
lowercase characters denote vectors; the dot · denotes
the scalar product of two vectors, or the matrix-vector
multiplication. E [x] denotes the mean of random variable x;
ϵ0 is the permittivity of a vacuum, µ0 is the permeability of
a vacuum, and c is the speed of light in a vacuum; ∗ denotes
the convolution operation, and F [f(x)] denotes the Fourier
transform of f(x); Jm(x) is the mth order Bessel function of
the first kind; Im(x) is the mth order modified Bessel function.
⌊x⌋ represents rounding x down. det(·) denotes the matrix
determinant or the Fredholm determinant; AS represents the
area of S.

II. ELECTROMAGNETIC MODEL FOR SCATTERING FIELD

Maxwell’s equations are the fundamental physical laws
of the electromagnetic system. For the characteristics of
the scattering system, we can consider the scatterers as
spatial non-uniformity of the electromagnetic characteristics
like permittivity ϵ and permeability µ. We adopt the time-
harmonic assumption which assumes that the electromagnetic
waves oscillate on a single frequency point. Then we have
E(r, t) = E(r)e−jωt, and the partial derivative ∂/∂t can be
replaced by −jω [26]. From the Maxwell’s equations, we have

∇×E(r) = jωµ(r)H(r), (1a)
∇×H(r) = −jωϵ(r)E(r) + J(r), (1b)
∇ · (ϵ(r)E(r)) = ρ(r), (1c)
∇ · (µ(r)H(r)) = 0, (1d)

where ϵ(r), µ(r) and ρ(r) represents the permittivity, perme-
ability and charge density at the position r. In homogeneous
media, ϵ(r) and µ(r) will be constant, which is often used
in light-of-sight channel modeling in the free space. Now we
are considering inhomogeneous media, which can express the
electromagnetic characteristics of scattering fields [19].

Through derivations and several assumptions, we express
the source-destination relationship using scalar wave field as
follows

E(r) = jωµ0

∫
Vs

g(r, r′)J(r′)dr′

+
∫

V

g(r, r′)(k2(r′)− k2
0)E(r′)dr′, (2)

where g(r, r′) = 1
2π

ejk0∥r−r′∥

∥r−r′∥ , k(r) = ω
√

µ(r)ϵ(r), Vs is the
source region and V is the scattering region, k(r) = k0 outside
the region V . Detailed derivations are shown in Appendix A.

The equation (2) is an extension from the 2-dimensional
case in [27]. Here we can view the first item in (2) as the
line-of-sight component of the field which is fixed and well-
studied. Then we will focus on the second item in (2) which
highly relies on the characteristics of the inhomogeneity of
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Fig. 1. The three-dimensional near-field statistical channel modeling where
the scatterers are located in solid circles.

the space. The inhomogeneity of the space depends on the
complicated factors such as surface structure and material
properties of the medium which are hard to analytically model
and may change over time. Therefore, a statistical model will
be more suitable to depict the characteristics of the field than
deterministic modeling scheme.

III. CHANNEL MODEL BASED ON NON-STATIONARY
RANDOM FIELDS

In this section, we will derive the channel model for EIT
based on the electromagnetic scattering theory explained in the
above section. The channel is modeled as Gaussian random
fields to tolerate the uncertainty of the inhomogeneity of the
space [28]. In our model the received field can be viewed as
weighted superposition of spherical waves other than plane
waves in [22]. Therefore, it is suitable for both near-field and
far-field communications by considering distances between
antenna array and scatterers besides the azimuth and elevation
angles.

A. Mathematical Derivation of the Analytical Model

By omitting the first item in (2) which represents the
deterministic line-of-sight component, we have

RE(r1, r2) = E
[ ∫

V

∫
V

g(r1, r′1)g
∗(r2, r′2)(k

2(r′1)− k2
0)

× (k2(r′2)− k2
0)E(r′1)E

∗(r′2)dr
′
1dr

′
2

]
, (3)

where in the rest part of the paper we express R(r1, r2) as the
abbreviation of RE(r1, r2). To derive a closed-form expression
of the channel model we need to have some assumptions on
the scattering field to do simplifications on (3). The electric
field E(r′) in the scattering region has uncertainty due to the
uncertainty of the current density in the source region. In the
most rigorous way it should be numerically calculated from
electromagnetic equations. Here for the ease of analysis we
assume that it obeys a given distribution. Then we can build
the channel model between the scatterers and the receiver by
deriving the statistics of the received electric field. This scheme
views the scatterers as equivalent sources, which is used in
some theoretical analysis schemes for system performance.

In the rest part of the paper we will use the extreme case that
E [E(r′1)E

∗(r′2)] = βδ(r′1 − r′2). Further works can be done
by considering more general models like exponential type of
spatial correlation function to achieve better fitness to practical
scenarios. Then, the channel correlation function reduces to

R(r1, r2) = β

∫
V

g(r1, r′)g∗(r2, r′)(k2(r′)− k2
0)

2dr′. (4)

We further assume that the scattering region V is distributed
in a solid circle, centering at d and perpendicular to µ̂,
which means that µ̂T(r′ − d) = 0. Here µ̂ represents the
direction of the scattering surface. The practical meaning of
such assumption is that the scatterer faces receivers at a certain
angle. The radius of the circle is rs. For the item (k2(r′)−k2

0)
2,

we view it as the gain of electromagnetic waves reflected from
the surface of scatterer. Specifically, we model it by

f(r′) = (k2(r′)− k2
0)

2 =


a + 1

πr2a+2
s

(r2
s − ρ2)a |ρ| ⩽ rs,

0 otherwise,

(5)

where ρ = r′ − d, ρ = ∥ρ∥, and a is a parameter
characterizing the concentration of scatterer around the central
point. This assumption for f(r′) is heuristic, which aims
at providing a general model to cover different shapes of
scatterers. By changing the parameter a, the scatterer varies
from ring to single point. For example, when a = 0, the
scattering region is a uniform circular surface used in [29].
When a → −1, the scatterer approximates a ring as in [30].
When a → +∞, the scattering region shrinks to a single point,
which is widely adopted in existing works for near-field [31].
Then, we can express the correlation function by

R(r1, r2) = β

∫
V

ejk∥r1−r′∥

4π∥r1 − r′∥
e−jk∥r2−r′∥

4π∥r2 − r′∥
f(r′)dr′. (6)

These assumptions provide some restrictions on the pattern
of permittivity and permeability in the space, which may not
cover every type of scatterer structures and materials. Further
works can be done to explore more general cases of the spatial
inhomogeneity.

To facilitate the derivation procedure, we choose a
coordinate rotation T which satisfies Tµ̂ = êx. Then we have
a new rotated coordinate where µ is the x axis. The center of
the scatterer is located at Td, and the receiving locations are
Tr1 and Tr2. One point in the scattering region is located at
Td + Tρ, where Tρ = [ρ cos θ, ρ sin θ, 0]. Here we denote
two directions µ̂1 and µ̂2 perpendicular to µ̂, which satisfies
µ̂T

1 µ̂2 = 0. Then we can denote Td by [d · µ̂,d · µ̂1,d · µ̂2].
Similarly, we have Tr = [r · µ̂, r · µ̂1, r · µ̂2]. The point in the
scattering point is located at [d · µ̂,d · µ̂1 + ρ cos θ,d · µ̂2 +
ρ sin θ]. The rotated coordinate system is shown in Fig. 2.

The distance between r and r′ is (7) and (8), shown at the
bottom of the next page, and

B(r) = d̂ · µ̂1 cos θ + d̂ · µ̂2 sin θ − r

d
r̂ · µ̂1 cos θ

− r

d
r̂ · µ̂2 sin θ. (9)
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Fig. 2. The rotated coordinate system with Tµ̂ = êx.

In the derivations above, several assumptions and sim-
plifications are provided to reduce the analysis complexity
and facilitate the derivation of an analytical result. These
assumptions and simplifications include that 1) spatially
uncorrelated incident field to the scatterer, which is an ideal
but mathematically friendly assumption, making the scatterers
as equivalent sources; 2) scattering region and gain function
both for analysis convenience and generality; 3) distance
is far larger than wavelength; 4) scalar electromagnetic
fields. By changing these assumptions or discarding these
simplifications, a more accurate and general model may be
obtained, which remains for further works.

