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Abstract—Fluid antenna systems (FASs) can reconfigure their
locations freely within a spatially continuous space. To keep
favorable antenna positions, the channel state information (CSI)
acquisition for FASs is essential. While some techniques have been
proposed, most existing FAS channel estimators require several
channel assumptions, such as slow variation and angular-domain
sparsity. When these assumptions are not reasonable, the model
mismatch may lead to unpredictable performance loss. In this
paper, we propose the successive Bayesian reconstructor (S-BAR)
as a general solution to estimate FAS channels. Unlike model-
based estimators, the proposed S-BAR is prior-aided, which
builds the experiential kernel for CSI acquisition. Inspired by
Bayesian regression, the key idea of S-BAR is to model the
FAS channels as a stochastic process, whose uncertainty can be
successively eliminated by kernel-based sampling and regression.
In this way, the predictive mean of the regressed stochastic
process can be viewed as the maximum a posterior (MAP)
estimator of FAS channels. Simulation results verify that, in both
model-mismatched and model-matched cases, the proposed S-
BAR can achieve higher estimation accuracy than the existing
schemes.

I. INTRODUCTION

In recent years, fluid antenna systems (FASs), also called
fluid antennas or movable antennas, are proposed to achieve
higher diversity and multiplexing gains than conventional
multiple-input multiple-output (MIMO) systems [1]–[3]. Dif-
ferent from MIMO with fixed antennas, FAS introduces a
structure where a few fluid antennas can freely switch their
locations within a given space [4]. In this way, the spacing
of the available locations (referred to as “ports”) for fluid
antennas can be arbitrarily small. This almost continuously
movable feature allows FASs to keep fluid antennas at favor-
able positions, thus promising to achieve high diversity and
multiplexing gains with very few antennas [1]–[3].

Despite these encouraging prospects, the expected gains
of FASs are hard to achieve in practice. In specific, the
transmission performance of FASs heavily relies on the po-
sitions of fluid antennas [5]–[7]. To ensure favorable antenna
placements, the channel state information (CSI) knowledge
of available locations is essential [8]–[10]. However, the
channel estimation for FASs is challenging. The reason is
that, the allowed locations (i.e., the ports) of fluid antennas
are densely deployed, leading to very high-dimensional port
channels [4]. Thereby, it requires an unacceptable number of
pilots to acquire the channels. Besides, limited by the hardware
structure of FASs, only a few ports can be connected to radio
frequency (RF) chains for channel measurements within the

coherence time, which exacerbates the difficulty of channel
estimation. To address the high-dimensional FASs channels,
pilot-reduced channel estimators have been investigated in [8]–
[10]. However, most existing channel estimators rely on some
channel assumptions, such as the slow variation [8], angle-
domain sparsity [9], and known angles-of-arrival (AoAs) [10].
When these assumptions are not reasonable, the model mis-
match will lead to an unpredictable performance loss.

In this paper, we propose the successive Bayesian re-
constructor (S-BAR) as a general solution to estimate FAS
channels. Different from the existing model-based estimators
relying on channel assumptions, the proposed S-BAR builds
the experiential kernel of FASs channels for CSI acquisition.
Specifically, inspired by the Bayesian regression [11], the key
idea of S-BAR is to model the FAS channels as a stochastic
process with an experiential kernel, which characterizes the
inherent correlation of FAS channels. Then, the uncertainty
of the stochastic process can be successively eliminated by
kernel-based sampling and regression. Particularly, the pro-
posed S-BAR is a two-stage scheme. In the first stage, the
measured channels are determined by following the principle
of maximum posterior variance. In the second stage, the
channel measurements are combined with the experiential
kernel for process regression. Then, the mean of the regressed
stochastic process is exactly the maximum a posterior (MAP)
estimator of FAS channels. Simulation results reveal that,
in both model-mismatched and model-matched cases, the
proposed S-BAR can achieve higher estimation accuracy than
the existing schemes based on channel assumptions.

The rest of this paper is organized as follows. In Section II,
the system model of an FAS is introduced, and the problem of
channel estimation is formulated. In Section III, the general
S-BAR is proposed for FAS channel estimation. In Section
IV, simulation results are presented to evaluate the estimation
performance. Finally, conclusions are drawn in Section V.

