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Abstract—Shannon-Hartley theorem can accurately calculate
the channel capacity when the signal observation time is infinite.
However, the calculation of finite-time mutual information, which
remains unknown, is essential for guiding the design of practical
communication systems. In this paper, we investigate the mutual
information between two correlated Gaussian processes within
a finite-time observation window. We first derive the finite-time
mutual information by providing a limit expression. Then we
numerically compute the mutual information within a single
finite-time window. We reveal that the number of bits transmitted
per second within the finite-time window can exceed the mutual
information averaged over the entire time axis, which is called
the exceed-average phenomenon. Furthermore, we derive a
finite-time mutual information formula under a typical signal
autocorrelation case by utilizing the Mercer expansion of trace
class operators, and reveal the connection between the finite-time
mutual information problem and the operator theory. Finally,
we analytically prove the existence of the exceed-average phe-
nomenon in this typical case, and demonstrate its compatibility
with the Shannon capacity.

Index Terms—Finite-time mutual information, exceed-average,
Mercer expansion, trace class, operator theory.

I. INTRODUCTION

The Shannon-Hartley theorem [1] has accurately revealed
the fundamental theoretical limit of information transmission
rate C, which is also called as the Shannon capacity, over a
Gaussian waveform channel of a limited bandwidth W . The
expression for Shannon capacity is C = W log (1 + S/N),
where S and N denote the signal power and the noise power,
respectively. The derivation of Shannon-Hartley Theorem
heavily depends on the Nyquist sampling principle [2]. The
Nyquist sampling principle, which is also named as the 2WT
theorem [3], claims that one can only obtain 2WT +o(2WT )
independent samples within an observation time window T in
a channel band-limited to W [4].

Based on the Nyquist sampling principle, the Shannon ca-
pacity is derived by multiplying the capacity 1/2 log(1+P/N)
of a Gaussian symbol channel [5, p.249] with 2WT+o(2WT )
at first, and then dividing the result by T , finally letting
T → ∞. Note that this approximation only holds when
T → ∞. Therefore, the Shannon capacity only asymp-
totically holds as T becomes sufficiently large. When T
is of finite value, the approximation fails to work. Thus,
when the observation time T is finite, the Shannon-Hartley
Theorem cannot be directly applied to calculate the capacity
in a finite-time window. To the best of our knowledge, the
evaluation of the finite-time mutual information has not yet
been investigated in the literature. It is worth noting that real-

world communication systems transmit signals in a finite-time
window, thus evaluating the finite-time mutual information is
of practical significance.

In this paper, to fill in this gap, we analyze the finite-
time mutual information instead of the traditional infinite-time
counterpart, and prove the existence of exceed-average phe-
nomenon within a finite-time observation window1. Specifi-
cally, our contributions are summarized as follows:
• We derive the mutual information expressions within a

finite-time observation window by using dense sampling
and limiting methods. In this way, we can overcome
the continuous difficulties that appear when analyzing
the information contained in a continuous time interval.
These finite-time mutual information expressions make
the analysis of finite-time problems possible.

• We conduct numerical experiments based on the dis-
cretized formulas. In the numerical results under a special
setting, we reveal the exceed-average phenomenon, i.e.,
the mutual information within a finite-time observation
window exceeds the mutual information averaged over
the whole time axis.

• In order to analytically prove the exceed-average phe-
nomenon, we first derive an analytical finite-time mutual
information formula based on Mercer expansion [6],
where we can find the connection between the mutual
information problem and the operator theory [7]. To
make the problem tractable, we construct a typical case in
which the transmitted signal has certain statistical prop-
erties. Utilizing this construction, we obtain a closed-
form mutual information solution in this typical case,
which leads to a rigorous proof of the exceed-average
phenomenon.