Through mathematical derivations and simplifications,
we can derive the spatial correlation function of the channel in
the following lemma, where scatterer dimension is relatively
small compared to the distance:

Lemma 1 (Correlation Function of the Channel in Weak
Near-Field): Assuming that rs ≪ d, the correlation function
of the channel can be approximated by

R̃(r1, r2) =
β

8π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× (a + 1)2aΓ(a+1)(
√

Crs)−(a+1)Ja+1(
√

Crs),
(10)

where

C =
(

2π

λ

)2
(

d̂ · µ̂1√
A(r1)

− d̂ · µ̂1√
A(r2)

− r1

d

r̂1 · µ̂1√
A(r1)

+
r2

R

r̂2 · µ̂1√
A(r2)

)2

+
(

2π

λ

)2
(

d̂ · µ̂2√
A(r1)

− d̂ · µ̂2√
A(r2)

− r1

d

r̂1 · µ̂2√
A(r1)

+
r2

d

r̂2 · µ̂2√
A(r2)

)2

. (11)

Proof: See Appendix A.
Remark 1: Several assumptions made in this paper can

be found in the existing works. For example, it is assumed
in [32] that the distance is far larger than the wavelength.
The scalar wave fields are used in [22]. For the gain function,
by changing it we can cover different shapes of scatterers used
in existing works, like circle surface [29], ring [30], and single
point [31].

For the channel with multiple scatterers, the correlation
function can be expressed by

R(r1, r2) =
M∑

k=1

R̃k(r1, r2), (12)

where each R̃k(d1,d2) is constructed according to Lemma 1.
For the channel with a large scatterer, we can decompose it
to several small scatterers and express the channel in the form
of (12).

B. Numerical Verification of the Accuracy of the Analytical
Model

In this subsection, we will show the accuracy of the
analytical correlation function in Lemma 1. We set the
direction of the scattering region to the center of the array
as d̂ = [ 1√

3
, 1√

3
, 1√

3
]. The scattering region is perpendicular

to the direction µ̂ = [− 1√
3
, 1√

3
,− 1√

3
]. The concentration

parameter on the scatterer cluster is set to a = 0, which
corresponds to uniform distribution on the circle. For the
correlation between the received fields at two positions on
the receiving array, we fix one position at the center of the
array and another position at [0,±nydy,±nzdz] m, where
ny, nz ∈ IN , IN = {1, · · · , 100}, dy = dz = 0.025 m. The
wavelength λ is set to 0.05 m. We plot ∥R̃−R∥2F

∥R∥2F
, which is the

relative error between the approximated correlation matrix and
the accurate correlation matrix, in Fig. 3. We can find that the
approximation error is negligible compared to the value of the
corresponding correlation function when d is large enough or
rs is small enough. For example, when d is larger than 100 m
and rs is smaller than 3.5 m, the relative approximation error
is below 1%, which is tolerable in most cases.

IV. CHARACTERISTICS OF THE PROPOSED
CHANNEL MODEL

In this section, we will analyze and show the characteristics
of the derived channel model, which can reveal how the
scattering environment affects the system performance.

∥r− r′∥ =
√

(d · µ̂− r · µ̂)2 + (d · µ̂1 + ρ cos θ − r · µ̂1)
2 + (d · µ̂2 + ρ sin θ − r · µ̂2)

2

= d

√
A(r) + 2

ρ

d
B(r, ρ̂) +

(ρ

d

)2

, (7)

A(r) = 1 +
( r

d

)2

− 2
r

d

(
(d̂ · µ̂)(r̂ · µ̂) + (d̂ · µ̂1)(r̂ · µ̂1) + (d̂ · µ̂2)(r̂ · µ̂2)

)
, (8)
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Fig. 3. The correlation function plotted from the approximated analytical
expression.

A. One Realization of the Random Field

For the derived correlation function R(r, r′), we have the
following expansion R =

∑∞
i=1 λiϕi(r)ϕ∗i (r

′) from Mercer’s
theorem, where ϕ(r) is the solution of the following integral
equation

λiϕi(r) =
∫

V

R(r, r′)ϕi(r)dr, (13)

according to [33]. Then the received field can be constructed
by its Kosambi-Karhunen-Loève expansion

E(r) =
∞∑

i=1

ξiϕi(r), (14)

where λi = E[ξiξ
∗
i ]. For a noisy received field Y (r) = E(r)+

N(r) where RN (r, r′) = σ2δ(r−r′), the information that can
be obtained from the received field is I(E; Y ) =

∑
i log(1 +

λi

σ2 ) [18].
If we consider discrete samples of the continuous fields, for

a Ny×Nz array at the receiver, we can construct a correlation
matrix R ∈ C(NyNz)×(NyNz), where Rp,q = R(rp, rq),
rp =

[
0, ⌊p−1

Nz
⌋ − Ny−1

2 , mod (p− 1, Nz)− Nz−1
2

]
, and

rq =
[
0, ⌊ q−1

Nz
⌋ − Ny−1

2 , mod (q − 1, Nz)− Nz−1
2

]
. From the

correlation function of the received field, we can generate the
channel by h = LN, where L is the Cholesky decomposition
of the correlation matrix R, and N ∼ CN (0, I).

B. Fitness to the Statistics of Practical Model

In this part we will show the fitness of the proposed
model to the statistics of standard 3GPP TR 38.901 CDL
model [34]. Since CDL model is now widely used in 5G
new radio (5G NR) scenarios, the rationality of the proposed
analytical correlation function of the channel model can be
verified if it can well fit the statistics of the CDL model.
We simulate the field correlation of CDL-A and CDL-D
model, which represent strong scattering and weak scattering
scenarios separately. For the antenna array, we adopt 101 ×
101 array with λ/8 antenna spacing. We use the proposed

Fig. 4. Comparison between the field correlation of CDL-A, CDL-D and
the proposed coupling model.

analytical model with 3 scatterers to fit the field correlation of
the CDL models, which is shown in Fig. 4. We introduce the
metric f = ∥R̃−RCDL∥2F

∥RCDL∥2F
to depict the difference between the

CDL model and the proposed model, and use it as the loss
function to optimize the parameters of the proposed model.
Specifically, we adopt the quasi-Newton algorithm, where the
iteration scheme is

xk+1 = xk − αkHk∇f(xk), (15a)
qk = ∇f(xk+1)−∇f(xk), (15b)

Vk = I− qk(xk+1 − xk)T

qT
k (xk+1 − xk)

, (15c)

Hk+1 = VkHkVT
k +

(xk+1 − xk)(xk+1 − xk)T

qT
k (xk+1 − xk)

. (15d)

It is shown in Fig. 4 that the proposed model can fit the
statistical characteristics of CDL models with few parameters,
which verifies its correctness and generalization capability.
Then, we show the optimization procedure in Fig. 5, where
tolerable loss is achieved by 13 iterations under CDL-A
channel model and 56 iterations under CDL-D channel model.

Furthermore, we fit the proposed model to the model
generated by ray tracing scheme to show its fitness to practical
scenarios. The transceivers locate in Hong Kong, and the
paths between the transceivers are characterized by ray tracing
scheme, as shown in Fig. 6. We use quasi-Newton algorithm to
fit the proposed model to the model generated by ray tracing
scheme. The result is shown in Fig. 7. We can observe that
the proposed model can well rebuild the channel with limited
parameters.

The benefits of the proposed model is that it is analytical and
can be used to obtain the field correlation between any two
positions by direct and quick calculation, while the existing
models need a large amount of parameters. For example, the
widely-accepted CDL-A model has 23 scatterer clusters and
20 rays in each cluster. Therefore, it is accurate but very
complex, making it difficult for further analysis. Moreover,
the proposed model provides a correlation function expression
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Fig. 5. The loss function degrades when iteration number increases.

Fig. 6. The model built from ray tracing scheme in Matlab, which is based
on buildings in Hong Kong [35].