Notation: [·]−1, [·]∗, [·]T, and [·]H denote the inverse, con-
jugate, transpose, and conjugate-transpose operations, respec-
tively; x(i) denotes the i-th entry of vector x; X(i, j), X(j, :)
and X(:, j) denote the (i, j)-th entry, the j-th row, and the j-th
column of matrix X, respectively; Tr(·) denotes the trace of its
argument; E (·) is the expectation of its argument; dim(·) is
the dimensional of its argument; CN (µ,Σ) and GP(µ,Σ)
respectively denote the complex Gaussian distribution and
complex Gaussian process, with mean µ and covariance Σ;
0L is an all-zero vector or matrix with dimension L.
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II. SYSTEM MODEL

In this paper, we consider the narrowband channel esti-
mation in an uplink FAS, which consists of an N -port base
station (BS) equipped with M fluid antennas and a single-
antenna user. The N feeding ports are uniformly distributed
along a linear dimension at the receiver. The M fluid antennas
can be repositioned to the M locations of N available ports
(M � N ), and each antenna is connected to an RF chain. Let
h ∈ CN denote the channels of N ports, and let P denote the
number of transmit pilots within a coherence time frame. To
characterize the locations of M fluid antennas in timeslot p,
we introduce the definition of switch matrix as follows:

Definition 1 (Switch Matrix): Binary indicator Sp ∈
{0, 1}M×N is defined as the switch matrix of multiple fluid
antennas in timeslot p. The (m,n)-th entry being 1 (or 0)
means that the m-th antenna is (or not) located at the n-th port.
Since M of N ports are selected in each timeslot, each row of
Sp has one entry of 1, and all entries of 1 in Sp are not in the
same column, i.e., ‖Sp(m, :)‖ = 1 for all m ∈ {1, · · · ,M},
‖Sp(:, n)‖ ∈ {0, 1} for all n ∈ {1, · · · , N}, and SpS

H
p = IM .

Utilizing Definition 1, the signal vector yp ∈ CM received
at the BS in timeslot p can be modeled as

yp = Sphsp + zp, (1)

where sp is the pilot transmitted by the user and zp ∼
CN
(
0M , σ

2IM
)

is the additive white Gaussian noise (AWGN)
at M selected ports. Without loss of generality, we assume
that sp = 1 for all p ∈ {1, · · · , P}. Considering the total P
timeslots for pilot transmission, we arrive at

y = Sh + z, (2)

where y :=
[
yT

1 , · · · ,yT
P

]T
, S :=

[
ST

1 , · · · ,ST
P

]T
, and

z :=
[
zT

1 , · · · , zT
P

]T
. Our goal is to reconstruct the N -

dimensional channel h according to the PM -dimensional
noisy pilot y. Since fluid antennas move almost continuously,
N is much larger than PM (N � PM ). Besides, due to
the zero-one distribution of S, most elements of h cannot
be observed directly or indirectly. As a result, the channel
estimation of FASs is usually challenging.

III. PROPOSED SUCCESSIVE BAYESIAN RECONSTRUCTOR

In this section, based on the Bayesian regression, we
propose the S-BAR as a general solution to realize FAS
channel estimation. Specifically, in Subsection III-A, the clas-
sical Bayesian regression is introduced. Then, in Subsection
III-B, the proposed S-BAR scheme is illustrated. Finally, in
Subsection III-C, the kernel selection of S-BAR is discussed.

A. Bayesian Regression
Without making any prior assumptions, the attempt to

recover the function f(x) from a few samples appears to be a
challenging endeavor. Fortunately, by building the experiential
kernel of f(x), Bayesian regression can determine the sam-
pling strategy and reconstruct f(x) with a few samples in a
non-parametric way. Under this framework, Gaussian process
regression (GPR) has become a popular solution [11]. Specif-
ically, function f(x) can be modeled as a sample of Gaussian

process GP (µ (x) , k (x,x′)). It is completely specified by
its mean µ (x) and its kernel k (x,x′), which encodes the
smoothness of regressed f(x). In timeslot t, consider a prior
GP (µ (x) , k (x,x′)) over f(x). Let γt := [γ1, · · · , γt]T de-
note t noisy measurements for points in At := {x1, · · · ,xt},
where γi = f(xi) + ni with ni ∼ CN