Organization: In the rest of this paper, the finite-time
mutual information is formulated and evaluated numerically
in Section II, where the exceed-average phenomenon is first
discovered. Then, in Section III, we derive a closed-form
finite-time mutual information formula under a typical case.
Based on this formula, in Section IV, the exceed-average
phenomenon is rigorously proved. Finally, conclusions are
drawn in Section V.

Notations: X(t) denotes a Gaussian Process; RX(t1, t2)
denotes the autocorrelation function; SX(f), SX(ω) are the

1Simulation codes will be provided to re-
produce the results presented in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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Power Spectral Density (PSD) of the corresponding process
X(t); Boldface italic symbols X(tn1 ) denotes the column
vector generated by taking samples of X(t) on instants
ti, 1 ≤ i ≤ n; Upper-case boldface letters such as Φ
denote matrices; E [·] denotes the expectation; 1A(·) denotes
the indicator function of the set A; L2([0, T ]) denotes the
collection of all the square-integrable functions on window
[0, T ]; i denotes the imaginary unit.

II. NUMERICAL ANALYSIS OF THE FINITE-TIME MUTUAL
INFORMATION

In this section, we numerically evaluate the finite-time
mutual information. In Subsection II-A, we model the trans-
mission problem by Gaussian processes, and derive the mu-
tual information expressions within a finite-time observation
window; In Subsection II-B, we approximate the finite-time
mutual information by discretized matrix-based formulas; In
Subsection II-C, we reveal the exceed-average phenomenon
by numerically evaluating the finite-time mutual information.

A. The Expressions for finite-time mutual information

Inspired by [8], we model the transmitted signal by a
zero-mean stationary Gaussian stochastic process, denoted as
X(t), and the received signal by Y (t) := X(t) + N(t).
The noise process N(t) is also a stationary Gaussian process
independent of X(t). The receiver can only observe the
signal within a finite-time window [0, T ], where T > 0 is
the observation window span. We aim to find the maximum
mutual information that can be acquired within this time
window.

To analytically express the amount of acquired informa-
tion, we first introduce n sampling points inside the time
window, denoted by (t1, t2, · · · , tn) := tn1 , and then let
n→∞ to approximate the finite-time mutual information. By
defining X(tn1 ) ≡ (X(t1), X(t2), · · · , X(tn)) and Y (tn1 ) ≡
(Y (t1), Y (t2), · · · , Y (tn)), the mutual information on these
n samples can be expressed as

I(tn1 ) = I(X(tn1 );Y (tn1 )), (1)

and the finite-time mutual information is defined as

I(T ) = lim
n→∞

sup
{tn1 }⊂[0,T ]

I(tn1 ). (2)

Then, the transmission rate C(T ) can be defined as C(T ) =
I(T )/T . After these definitions, we can then define the limit
mutual information as C(∞) = limT→∞ C(T ) by letting
T →∞.

B. Discretization

Without loss of generality, we fix the sampling instants
uniformly onto fractions of T : ti = (i − 1)T/n, 1 ≤ i ≤ n.
Since the random vectors X(tn1 ) and Y (tn1 ) are samples of
a Gaussian process, they are both Gaussian random vectors
with mean zero and covariance matrices KX and KY , where

KX ,KY ∈ Rn×n are symmetric positive-definite matrices
defined as

(KX)i,j = RX(ti, tj) := E [X(ti)X(tj)] ,

(KY )i,j = RY (ti, tj) := E [Y (ti)Y (tj)] .
(3)

Note that Y (t) is the independent sum of X(t) and N(t),
thus the autocorrelation functions satisfy RY (t1, t2) =
RX(t1, t2)+RN (t1, t2), and similarly the covariance matrices
satisfy KY = KX +KN .