Fig. 7. Comparison between the proposed model and the model built from
ray tracing scheme.

of the received field. Therefore, it can be used in channel
estimation process to provide prior information for channel
estimator.

C. Impact of the Scatterer Size on the Channel

In this part, we will discuss the impact of the scatterer size,
how it affects the channel in the wavenumber domain, and
when it can not be neglected.

First note that in the scenario with far field approximation
the correlation function of the random channel can be
simplified to

R(r1, r2) = β

∫
V

ejk∥r1−r′∥

4π∥r1 − r′∥
e−jk∥r2−r′∥

4π∥r2 − r′∥
f(r′)dr′

rm→0
≈ β

∫
V

ejk(r′−r̂′·r1)e−jk(r′−r̂′·r2)

16π2∥r0 − r′∥2
f(r′)dr′

rs→0
≈ β

16π2∥r0 − r′0∥2
e−jkr̂′0·(r1−r2), (16)

where r0 is the position of the center of the receiver array,
r′0 is the position of the center of the scatterer, r1, r2 ∈ {r},
and rm = max∥r∥ is the radius of the antenna array. The
last approximation is based on the fact that for rs = 1

2n ,
where n ∈ Z+,

∫
V

f(r′)dr′ = 1. Moreover, when n → +∞,
f(r′) = 0 for any r′ ̸= r′0. Therefore, f(r′) approaches
δ(r′−r′0) when rs approaches 0. Therefore, the received field
under such approximation is a stationary field, which implies
that its correlation function only relies on the distance vector
between the two points. If we perform Fourier transformation
on the correlation function, we will obtain its power
spectrum in the wavenumber domain. To be more specific,
we have

∫ +∞

−∞

∫ +∞

−∞
R(∆r)ej(kyy+kzz)dydz

=
∫ +∞

−∞

∫ +∞

−∞
β0e

−j(r̂′xx+r̂′yy+r̂′zz)ej(kyy+kzz)dydz

= β0e
−jr̂′xxδ(ky − r̂′y)δ(kz − r̂′z). (17)

Therefore, the Fourier transform of the far-field correlation
function reveals the angular concentration of the scattering
regions in the wavenumber domain. A scattering region with
the azimuth angle θ and elevation angle ϕ will lead to a single
point [cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)] in the wavenumber
domain of the received field under far-field assumption.
If we sample the continuous received electromagnetic fields
to obtain a correlation matrix R ∈ CNy×Nz where Ri,j =
R(r0, r) and r = [0,±nydy,±nzdz], we can use Fourier
transform matrices F1 and F2 instead continuous Fourier
transform to find the angular sparsity of the correlation matrix
by F1RFH

2 . Specifically, the Fourier transform matrix F1 and

F2 can be constructed by F1,p,q = e
j 2k

Ny−1 (p−Ny+1
2 )(q−Ny+1

2 )dy

and F2,p,q = ej 2k
Nz−1 (p−Nz+1

2 )(q−Nz+1
2 )dz .

If the channel is sparse, from the law of large numbers,
we know that h has power peaks in wavenumber domain,
which can be used in channel estimation of reconstruction
procedure to improve the accuracy. Specifically, if we reshape
the vector h to a matrix Hp,: = hT

(p−1)∗Nz+1:p∗Nz,1, its
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sparsity in wavenumber domain can be expressed as follows:

E[|(F1HF2)p,q|2]

= E


∣∣∣∣∣∣
∑
p′

∑
q′

F1,p,q′Hp′,q′FH
2,p′,q

∣∣∣∣∣∣
2


= E

 ∑
p′1,p′2,q′1,q′2

F1,p,q′1
Hp′1,q′1

FH
2,p′1,qF

∗
1,p,q′2

H∗
p′2,q′2

FT
2,p′2,q


=

∑
p′1,p′2,q′1,q′2

e
j 2k

Ny−1 (p−Ny+1
2 )(q′1−q′2)dyR(r1, r2)

× ej 2k
Nz−1 (q−Nz+1

2 )(p′2−p′1)dz , (18)

where r1 = [0, (p′1 −
Ny+1

2 )dy, (q′1 − Nz+1
2 )dz] and r2 =

[0, (p′2 −
Ny+1

2 )dy, (q′2 − Nz+1
2 )dz] respectively. From (16)

it is easy to know that when rm and rs approximates 0,
E[|(F1HF2)p,q|2] will reaches a peak value compared to its
neighbors, which is in the form of products of sinc function
as the discretized form of (17).

For the near-field scattering scenario, the scattering region
will correspond to an area rather than a point in the
wavenumber domain. The shape of the area reflects the
size, directions and concentration parameters of the scattering
region. It is also worth noting that the area relates to
the concept called spatial bandwidth [13]. The larger the
area is, the larger the spatial bandwidth is, which provides
more possible DoF for the wireless communication system.
Further discussion about the DoF will be presented in the
following subsection. We plot the correlation function of a
generated channel in Fig. 8, and its Fourier transform in
Fig. 9. Three scattering regions are located in the space, with
coordinates d = [25, 25, 25] m, d = [25,−25, 50] m, and
d = [25,−25,−50] m separately. While little information can
be directly observed from the figure of the correlation function
of the received field, the Fourier transform of the correlation
function reflects its sparsity in the wavenumber domain. Three
shaded areas in Fig. 9 correspond to three scattering regions in
the settings, with their respective parameters labeled adjacent
to the shaded areas. It is shown that when R increases and
r decreases, the size of shaded areas will increase, which
corresponds to larger angular expansion in the wavenumber
domain. When a tends to infinity, the shaded area tends to a
single point. When a tends to −1, the shaded area tends to a
circle, which aligns with the definition of function f(r).

Then we will provide quantitative analysis to show how rs

influences the accuracy of the model and when it can not be
ignored. It is well known that the Rayleigh distance, also called
as Fraunhofer distance, is d = 8r2

m
λ , where d is the distance

from the antenna array, and rm = max∥r∥ is the radius of the
antenna array [36]. The Rayleigh distance is defined by the
distance where π

8 phase error is observed on the antenna array.
If we further consider the size of the scatterer, we have the
channel response as h(r′, r) = ej 2π

λ ∥r
′−r∥, where r′ = d + ρ

is the position of one point on the scatterer. In Lemma 2 we
extend the Rayleigh distance considering scatterers

Lemma 2 (Extension of Rayleigh Distance Considering
Scatterer Size): The size of scatterer can be neglected when

Fig. 8. The correlation function of the received field.

Fig. 9. The Fourier transform of the correlation function of the received
field. Three spots in the figure corresponds to three scattering regions in the
space.

rs ⩽ λ
16 and d ⩽ 8(rs+rm)2

λ−16rs
. Otherwise, the scatterer

size should be considered in the channel model. Under this
scenario, when d ⩽ 8(rs+rm)2

λ , the scatterer and the antenna
array are in the near-field region. When d ⩾ 8(rs+rm)2

λ , the
scatterer and the antenna array are in the far-field region.

Proof: See Appendix B.
From Lemma 2 we know that unless the scatterer is small

enough (for frequency of 1 GHz the radius of the scatterer
should be smaller than 0.0187 m), neglecting the size of the
scatterer and simply view it as a point will be inaccurate.
Therefore, considering parameters of scatterer is of necessity
in channel modeling especially in near-field communication
scenarios.

D. Channel DoF of the Proposed Model

In this subsection we will discuss how the parameters
influence the performance of the system from the degree of
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freedom (DoF) perspective. The DoF of the channel depends
on the eigenvalue distribution of the model. If the eigenvalue
decay rate is slow, there exist multiple subchannels that can
support communication at a certain rate, leading to greater
DoF. On the contrary, if few eigenvalues are obviously larger
than other eigenvalues, the DoF will be small [21].