(
0, δ2

)
. It is easy to

prove that, given γt, the posterior over f(x) is also a Gaussian
process whose mean and covariance are

µt (x) = µ (x) +
(
kt(x)

)H(
Kt + δ2It

)−1(
γ − µt

)
, (3)

kt (x,x′) = k (x,x′)−
(
kt(x)

)H(
Kt + δ2It

)−1
kt(x′), (4)

where kt(x) :=
[
k
(
x1,x

)
, · · · , k (xt,x)

]T
; µt :=[

µ
(
x1
)
, · · · , µ (xt)

]T
; and the (i, j)-th entry of Kt ∈ Ct×t

is k
(
xi,xj

)
, for all i, j ∈ {1, · · · , t}.

Then, the next candidate point to be sampled, i.e., xt+1, can
be determined based on the updated posterior. For successive
sampling, sampling the point with the maximum posterior
variance can obtain the most information. By assuming that
x ∈ S, xt+1 can be chosen according to

xt+1 = arg max
x∈S/At

kt (x,x), (5)

where / is the set difference. By letting t → ∞, the value
of variance kt (x,x) decreases asymptotically, which means
that the uncertainty of f(x) is reduced. After reaching the
tolerance threshold, the posterior mean µt (x) can be viewed
as a MAP estimator of f(x) [11].

B. Proposed S-BAR Scheme

In each pilot timeslot, M fluid antennas move positions
and measure channels, thus the channel estimation of FASs
is similar to a successive sampling process. Since the port
spacing is short, the FAS channels are highly correlated. These
features inspire us to recover h through Bayesian regression.
To reconstruct FAS channels based on experiential kernel,
we model h as a sample of Gaussian process GP (0N ,Σ).
Semidefinite Hermitian matrix Σ ∈ CN×N is called the kernel
or prior covariance, of which the selection will be introduced
in Subsection III-C. Then, the proposed S-BAR scheme is
summarized in Algorithm 1. For clarity, the basic principle
of S-BAR is firstly introduced as follows.

1) Algorithmic Principle: At some moment, let Ω denote
the index sequence of the measured channels and let yΩ ∈
Cdim(Ω) denote the corresponding received pilots, which is
from yΩ = h (Ω) + zΩ with zΩ ∼ CN (0dim(Ω), σ

2Idim(Ω))
being the AWGN. For given yΩ, the posterior mean µΩ and
posterior covariance ΣΩ of h can be calculated by:

µΩ = Σ(:,Ω)
(
Σ(Ω,Ω) + σ2Idim(Ω)

)−1
yΩ, (6)

ΣΩ = Σ− (Σ(Ω, :))
H (

Σ(Ω,Ω) + σ2Idim(Ω)

)−1
Σ(Ω, :).

(7)
For given Ω, the next candidate channel to be measured can
be determined by finding the index associated with the largest
posterior variance, i.e.,

n? = arg max
n∈{1,··· ,N}/Ω

ΣΩ(n, n). (8)
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Algorithm 1 Proposed Successive Bayesian Reconstructor
Input: Number of pilots P , kernel Σ.
Output: Reconstructed FAS channel ĥ.
1: # Stage 1 (Offline Design):
2: Initialization: Ω = ∅, Sp = 0M×N for all p ∈ {1, · · · , P}
3: for p ∈ {1, · · · , P} do
4: for m ∈ {1, · · · ,M} do
5: Posterior covariance update: Calculate ΣΩ by (7)
6: Candidate selection: n? = arg max

n∈{1,··· ,N}/Ω
ΣΩ(n, n)

7: Switch matrix update: Sp(m,n
?) = 1

8: Sequence update: Ω = Ω ∪ {n?}
9: end for

10: end for
11: Merge switch matrices: S :=

[
ST

1 , · · · ,ST
P

]T
12: Weight calculation: w = (Σ(Ω,Ω) + σ2IPM )−1Σ(Ω, :)
13: # Stage 2 (Online Regression):
14: Employ the designed switch matrix S at the BS, and then

obtain the received pilot: y = Sh + z
15: Channel reconstruction: ĥ = wHy
16: return Reconstructed FAS channel ĥ

Subsequently, we can update Ω by Ω ∪ {n?} and repeat
the above process until the posterior mean µΩ can well
approximate h.