The mutual information I(tn1 ) is defined as I(tn1 ) =
h(Y (tn1 ))−h(Y (tn1 )|X(tn1 )) = h(Y (tn1 ))−h(N(tn1 )), where
h(·) denotes the differential entropy. Utilizing the entropy
formula for n-dimentional Gaussian vectors [5], we obtain

I(tn1 ) =
1

2
log

(
det(KX +KN )

det (KN )

)
. (4)

C. Numerical Analysis
In order to study the properties of mutual information I(tn1 )

as a function of n, we set the autocorrelation function of the
signal process X(t) and noise process N(t) to the following
special case

RX(t1, t2) = sinc(10(t1 − t2)),
RN (t1, t2) = exp(−|t1 − t2|),

(5)

where sinc(x) := sin(πx)/(πx), and the corresponding PSDs
are SX(f) = 0.1 × 1{−5≤f≤5} and SN (f) = 2

1+(2πf)2 . In
order to compare the finite-time mutual information with the
averaged mutual information, the Shannon limit with colored
noise spectrum SN (f) is utilized, which is a generalized
version of the well-known formula C = W log (1 + S/N).
The averaged mutual information of colored noise PSD [5] is
expressed as

Cav :=
1

2

∫ +∞

−∞
log

(
1 +

SX(f)

SN (f)

)
df. (6)

Then, plugging (5) into (6) yields the numerical result for
Cav.

We calculate the finite-time transmission rate C(T ) and
the average mutual information Cav against the number of
samples n within the observation window [0, T ]. The numer-
ical results are collected in Fig. 1. It is shown that I(tn1 ) is
an increasing function of n, and for fixed values of T , the
approximated finite-time mutual information I(tn1 ) tends to
a finite limit under the correlation assumptions given by (5).
The most amazing observation is that, it is possible to obtain
more information within finite-time window [0, T ] than the
prediction TCav given by averaging the mutual information
along the entire time axis (6). We call this phenomenon the
exceed-average phenomenon.

III. A CLOSED-FORM FINITE-TIME MUTUAL
INFORMATION FORMULA

In this section, we first introduce the Mercer expansion
in Subsection III-A as a basic tool for our analysis. Then
we derive the series representation of the finite-time mutual
information, and the corresponding power constraint in Sub-
section III-B, under the assumption of AWGN noise.
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Fig. 1. A first glance to the exceed-average phenomenon. The red dashed
horizontal line is the Shannon limit, and the T = 1, 2, 8 curves illustrate the
dependence of C(tn1 ) on n.

A. The Mercer Expansion
By analyzing the structure of the autocorrelation functions,

it is possible to obtain I(tn1 ) and I(T ) directly. In fact, if
we know the Mercer expansion [6] of the autocorrelation
function RX(t1, t2) on interval [0, T ], then we can calculate
h(X(tn1 )) more easily [9]. In the following discussion, we
assume the Mercer expansion of the source autocorrelation
function RX(t1, t2) to be in the following form

λkφk(t1) =

∫ T

0

RX(t1, t2)φk(t2)dt2; k > 0, k ∈ N, (7)

where the eigenvalues are positive: λk > 0, and the eigen-
functions form an orthonormal set:∫ T

0

φi(t)φj(t)dt = δij . (8)

The Mercer’s theorem [6] ensures the existence and unique-
ness of the eigenpairs (λk, φk(t))

∞
k=1, and furthermore, the

kernel itself can be expanded under the eigenfunctions:

RX(t1, t2) =

+∞∑
k=1

λkφk(t1)φk(t2). (9)

B. Finite-Time Mutual Information Formula
Based on Mercer expansion, we obtain a closed-form

formula in the following Theorem 1.
Theorem 1 (Source expansion, AWGN noise): Suppose

the information source, modeled by the transmitted process
X(t), has autocorrelation function RX(t1, t2). An AWGN
noise of PSD n0/2 is imposed onto X(t), resulting in the
received process Y (t). The Mercer expansion of RX(t1, t2)
on [0, T ] is given by (7), satisfying (8). Then the finite-time
mutual information I(T ) within the observation window [0, T ]
between the processes X(t) and Y (t) can be expressed as