We will first provide some insights of the DoF from
the spatial bandwidth [13] perspective and then verify
them by numerical analysis of the proposed model. The
spatial bandwidth characterizes the band-limiting effect of
electromagnetic fields in the wavenumber domain, which is
similar to the classical bandwidth that depicts a function’s
band-limiting effect in the frequency domain. The spatial
bandwidth shows the electromagnetic fields’ DoF through
spatial sampling. In [13], the scattered electromagnetic waves
E(r) are observed on an infinite line or region at the receiver.
In this paper we adopt scalar form of the electromagnetic field,
leading to E(r) =

∫
V

g(r, r′)(k2(r′)− k2
0)E(r′)dr′. We have

Ē(r) = E(r)e−jk0∥r∥ to single out the phase factor introduced
by the distance, and X(r) = (k2(r)−k2

0)E(r) on the scatterer
surface. Then we have

Ē(r) =
∫

V

ḡ(r, r′)X(r′)dr′, (19)

where ḡ(r, r′) = 1
2π

ejk0(∥r−r′∥−∥r∥)
∥r−r′∥ . For simplicity we focus

on the one-dimensional receiver and abbreviate Ē(r) as Ē(r),
ḡ(r, r′) as ḡ(r, r′), where r is along a chosen line determined
by r in the three-dimensional space. To show the how Ē(r)
is band-limited in the wavenumber domain, we introduce
Ēw(r) = Ē(r) ∗ sin wr

r which performs low-pass filtering on
F [Ē(r)]. Then we have

Ēw(r) =
∫

V

ḡw(r, r′)X(r′)dr′, (20)

where

ḡw(r, r′) =
1

2π2

∫ +∞

−∞

sin w(r − ξ)
r − ξ

ejk0(∥ξ−r′∥−∥ξ∥)

∥ξ − r′∥
dξ

a=
1

2π2j

∫
C+

ejw(r−ξ)

r − ξ

ejk0(∥ξ−r′∥−∥ξ∥)

∥ξ − r′∥
dξ

− 1
2π2j

∫
C−

e−jw(r−ξ)

r − ξ

ejk0(∥ξ−r′∥−∥ξ∥)

∥ξ − r′∥
dξ

+ ḡ(r, r′), (21)

in which a= is from the residue theorem, C+ and C− are two
paths above and below the real axis. The spatial bandwidth is
the minimum w that makes

∥∥Ē(r)− Ēw(r)
∥∥ small enough.

We have

∥∥Ē(r)− Ēw(r)
∥∥ =

[∫ +∞

−∞

∣∣Ē(r)− Ēw(r)
∣∣2 dr

] 1
2

⩽ max
r′

[∫ +∞

−∞
|∆ḡ(r, r′)|2 dr′

] 1
2

·
∫

V

|X(r′)|dr′, (22)

Fig. 10. Concerning the spatial bandwidth with respect to different µ̂.

where ∆ḡ = ḡ − ḡw is the item corresponds to the spatial
bandwidth w. We can further express it by

∆ḡ(r, r′) = − 1
2π2j

∫
C+

ejw(r−ξ)

r − ξ

ejk0(∥ξ−r′∥−∥ξ∥)

∥ξ − r′∥
dξ

+
1

2π2j

∫
C−

e−jw(r−ξ)

r − ξ

ejk0(∥ξ−r′∥−∥ξ∥)

∥ξ − r′∥
dξ.

(23)

The following part is similar to [13], which shows that

when w > max
∂(k0(∥ξ−r′∥−∥ξ∥))

∂ξ , ∆ḡ converges to 0 faster

than any power. Moreover, when w < max
∂(k0(∥ξ−r′∥−∥ξ∥))

∂ξ ,

∆ḡ ≈ ḡ. Therefore, w0 = max
∂(k0(∥ξ−r′∥−∥ξ∥))

∂ξ
can be chosen as the spatial bandwidth of the received
electromagnetic field. From geometrical analysis, it is easy

to find that the maximum of
∂(k0(∥ξ−r′∥−∥ξ∥))

∂ξ only depends
on the radius rs of the scatterer, and the inner structure of
the scatterer does not have obvious influence on the DoF.
Moreover, we can bound w0 by 2πrs

λ < w0 <
√

2 2πrs

λ ,
where rs is the radius of the scatterer. The lower bound of
w0 is achieved when µ̂ = µ̂0 satisfies the condition that the
corresponding scatterer surface is tangent to OF , as shown in
Fig. 10. When µ̂ ̸= µ̂0, the lower bound of w0 will be less
than 2πrs

λ . Specifically, we can obtain

w0 >
2πd

λ
2 sin

α

2
cos

α

2
=

2πd sin α

λ

=
2πd

λ

rs cos(α0 + θ)√
(d− rs sin(α0 + θ))2 + (rs cos(α0 + θ))2

=
2πd

λ

rs cos(α0 + θ)√
d2 + r2

s − 2drs sin(α0 + θ)
, (24)

where sin(α0) = rs

d and cos(θ) = µ̂ · µ̂0.
From the above analysis we know that the spatial bandwidth

and channel DoF mainly rely on the outermost layer of the
scattering region. To be more specific, smaller rs leads to
smaller scattering regions, which reduces the DoF. When a
is smaller than 0, the scattering region can be viewed as
the outermost circle combined with the inner part, and the

Authorized licensed use limited to: Tsinghua University. Downloaded on December 21,2024 at 10:13:48 UTC from IEEE Xplore.  Restrictions apply. 



18012 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2024

DoF will not change heavily with a. When all the scattering
power comes from the outermost circle, which plays the
most important role in affecting the DoF, the DoF will be
the largest. Therefore, the DoF reaches the maximum when
a approaches −1. For two-dimensional receiver adopted in
this paper, we can decompose the surface in two different
directions, each with spatial bandwidth w0.

Then, we plot the eigenvalues of the correlation matrix
when the radius and shape of the scattering region vary in
Fig. 11 and Fig. 12. We can observe that the DoF of the
channel will increase with the radius r of the scatterer, and
decrease when a increases. When a approximates −1, which
corresponds to the case that the scatterer tends to a ring, the
DoF of the channel reaches the maximum, which coincides
with the spatial bandwidth analysis.

Note that the spatial bandwidth analysis is based on
the infinitely large observation region of the received
electromagnetic fields. For practical scenarios with limited
observation region, the observed field can not be strictly band-
limited in the wavenumber domain. Moreover, the spatial
sampling using curvilinear abscissa will be non-uniform.
If performing uniform spatial sampling using curvilinear
abscissa, electric field on an infinite observation line has
infinite DoF according to the above analysis using spatial
sampling, which is even larger than the possible DoF the
source can provide. This problem is discussed in [37] and the
tool of cut-set integral is introduced to provide a more accurate
result. Results of the approximated DoF considering a closed
surface as the receiver that encloses the source are discussed
in [37], which we will follow to provide DoF bounds in the
scenario with square receiving surface.

Here we discuss a simple scenario that the line between the
center of the scatterer and the center of the receiving surface
is vertical to the receiving surface. We construct two spheres
concentric with the scatterer region. These spheres satisfy the
condition that the receiving surface is inscribed in a circle
C1 on the large sphere S1, and its four sides are externally-
tangent to a circle C2 on the small sphere S2, as shown in
Fig. 13. We denote the two spherical caps of S1 divided by
C1 as S′1 and S′′1 , where S′1 is the larger one. Similarly we have
S′2 and S′′2 . Since the information flows through any closed
surface that enclose the scatterer should be the same, we know
that the electromagnetic fields on C1 and S′′1 have the same
DoF, so as C2 and S′′2 . According to [37] we know that the
DoF on the sphere S1 and S2 are N0 = O(r2

s/λ2). From
symmetry on the sphere and simple geometry, the DoF N1 on
S′′1 can be expressed by

N1 ≈ N0

AS′′1

AS1

= N0
2π
√

d2 + r2
m(
√

d2 + r2
m − d)

4π(d2 + r2
m)

. (25)

Similarly we know that the DoF N1 on S′′1 can be expressed

by N2 ≈ N0
2π
√

2d2+r2
m(
√

2d2+r2
m−

√
2d)

4π(2d2+r2
m) . Then we have N2 ⩽

Nreceiver ⩽ N1. Note that when d ≫ rm, both N1 and
N2 approximates O( r2

sr2
m

λ2d2 ), which coincides with [38]. On the
contrary, if rm ≫ d, Nreceiver ≈ N0

2 , because it can be viewed
as an infinitely-large surface which gets half of the overall
electromagnetic waves out of the scatterer. Under this scenario

Fig. 11. The eigenvalues of the correlation matrix in decreasing order with d
fixed to [−100, 100,−100]m, µ fixed to [− 1√

3
, 1√

3
,− 1√

3
], and r = 5m.

The concentration parameter a varies.

Fig. 12. The eigenvalues of the correlation matrix in decreasing order with
d fixed to [−100, 100,−100]m, µ fixed to [− 1√

3
, 1√

3
,− 1√

3
], and a = 0.

The radius r varies.

the DoF has little relationship with the distance between the
scatterer and the receiver, which coincides with [13]. Here the
asymmetry introduced by µ̂ is not considered since it is hard to
evaluate. By considering this asymmetry a more accurate result
will be obtained. It is worth-noting that the effect of noise is
not included in the above analysis. When considering noise,
the subchannels correspond to singular values lower than the
noise level will be useless, leading to a modification of the
channel DoF [39].

V. CHANNEL ESTIMATION BASED
ON THE PROPOSED MODEL

After discussing the properties of the analytical channel
model, we will propose a near-field channel estimation scheme
based on the model. We first perform Fourier transformation
on the observed field to capture the power peaks in the
wavenumber domain. Then we use the proposed model,
which provides the prior information of electromagnetic
fields, to reconstruct an approximate channel correlation
function. This approach is similar to the subspace based
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Fig. 13. The receiving surface that is inscribed in C1 and externally-tangent
to C2, where C1 and C2 are on S1 and S2 separately.

channel estimation scheme in [24], which constructs the
correlation function based on isotropic scattering field.
Compared to [24], our scheme provides more prior information
of electromagnetic fields of the fields by using the proposed
channel model. Therefore, it can achieve better performance
than the existing schemes. In the channel estimation procedure,
the received field is denoted by y =

√
Ph+n, where P is the

signal-to-noise ratio, h is generated from the channel coupling
matrix, and n ∼ CN (0, I) is the noise vector.

A. LS Channel Estimation

The simplest channel estimation scheme is the least square
(LS) channel estimation, which leads to h̃ = y/

√
P .

B. OMP Based Channel Estimation

Another widely-used scheme is orthogonal matching pursuit
(OMP) [40], which performs well when the signal is
sparse. For the transform matrix W in the three-dimensional
domain, we adopt the codebook in [6]. Since the three-
dimensional codebook provide approximate orthogonal basis
for the near-field channel, it fully exploits the angular
and distance information of the channel. We have y =
Whm + n, and the three-dimensional near-field (TDN)
OMP algorithm for the channel estimation problem is shown
in Algorithm 1.

Algorithm 1 TDN OMP
Input:

y % the received pilot
L % number of paths
W % the three dimensional codebook

Output:
h̃ % the estimated channel

1: Initialization: Y = y, γ = {∅}
2: for l ∈ {1, 2, · · · , L} do
3: Calculate the correlation matrix: Γ = WHY
4: Detect new support: p∗ = argmaxp |Γp|
5: Update support set: γ = γ ∪ p∗

6: Pseudo inverse: W† = (WT
:,γW:,γ)−1WT

:,γ

7: Orthogonal projection: hP = W†y
8: Update residual: Y = Y −W:,γhP

9: h̃ = W:,γhP

10: return h̃

C. Subspace Based Channel Estimation

From [24] it is known that we can estimate a channel by
using the subspace of an omni-directional channel model.
When isotropic scattering environment is considered, the
correlation function at the receiver is assumed to be

R(r1, r2) = sinc
(

2∥r1 − r2∥
λ

)
. (26)

Then, the coupling matrix R is sampled from the correlation
function. A compact eigenvalue decomposition is performed
on R to obtain R = U1Λ1UH

1 , where Λ1 contains the non-
zero eigenvalues of R. The channel estimator is expressed by

h̃ = U1UH
1 y/

√
P . (27)

In fact, if we further utilize the information contained in the
eigenvalues of R, the estimation precision can be improved,
which corresponds to the channel estimator

h̃ =
√

PU1(PΛ1 + I)−1UH
1 y. (28)

D. Proposed Channel Estimation Scheme

We propose a channel estimation scheme based on the
sparsity of the channel model. By reshaping channel vector
to Hp,q = h(p−1)∗n+q , we obtain matrix H which has
sparsity in the wavenumber domain according to Section IV.
Therefore, we can detect the peaks in the wavenumber domain
to capture the directions of the incident waves. Then we
can generate an approximate near-field correlation matrix of
the electromagnetic field. The generation procedure of the
approximated correlation matrix is shown in Algorithm 2.
After obtaining the approximate correlation matrix, we then
use the following estimator h̃ =

√
P R̂(P R̂ + I)−1y.

Here for simplicity we only design the correlation matrix
based on the estimated incident wave direction. Obviously,
the approximation of the correlation matrix can be improved
by further estimating or optimizing the parameters r, a and
µ. In fact, the estimation error when using an approximated
correlation matrix R′ instead of the true correlation matrix R
can be expressed by the following lemma:

Lemma 3 (Estimated Error When Using the Proposed
Scheme): The estimated error when using an approximated
correlation matrix is E

[
(h̃− h)H(h̃− h)

]
= tr

(
P (P I +

R̂−1)−1(P I+R̂−1)−1(PR+I)−2PR(P I+R̂−1)−1 +R
)

.
Proof: See Appendix C.

Corollary 1: When P → 0, the estimated error will
approach tr(R). When P → ∞, the estimated error will
approach 0 whatever the approximate correlation matrix R̂
is. Therefore, the performance limit with extremly high or low
SNR does not depend on the choice of R̂. However, for general
P , the approximation error will reach the minimum value when
R̂ = R, which corresponds to the classical minimum mean
square error (MMSE) channel estimator with full information
of the distribution of the electromagnetic fields.

In Fig. 14 we have shown the performance comparison
between different channel estimation schemes shown above.
Here we use the proposed near-field channel model to generate
the channel realizations, where four scattering regions exist
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Algorithm 2 NFS Correlation Function Generator
Input:

y % the received pilot
Ny, Nz % number of antennas
dy, dz % antenna spacing
F1,F2 % Fourier transform matrix
λ % wavelength
η % threshold
d, r, a, µ % fixed parameters for simplicity

Output:
R̂ % the constructed correlation matrix

1: Vector to matrix: Yp,: = yT
(p−1)∗Nz+1:p∗Nz,1

2: Fourier transform on both sides: Y′ = F1YFH
2

3: Average value: ¯|Y′| = sum (|Y′|) /NyNz

4: Initialization: R = zeros(NyNz, NyNz), Φ = ∅
5: Peak value selection:
6: for p = 1 : Ny do
7: for q = 1 : Nz do
8: if |Y′

p,q| > max
(
|Y′

p±1,q±1|, η ¯|Y′|
)

then
9: ky = Ny−1−2∗p

Ny−1

10: kz = 2∗q−Nz+1
Nz−1

11: d = d ∗ [
√

2π
λ

2 − k2
y − k2

z , ky, kz]T

12: Φ = Φ ∪ {d}
13: for p = 1 : NyNz do
14: for q = 1 : NyNz do
15: r1z = mod(p− 1, Nz)− Nz−1

2

16: r2z = mod(q − 1, Nz)− Nz−1
2

17: r1 =
[
0, ⌊p−1

Nz
⌋ − Ny−1

2 , r1z

]
18: r2 =

[
0, ⌊ q−1

Nz
⌋ − Ny−1

2 , r2z

]
19: Generate the correlation function R according
20: to Lemma 1 based on Φ
21: R̂p,q = R(r1, r2)
22: return R̂

in the space. We set the antenna array to be 41 × 41 with
λ/8 antenna spacing. The wavelength of the electromagnetic
field is set to 0.2 m. Specifically, we plot the normalized
mean square error (NMSE) ∥h̃−h∥

∥h∥ with the change of
SNR P . It can be observed that the proposed scheme
outperforms traditional schemes like OMP or subspace based
channel estimation scheme. For example, when NMSE equals
10−3, the proposed scheme achieves 12dB performance gain
compared to OMP scheme whose support set is 20. The
reason that the proposed scheme can outperform existing
schemes can be explained as follows. For the subspace based
channel estimation scheme, it considers the incident waves
from all directions, which covers the full wavenumber domain.
On the contrary, the proposed scheme focuses on a smaller
region in the wavenumber domain, thus providing a better
approximation of the true correlation function. For the OMP
scheme, note that it highly relies on the lattice points of
the electromagnetic field, it may not behave well in high
SNR region for h generated from the correlation function in
continuous space.