I(T ) =
1

2

+∞∑
k=1

log

(
1 +

λk
n0/2

)
. (10)

Proof: The Mercer expansion decomposes the AWGN
channel into an infinite number of independent parallel sub-
channels, each with signal power λk and noise variance n0/2.
Thus, accumulating all the mutual information values of these
subchannels yields the finite-time mutual information I(T ).
From Theorem 1 we can conclude that the finite-time mutual
information of AWGN channel is uniquely determined by
the Mercer spectra λk of RX(t1, t2) within [0, T ]. However,
it remains unknown whether the series representation (10)
converges. In fact, the convergence is closely related to the
signal power, which is calculated in the following Lemma 1.

Lemma 1 (Operator Trace Coincide with Power Con-
straint): Given stationary Gaussian process X(t) with mean
zero and autocorrelation RX(t1, t2). The Mercer expansion
of RX(t1, t2) on [0, T ] is given by (7), satisfying (8). The
Mercer operator M(·) : L2([0, T ]) → L2([0, T ]) is defined
by the integral (Mφ)(s) =

∫ T
0
RX(s, τ)φ(τ)dτ . Then the

sum of all the eigenvalues λk of operator M is equal to the
signal energy PT within [0, T ]:

tr(M) :=

+∞∑
k=1

λk = PT, (11)

where P = RX(0, 0).
Proof: Integrating both sides of (9) on the interval [0, T ]

gives the conclusion immediately.
Remark 1: From the above Lemma 1, we can conclude that

the sum of λk is finite when T is finite. It can be immediately
derived that I(T ) <∞, since log(1 + x) ≤ x.

Remark 2: The finite-time mutual information formula (10)
is closely related to the operator theory [7] in functional
analysis. The sum of all the eigenvalues λk is called the
operator trace in linear operator theory. As is mentioned in
Lemma 1, the autocorrelation function RX(t1, t2) can be
treated as a linear operator M on L2([0, T ]).

IV. PROOF OF THE EXISTENCE OF EXCEED-AVERAGE
PHENOMENON

In this section, we first give a proof of the existence of the
exceed-average phenomenon in a typical case, then we discuss
the compatibility with the Shannon-Hartley theorem.

A. Closed-Form Mutual Information in a Typical Case

To prove the exceed-average phenomenon, we only need to
show that the finite-time mutual information is greater than
the averaged mutual information in a typical case. Let us
consider a finite-time communication scheme with a finitely-
powered stationary transmitted signal autocorrelation2, which
is specified as

RX(t1, t2) = RX(τ) = P exp(−α|τ |), (12)

where τ = t1 − t2, under AWGN channel with noise PSD
being n0/2. The power of signal X(t) is P = RX(0).
According to Lemma 1, the trace of the corresponding

2The signal autocorrelation RX(τ) is often observed in many scenarios,
such as passing a signal with white spectrum through an RC lowpass filter.
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Fig. 2. Images of 2 arctan(ω/α) and kπ � ωT with T = 2, α = 1 and
k = 1, 2, 3, 4. The desired resonant frequencies ωk can be read from the
horizontal coordinates of the intersection points of the curve 2 arctan(ω/α)
and the parallel lines.

Mercer operator M(·) is finite. Then the finite-time mutual
information given by Theorem 1 is also finite, as is shown
in Remark 1. Finding the Mercer expansion is equivalent
to finding the eigenpairs (λk, φk(t))

∞
k=1. The eigenpairs are

determined by the following characteristic integral equation
[10]:

λkφk(s) =

∫ s

0

Pe−α(s−t)φk(t)dt+

∫ T

s

Pe−α(t−s)φk(t)dt.