Fig. 14. Comparison of different channel estimation schemes for a
41 × 41 antenna array with λ/8 antenna spacing. The proposed channel
model is used.

Fig. 15. Comparison of different channel estimation schemes for a
81×81 antenna array with λ/8 antenna spacing. The CDL-D channel model
is used.

Furthermore, we have applied the proposed scheme on
CDL-D channel instead of the channel generated by our
correlation matrix to further verify its correctness. We adopt
a CDL-D channel model which has 81 × 81 size receiver
array with λ/8 antenna spacing. The wavenumber of the
electromagnetic field is set to be 0.4 m. The simulation
result is shown in Fig. 15. It can be observed that the
proposed channel estimation algorithm can also work under
classical channel model and outperform existing algorithms
like LS and subspace based channel estimation algorithm. For
OMP algorithm, its performance is better than the proposed
algorithm when SNR is lower than 10 dB. However, it will
still face error platform in the high SNR region, which can
be solved by using the proposed algorithm. For example, the
proposed scheme can achieve 5dB performance gain compared
to 40-points OMP when NMSE is fixed to 2× 10−3.

VI. CONCLUSION

In this paper, we propose the near-field channel modeling
scheme for EIT based on electromagnetic scattering theory.
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Then, we derive the analytical expression of the correlation
function of the fields and analyze the characteristics of it.
The proposed scheme can provide a more accurate analytical
channel model for EIT than the existing works especially in
near field. Finally, we design a channel estimation scheme for
near-field scenario. Numerical analysis verifies the correctness
of the proposed scheme and shows that it can outperform
existing schemes like LS, OMP, and subspace based channel
estimation schemes. Under CDL channel model, the proposed
scheme can achieve 5 dB performance gain when NMSE is
fixed to 2× 10−3 compared to 40-points OMP.

Further work can be done by integrating the proposed model
and traditional near-field model where some scatterers are
invisible to part of the array.

APPENDIX A
DERIVATION OF THE ELECTROMAGNETIC CHANNEL

MODEL

By performing ∇× on (1a), we have

∇× µ(r)−1∇×E(r) = ∇× (jωH(r)), (29)

which leads to the corresponding vector wave equation

∇× µ(r)−1∇×E(r)− ω2ϵ(r)E(r) = jωJ(r), (30)

where k(r) = ω
√

µ(r)ϵ(r) represents the inhomogeneous
media over a finite domain V according to [19], and jωJ(r)
represents the source field. Outside the domain V , the
wavenumber k(r) equals k0 = ω

√
µ0ϵ0. By subtracting

∇×µ−1
0 ∇×E(r)−ω2ϵ0E(r) from both sides and applying the

Green’s function, the received electric field can be expressed
by

E(r) = jω
∫

Vs

G(r, r′)µ0J(r′)dr′

+
∫

V

G(r, r′)(k2(r′)− k2
0)E(r′)dr′, (31)

where Vs is the source region which generates the signal, E(r′)
is the induced electric field in the inhomogeneous regions in
the space, and the dyadic Green’s function G is the solution
of the equation

∇× µ−1
0 ∇×G(r, r′)− ω2ϵ0G(r, r′) = µ−1

0 Iδ(r− r′).
(32)

Then, we can obtain the Green’s function as G(r, r′) =
1
4π

(
I + ∇r∇H

r

κ2
0

)
ejκ0∥r−r′∥
∥r−r′∥ , which can be further expressed

by [41]:

G(r, r′) =
1
4π

ejκ0∥r−r′∥

∥r− r′∥

[ (
I− p̂p̂H

)
+

j
2π ∥r− r′∥ /λ

(
I− 3p̂p̂H

)
− 1

(2π ∥r− r′∥ /λ)2
(
I− 3p̂p̂H

) ]
[m−1], (33)

where p̂ = r−r′

∥r−r′∥ . Here we assume that ∥r− r′∥ /λ ≫ 1,
which means that the receiver is in far-field of the

scatterer’s microstructure and holds true in general wireless
communication scenarios [32]. Then, we can omit the items
containing powers of 1

∥r−r′∥/λ . Since tr(I − p̂p̂H)(I −
p̂p̂H)H = 2 is a constant, the average power of the
electromagnetic field does not depend on the direction p̂ if
the energy of the source current is equally distributed in
all polarization directions. For simplicity, in this paper we
reduce the vector wave field to scalar wave field showing the
power of electric field averaged on all polarization directions.
Physically if we consider the electromagnetic fields on a
specific polarization direction â, an extra factor â(I−p̂p̂H)âH

should be added. Then we arrive at the source-destination
relationship under scalar wave field:

E(r) = jωµ0

∫
Vs

g(r, r′)J(r′)dr′

+
∫

V

g(r, r′)(k2(r′)− k2
0)E(r′)dr′, (34)

APPENDIX B
PROOF OF LEMMA 1

Based on the assumption that rs = maxρ ≪ d, we can
use the Taylor expansion to simplify ∥r1− r′∥ and ∥r2− r′∥.
First the item

(
ρ
d

)2
can be ignored. Then we can approximate

∥r − r′∥ by d

(√
A(r) + ρ

d
B(r,ρ̂)√

A(r)

)
. The Green’s function

g(r, r′) has amplitude item 1
4π∥r−r′∥ and phase item ejk∥r−r′∥.

For the distance item we further approximate it by 1

4πd
√

A(r)
.

Then, the correlation function of the received field can be
approximated by

R(r1, r2) ≈ R̃(r1, r2) = β

∫
V

1
16π2d2

√
A(r1)A(r2)

× e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× e
j 2π

λ ρ

(
B(r1,ρ̂)√

A(r1)
−B(r2,ρ̂)√

A(r2)

)
f(r′)dr′, (35)

where f(r′)dr′ = a+1
πr2a+2

s
ρ(r2

s − ρ2)adρdθ. Specifically,
if a = 0, we have uniform distribution on the scatterer, where
f(r′)dr′ = ρ

πr2
s
dρdθ.

For the simple case with uniform distribution on the circle,
we have

R̃(r1, r2) = β
1

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

×
∫ rs

0

∫ 2π

0

e
j 2π

λ ρ

(
B(r1,ρ̂)√

A(r1)
− B(r2,ρ̂)√

A(d2)

)
ρ

πr2
s

dθdρ.

(36)

We first focus on the integral on the angle θ. Since B(r, ρ̂)
contains the exponentionals of cos θ and sin θ, we adopt the
[42, Eq. (3.937)] which shows that∫ 2π

0

ep cos x+q sin xej(a cos x+b sin x−mx)dx

= 2π[(b− p)2 + (a + q)2]−
m
2 (A− jB)

m
2 Im(

√
C + jD),

(37)
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where A = p2− q2 +a2− b2, B = 2pq +2ab, C = p2 + q2−
a2 − b2 and D = −2ap − 2bq. Comparing with the integral,

we have p = q = m = 0, a = 2π
λ ρ

(
d̂·µ̂1√
A(r1)

− d̂·µ̂1√
A(r2)

−

r1
d

r̂1·µ̂1√
A(r1)

+ r2
R

r̂2·µ̂1√
A(r2)

)
, b = − 2π

λ ρ

(
d̂·µ̂2√
A(r1)

− d̂·µ̂2√
A(r2)

−

r1
d

r̂1·µ̂2√
A(r1)

+ r2
d

r̂2·µ̂2√
A(r2)

)
. Then, we can obtain

R̃(r1, r2) = β
1

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 2
r2
s

∫ rs

0

I0(jρ
√

C)ρdρ, (38)

where

C =
(

2π

λ

)2
(

d̂ · µ̂1√
A(r1)

− d̂ · µ̂1√
A(r2)

− r1

d

r̂1 · µ̂1√
A(r1)

+
r2

R

r̂2 · µ̂1√
A(r2)

)2

+
(

2π

λ

)2
(

d̂ · µ̂2√
A(r1)

− d̂ · µ̂2√
A(r2)

− r1

d

r̂1 · µ̂2√
A(r1)

+
r2

d

r̂2 · µ̂2√
A(r2)

)2

. (39)

Then, according to [42, Eq. (6.561)] we have

R̃(r1, r2) =
β

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 2
r2
s

∫ rs

0

J0(ρ
√

C)ρdρ

=
β

8π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 1
rs

√
C

J1(
√

Crs). (40)

If we adopt f(r′)dr′ = a+1
πr2a+2

s
ρ(r2

s − ρ2)adρdθ, according
to [42, Eq. (6.567)] we have

R̃(r1, r2) =
β

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 2π
a + 1

πr2a+2
s

∫ rs

0

J0(ρ
√

C)ρ(r2
s − ρ2)adρ

=
β

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 2(a + 1)
r2a+2
s

r2a+2
s

∫ 1

0

J0(ρ′rs

√
C)ρ′(1− ρ′)2dρ′

=
β

16π2d2
√

A(r1)A(r2)
e
j 2π

λ R
(√

A(r1)−
√

A(r2)
)

× 2(a+1)2aΓ(a+1)(
√

Crs)−(a+1)Ja+1(
√

Crs).
(41)

APPENDIX C
PROOF OF LEMMA 2

We have

∥d + ρ− r∥
=
√

d2 + ρ2 + r2 + 2d · ρ− 2d · r− 2ρ · r

= d

√
1 +

(ρ

d

)2

+
( r

d

)2

+ 2
d · ρ
d2

− 2
d · r
d2

− 2
ρ · r
d2

.

(42)

According to the Taylor expansion
√

1 + x ≈ 1 + 1
2x − 1

8x2

and the assumption that d ≫ max(r, ρ), we have that

∥d + ρ− r∥

≈ d

(
1 +

d · ρ
d2

− d · r
d2

+
ρ2

2d2
+

r2

2d2
− ρ · r

d2

− (d · ρ)2

2d4
− (d · r)2

2d4
+

(d · ρ)(d · r)
d4

)
, (43)

where higher orders of ρ
d and r

d are neglected. For far-field
channel modeling without considering the size of scatterers,
only the terms d

(
1− d·r

d2

)
is kept, which means that the rest

terms should be small enough. If we adopt the π
8 phase error

as the threshold, we have

2π

λ

∣∣∣∣∣d · ρd
+

ρ2

2d
+

r2

2d
− ρ · r

d
− (d · ρ)2

2d3
− (d · r)2

2d3

+
(d · ρ)(d · r)

d3

∣∣∣∣∣
⩽

2π

λ

(
rs +

(rs + rm)2

2d

)
⩽

π

8
, (44)

which leads to (λ−16rs)d ⩾ 8(rs+rm)2. Therefore, when the
radius rs of the scatterer is larger than λ

16 and d ⩾ 8(rs+rm)2

λ−16rs
,

the scatterer size has to be taken into consideration. Moreover,
if we keep the terms d

(
1 + d·ρ

d2 − d·r
d2

)
, which means that

the antenna array and the scatterer are in each other’s far-field
respectively, we have

2π

λ

∣∣∣∣∣ρ2 + r2

2d
− ρ · r

d
− (d · ρ)2

2d3
− (d · r)2

2d3
+

(d · ρ)(d · r)
2d3

∣∣∣∣∣
⩽

2π

λ

(
(rs + rm)2

d

)
⩽

π

8
, (45)

which leads to d ⩾ 8(rs+rm)2

λ .

APPENDIX D
PROOF OF LEMMA 3

Note that the channel h is a random vector whose
distribution is controlled by its correlation matrix R. For
the difference between the estimated channel h̃ and the true
channel h, we have

E
[
(h̃− h)H(h̃− h)

]
= E

[
(
√

P R̂(P R̂ + I)−1y − h)H
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× (
√

P R̂(P R̂ + I)−1y − h)
]

= E
[
tr
(
(
√

P R̂(P R̂ + I)−1y − h)

× (
√

P R̂(P R̂ + I)−1y − h)H
)]

= tr
(√

P R̂(P R̂ + I)−1)(PR + I)(
√

P R̂(P R̂ + I)−1)H

−
√

P R̂(P R̂ + I)−1
√

PR

−
√

PR(
√

P R̂(P R̂ + I)−1)H + R
)

= tr
(
P (P R̂ + I)−1R̂R̂(P R̂ + I)−1(PR + I)

− 2PR(P I + R̂−1)−1 + R
)

= tr
(
P (P I + R̂−1)−1(P I + R̂−1)−1(PR + I)

− 2PR(P I + R̂−1)−1 + R
)
. (46)

REFERENCES

[1] E. Basar, M. Di Renzo, J. de Rosny, M. Debbah, M.-S. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116753–116773, 2019.

[2] Z. Wang, Z. Liu, Y. Shen, A. Conti, and M. Z. Win, “Location awareness
in beyond 5G networks via reconfigurable intelligent surfaces,” IEEE
J. Sel. Areas Commun., vol. 40, no. 7, pp. 2011–2025, Jul. 2022.

[3] C. Huang et al., “Holographic MIMO surfaces for 6G wireless networks:
Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27,
no. 5, pp. 118–125, Oct. 2020.

[4] Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user
continuous-aperture MIMO,” IEEE J. Sel. Areas Commun., vol. 41,
no. 8, pp. 2350–2366, Aug. 2023.

[5] M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO
communications for 6G: Fundamentals, challenges, potentials, and future
directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.

[6] Z. Wu et al., “Multiple access for near-field communications: SDMA or
LDMA?” IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1918–1935,
Jun. 2023.

[7] M. Chafii, L. Bariah, S. Muhaidat, and M. Debbah, “Twelve scientific
challenges for 6G: Rethinking the foundations of communications
theory,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 868–904,
2nd Quart., 2023.

[8] M. D. Migliore, “Horse (electromagnetics) is more important than
horseman (information) for wireless transmission,” IEEE Trans.
Antennas Propag., vol. 67, no. 4, pp. 2046–2055, Apr. 2019.

[9] J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromagnetic
information theory: Fundamentals, modeling, applications, and open
problems,” IEEE Wireless Commun., early access, Jan. 31, 2024, doi:
10.1109/MWC.019.2200602.

[10] T. Gong et al., “Holographic MIMO communications with arbitrary
surface placements: Near-field LoS channel model and capacity limit,”
IEEE J. Sel. Areas Commun., vol. 42, no. 6, pp. 1549–1566, Jun. 2024,
doi: 10.1109/JSAC.2024.3389126.

[11] L. Wei et al., “Tri-polarized holographic MIMO surfaces for near-field
communications: Channel modeling and precoding design,” IEEE Trans.
Wireless Commun., vol. 22, no. 12, pp. 8828–8842, Dec. 2023.

[12] A. Pizzo, A. Lozano, S. Rangan, and T. L. Marzetta, “Wide-aperture
MIMO via reflection off a smooth surface,” IEEE Trans. Wireless
Commun., vol. 22, no. 8, pp. 5229–5239, Aug. 2023.

[13] O. Bucci and G. Franceschetti, “On the spatial bandwidth of
scattered fields,” IEEE Trans. Antennas Propag., vol. AP-35, no. 12,
pp. 1445–1455, Dec. 1987.

[14] O. M. Bucci and G. Franceschetti, “On the degrees of freedom
of scattered fields,” IEEE Trans. Antennas Propag., vol. 37, no. 7,
pp. 918–926, Jul. 1989.

[15] M. Franceschetti, “On Landau’s eigenvalue theorem and information cut-
sets,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 5042–5051, Sep. 2015.

[16] M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space
electromagnetic channel,” IEEE Trans. Antennas Propag., vol. 56, no. 2,
pp. 524–531, Feb. 2008.