(13)
Differentiating both sides of (13) twice with respect to s
yields the boundary conditions and the differential equation
that λk, φk must satisfy:

λkφ
′′
k(s) = (α2λk − 2αP )φk(s), 0 < s < T,

φ′k(0) = αφk(0),

φ′k(T ) = −αφk(T ).
(14)

Let ωk > 0 denote the resonant frequency of the above
harmonic oscillator equation, and let φk(t) = Ak cos(ωkt) +
Bk sin(ωkt) be the sinusoidal form of the eigenfunction.
Using the boundary conditions we obtain

Bkωk = αAk,

Bkωk cos(ωkT )−Akωk sin(ωkT )
= −α (Ak cos(ωkT ) +Bk sin(ωkT )) .

(15)

To ensure the existence of solution to the homogeneous
linear equations (15) with unknowns Ak, Bk, the determinant
must be zero. Exploiting this condition, we find that ωk
naturally satisfy the transcendental equation tan(ωkT ) =
(2ωkα)/(ω

2
k − α2). By introducing an auxillary variable θk =

arctan(ωk/α) ∈ [0, π/2], this transcendental equation can
be simplified as tan(ωkT ) = − tan(2θk), i.e., there exists
positive integer m such that 2 arctan(ωk/α) = mπ − ωkT .
The integer m can be chosen to be equal to k. From the

Fig. 3. Theoretical verification of the exceed-average effect. The blue lines
represent the finite-time mutual information I(T ). The red lines are the
average mutual information TCav, calculated from (6). All the curves are
evaluated under hypothesis (12), where P = 1, 2, 4, n0 = 1 and α = 1.

function images of 2 arctan(ω/α) and kπ − ωT (Fig. 2), we
can determine ωk, and then λk. To sum up, the solution to the
characteristic equation (13) are collected into (16) as follows.

2 arctan(ωk/α) = kπ − ωkT,

λk =
2αP

α2 + ω2
k

,

φk(t) =
1

Zk
(ωk cos(ωkt) + α sin(ωkt)) ,

(16)

where Zk denotes the normalization constants of φk(t) on
[0, T ] to ensure orthonormality.

Equation (16) gives all the eigenpairs (λk, φk)
∞
k=1, from

which we can calculate I(T ) by applying Theorem 1. As
for the Shannon limit Csh, by applying (6) and evaluating the
integral with [11] we can obtain

Cav = Csh =
1

2

(√
α2 +

4Pα

n0
− α

)
. (17)

After all the preparation works above, we can rigorously prove
that C(T ) > Cav under the typical case of (12), as long as
the transmission power P is smaller than a constant δ. The
following Theorem 2 proves this result.

Theorem 2 (Existence of exceed-average phenomenon
in a typical case): Suppose X(t) and Y (t) are specified
according to (12). The eigenpairs are determined by (16).
Then, for any fixed positive values of T, n0 and α, there exists
δ > 0 such that the exceed-average inequality

C(T ) :=
1

2T

+∞∑
k=1

log

(
1 +

λk
n0/2

)
> Cav (18)

holds strictly for arbitrary 0 < P < δ.
Proof: See Appendix A.

To support the above theoretical analysis, numerical exper-
iments on I(T ) are conducted based on evaluations of (16)
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and (17). As shown in Fig. 3, it seems that we can always
harness more mutual information in a finite-time observation
window than the averaged mutual information. This fact is
somehow unsurprising because the observations Y (tN1 ) inside
the window [0, T ] can always eliminate some extra uncertainty
outside the window due to the autocorrelation of X(t).

B. Compatibility with the Shannon-Hartley theorem

Though the exceed-average effect do imply mathematically
that the mutual information within a finite-time window
is higher than the average mutual information Cav (which
coincides with the Shannon limit (6) in this case), in fact,
it is still impossible to construct a long-time stable data
transmission scheme above the Shannon capacity by leverag-
ing this effect. So the exceed-average phenomenon does not
contradict the Shannon-Hartley Theorem. Placing additional
observation windows cannot increase the average information
rate, because the posterior process Y (t)|Y (tN1 ) does not
carry as much information as the original one, causing a rate
reduction in the later windows. It is expected that, the finite-
time mutual information would ultimately decrease to the
average mutual information as the total observation time tends
to infinity (i.e., C(∞) = Cav), and the analytical proof, as
well as the achievability of this finite-time mutual information,
is still worth investigation in future works.