[17] W. Jeon and S.-Y. Chung, “Capacity of continuous-space electromag-
netic channels with lossy transceivers,” IEEE Trans. Inf. Theory, vol. 64,
no. 3, pp. 1977–1991, Mar. 2018.

[18] Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C. Chae, “Mutual information
for electromagnetic information theory based on random fields,” IEEE
Trans. Commun., vol. 71, no. 4, pp. 1982–1996, Apr. 2023.

[19] W. C. Chew, Waves and Fields in Inhomogenous Media, vol. 16.
Hoboken, NJ, USA: Wiley, 1999.

[20] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave
series expansion for holographic MIMO communications,” IEEE Trans.
Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.

[21] E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and
channel hardening for reconfigurable intelligent surfaces,” IEEE Wireless
Commun. Lett., vol. 10, no. 4, pp. 830–834, Apr. 2021.

[22] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary
model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas
Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.

[23] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Spatial characterization of
electromagnetic random channels,” IEEE Open J. Commun. Soc., vol. 3,
pp. 847–866, 2022.

[24] Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and
channel estimation for holographic massive MIMO with planar arrays,”
IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, May 2022.

[25] Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-
field communications: A tutorial review,” IEEE Open J. Commun. Soc.,
vol. 4, pp. 1999–2049, 2023.

[26] F. K. Gruber and E. A. Marengo, “New aspects of electromagnetic
information theory for wireless and antenna systems,” IEEE Trans.
Antennas Propag., vol. 56, no. 11, pp. 3470–3484, Nov. 2008.

[27] L. Li, L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and
T. J. Cui, “DeepNIS: Deep neural network for nonlinear electromagnetic
inverse scattering,” IEEE Trans. Antennas Propag., vol. 67, no. 3,
pp. 1819–1825, Mar. 2019.

[28] G. Franceschetti and D. Riccio, Scattering, Natural Surfaces, and
Fractals. Amsterdam, The Netherlands: Elsevier, 2006.

[29] M. A. Christou and A. C. Polycarpou, “Far-field scattering from an
electrically small circular aperture in a conducting screen,” IEEE Trans.
Electromagn. Compat., vol. 59, no. 2, pp. 404–410, Apr. 2017.

[30] A. Mittal, R. Bhattacharjee, and B. Paul, “Angle and time of arrival
statistics for a far circular scattering model,” in Proc. NCC, 2009,
pp. 141–145.

[31] Y. Lu and L. Dai, “Near-field channel estimation in mixed LoS/NLoS
environments for extremely large-scale MIMO systems,” IEEE Trans.
Commun., vol. 71, no. 6, pp. 3694–3707, Jun. 2023.

[32] F. H. Danufane, M. Di Renzo, J. De Rosny, and S. Tretyakov,
“On the path-loss of reconfigurable intelligent surfaces: An approach
based on Green’s theorem applied to vector fields,” IEEE Trans.
Commun., vol. 69, no. 8, pp. 5573–5592, Aug. 2021.

[33] J. Mercer, “Functions of positive and negative type, and their
connection with the theory of integral equations,” Philos. Trans. Roy.
Soc. London, A, Containing Papers Math. Phys. Character, vol. 209,
pp. 415–446, May 1909.

[34] Study on Channel Model for Frequencies From 0.5 to 100 GHz,
document TR 38.901, 3GPP, Dec. 2019.

[35] K. Schaubach, N. Davis, and T. Rappaport, “A ray tracing method for
predicting path loss and delay spread in microcellular environments,”
in Proc. Veh. Technol. Soc. 42nd VTS Conf. Front. Technol., vol. 2,
Jun. 1992, pp. 932–935.

[36] K. T. Selvan and R. Janaswamy, “Fraunhofer and Fresnel distances:
Unified derivation for aperture antennas,” IEEE Antennas Propag. Mag.,
vol. 59, no. 4, pp. 12–15, Aug. 2017.

[37] F. Massimo, Wave Theory of Information. Cambridge, U.K.: Cambridge
Univ. Press, 2017.

[38] D. Dardari, “Communicating with large intelligent surfaces: Fundamen-
tal limits and models,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2526–2537, Nov. 2020.

[39] M. D. Migliore, “On the role of the number of degrees of freedom of
the field in MIMO channels,” IEEE Trans. Antennas Propag., vol. 54,
no. 2, pp. 620–628, Feb. 2006.

[40] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching
pursuit,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202–6216,
Dec. 2012.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 21,2024 at 10:13:48 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/MWC.019.2200602
http://dx.doi.org/10.1109/JSAC.2024.3389126


18018 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2024

[41] A. S. Poon, R. W. Brodersen, and D. N. Tse, “Degrees of freedom in
multiple-antenna channels: A signal space approach,” IEEE Trans. Inf.
Theory, vol. 51, no. 2, pp. 523–536, Feb. 2005.

[42] D. Zwillinger, V. Moll, I. Gradshteyn, and I. Ryzhik, Eds., Table of
Integrals, Series, and Products, 8th ed., Boston, MA, USA: Academic,
2014.

Zhongzhichao Wan (Graduate Student Member,
IEEE) received the B.E. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2020, where he is currently pursuing the
Ph.D. degree with the Department of Electronic
Engineering. His research interests include electro-
magnetic information theory (EIT), coding theory,
and channel modeling. He received the Excellent
Graduates of Tsinghua University in 2020.

Jieao Zhu (Graduate Student Member, IEEE)
received the B.E. degree in electronic engineering
and the B.S. degree in applied mathematics from
Tsinghua University, Beijing, China, in 2021, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering. His research
interests include electromagnetic information theory
(EIT), coding theory, and quantum computing.
He received the National Scholarship in 2018 and
2020 and the Excellent Graduates of Beijing in 2021.

Linglong Dai (Fellow, IEEE) received the B.S.
degree from Zhejiang University, Hangzhou, China,
in 2003, the M.S. degree from China Academy
of Telecommunications Technology, Beijing, China,
in 2006, and the Ph.D. degree from Tsinghua Uni-
versity, Beijing, in 2011. From 2011 to 2013, he was
a Post-Doctoral Researcher with the Department of
Electronic Engineering, Tsinghua University, where
he was an Assistant Professor from 2013 to 2016,
an Associate Professor from 2016 to 2022, and has
been a Professor since 2022. He has co-authored

the book MmWave Massive MIMO: A Paradigm for 5G (Academic Press,
2016). He has authored or co-authored over 100 IEEE journal articles
and over 60 IEEE conference papers. He also holds over 20 granted
patents. His current research interests include massive MIMO, reconfigurable
intelligent surface (RIS), millimeter-wave and Terahertz communications,
near-field communications, machine learning for wireless communications,
and electromagnetic information theory. He received five IEEE best paper
awards at the IEEE ICC 2013, the IEEE ICC 2014, the IEEE ICC 2017,
the IEEE VTC 2017-Fall, the IEEE ICC 2018, and the IEEE GLOBECOM
2023. He has also received Tsinghua University Outstanding Ph.D. Graduate
Award in 2011, Beijing Excellent Doctoral Dissertation Award in 2012, China
National Excellent Doctoral Dissertation Nomination Award in 2013, the
URSI Young Scientist Award in 2014, IEEE Transactions on Broadcasting
Best Paper Award in 2015, the Electronics Letters Best Paper Award in
2016, the National Natural Science Foundation of China for Outstanding
Young Scholars in 2017, the IEEE ComSoc Asia–Pacific Outstanding Young
Researcher Award in 2017, the IEEE ComSoc Asia–Pacific Outstanding Paper
Award in 2018, China Communications Best Paper Award in 2019, IEEE
Access Best Multimedia Award in 2020, the IEEE Communications Society
Leonard G. Abraham Prize in 2020, the IEEE ComSoc Stephen O. Rice Prize
in 2022, the IEEE ICC Best Demo Award in 2022, and the National Science
Foundation for Distinguished Young Scholars in 2023. He was listed as a
Highly Cited Researcher by Clarivate Analytics from 2020 to 2023.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 21,2024 at 10:13:48 UTC from IEEE Xplore.  Restrictions apply. 