V. CONCLUSIONS

In this paper, we provided rigorous proofs of the existence
of the exceed-average phenomenon under typical autocorrela-
tion settings of the transmitted signal process and the noise
process. Our discovery of the exceed-average phenomenon
provided a generalization of Shannon’s renowned formula
C = W log(1 + S/N) to the practical finite-time commu-
nications. Since the finite-time mutual information is a more
precise estimation of the capacity limit, the optimization target
may shift from the average mutual information to the finite-
time mutual information in the design of practical communi-
cation systems. Thus, it may have guiding significance for the
performance improvement of modern communication systems.
In future works, general proofs of C(T ) > Cav, independent
of the concrete autocorrelation settings, still require further
investigation. Moreover, we need to answer the question of
how to exploit this exceed-average phenomenon to improve
the communication rate, and whether this finite-time mutual
information is achievable by a certain coding scheme. In addi-
tion, although we have discovered numerically that the finite-
time mutual information agrees with the Shannon capacity
when T →∞, an analytical proof of this result is required in
the future.

APPENDIX A
PROOF OF THEOREM 2

Plugging (17) into the right-hand side of (18), and differ-
entiate both sides w.r.t P . Notice that if P = 0, then both
sides of (18) are equal to 0. Thus, we only need to prove that

the derivative of left-hand side is strictly larger than that of
right-hand side within a small interval P ∈ (0, δ):

1

2

+∞∑
k=1

(
1

1 + 2λk

n0

2λk
n0P

)
>

T

n0

1√
1 + 4P/(n0α)

. (19)

Multiply both sides of (19) by n0 and define µk := λk/(PT ),
and then from Lemma 1 we obtain

∑
k µk = 1. In this way,

(19) is equivalent to
+∞∑
k=1

µk

1 + 2λk

n0

>
1√

1 + 4P/(n0α)
. (20)

Since ϕ(x) := 1/(1 + 2x/n0) is convex on (0,+∞), by
applying Jensen’s inequality to the left-hand side of (20), we
only need to prove that

1

1 + 2
n0

∑
k λkµk

>
1√

1 + 4P/(n0α)
. (21)

From the definition of µk we can derive that λkµk =
λ2k/(PT ). So we go on to calculate

∑
k λ

2
k. That is equivalent

to calculate tr(M2), where M2 corresponds to the integral
kernel:

KM2(t1, t2) :=

∫ T

0

P 2 exp(−α|t1 − s|) exp(−α|t2 − s|)ds.
(22)

Evaluating the kernel KM2 on the diagonal t = t1 = t2, and
integrating this kernel on the diagonal of [0, T ]2 gives

∑
k λ

2
k,

i.e., tr(M2):∑
k

λ2k =
P 2

2α

∫ T

0

(
2− e−2αt − e−2α(T−t)

)
dt,

=
P 2

α

(
T − 1

2α
(1− e−2αT )

)
.

(23)

By substituting (23) into (21), we just need to prove that√
1 + 4P/(n0α) > 1 +

2P

n0α

(
1− 1− e−2αT

2αT

)
. (24)

Define the dimensionless number x = 2P/(n0α). Since the
function ψ(x) := (1 − exp(−x))/x is strictly positive and
less than 1 at x > 0, we can conclude that, there exists a
small positive δ > 0 such that (24) holds for 0 < P < δ. The
number δ can be chosen as

δ =
n0αψ(2αT )

(1− ψ(2αT ))2
> 0, (25)

which implies that (19) holds for any 0 < P < δ. Thus,
integrating (19) on both sides from p = 0 to p = P, P < δ
gives rise to the conclusion (18), which completes the proof
of Theorem 2.
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