2) Observations: From the above equations, we obtain the
following three observations.

• (6) indicates that, the posterior mean µΩ is the linear
weighted sum of pilot yΩ, i.e., µΩ = wHyΩ, wherein
the weight w :=

(
Σ(Ω,Ω) + σ2Idim(Ω)

)−1
Σ(Ω, :) only

relies on the kernel Σ.
• (7) shows that posterior covariance ΣΩ only relies on

kernel Σ and is unrelated to the received pilot yΩ.
• (8) suggests that the next channel to be measured only

relies on the posterior covariance ΣΩ.

These observations reveal that, the switch matrix S and the
weight w are unrelated to the received pilot y, thus they can
be designed offline and then deployed online to reduce the
complexity. Thereby, the proposed S-BAR can be realized in
the following two stages.

3) Stage 1 (Offline Design): Since index sequence Ω is
determined by the posterior covariance ΣΩ, and ΣΩ only relies
on the kernel Σ. The switch matrix S ∈ {0, 1}PM×N and the
weight w ∈ CPM for recovering h ∈ CN can be designed
offline at the first stage. By updating ΣΩ in (7) and n? in (8)
alternatingly until dim(Ω) = PM , sequence Ω can collect all
required indexes of the M selected ports in P pilot timeslots.

Then, recall that we have h (Ω) = Sh. To achieve the
conversion from Ω to S, we can initialize S as an all-zero
matrix and then fill in an one at the position associated with
the selected index in each of its row. Note that, this operation
naturally satisfies ‖S(m, :)‖ = 1 for all m ∈ {1, · · · ,M},
‖S(:, n)‖ ∈ {0, 1} for all n ∈ {1, · · · , N}, and SSH = IPM .
These properties ensure that the designed S is practically

implementable in FASs. After obtaining Ω, the weight for
reconstructing h can be obtained by

w =
(
Σ(Ω,Ω) + σ2IPM

)−1
Σ(Ω, :). (9)

4) Stage 2 (Online Regression): Since Stage 1 is realized
offline, the switch matrix S and weight w can be designed
and saved at the BS in advance. In Stage 2, the scheme is
then employed online for channel measurements. The M fluid
antennas of the BS will move and receive pilots according to
the designed S, arriving at the noisy pilot y. Finally, according
to the MAP estimator in (6), channel h can be reconstructed
by ĥ = wHy, which completes the proposed S-BAR.

5) Computational Complexity: The proposed S-BAR in-
corporates a hybrid offline and online implementation pro-
cess, thereby substantially reducing its computational com-
plexity in practical applications. Specifically, the signal pro-
cessing of S-BAR is composed of two stages. In Stage 1,
the computational complexity is dominated by the calcu-
lation of posterior covariance ΣΩ, which is updated PM
times. According to (7), the complexity of Stage 1 is
O
(
P 2M2

(
P 2M2 +NPM +N2

))
. In Stage 2, the compu-

tational complexity is from the weighted sum of received
pilot y, i.e., ĥ = wHy, thus the computational complexity
is O (N). Note that, although the complexity of Stage 1 is
high, Stage 1 can be implemented offline in advance. From the
perspective of practical employment, the effective complexity
of S-BAR scheme is only linear to the number of ports N .

C. Kernel Selection for S-BAR Scheme

The selection of kernel Σ determines the shape and flexi-
bility of the proposed S-BAR, which in turn affects its ability
to capture patterns and make accurate reconstruction. Consid-
ering the localized correlation property of FAS channels, an
appropriate kernel should assign higher similarity to nearby
ports and decrease influence rapidly with distance. Let xn
denote the position of the n-th port. Three kernel selections
are recommended as follows.

1) Exponential Kernel: The exponential kernel Σexp is a
popular choice in regression, given by

Σexp(n, n′) = α2e
−
‖xn−x

n′ ‖
2

η2 (10)

for all n, n′ ∈ {1, · · · , N}, where α and η are adjustable
hyperparameters. Compared with the other kernels, the ex-
ponential kernel is less sensitive to outliers, which makes it
suitable to recover channels without obvious regularity.

2) Bessel Kernel: The Bessel kernel Σbes is well-suited for
capturing and modeling complex-valued data with oscillatory
or periodic patterns, given by

Σbes(n, n
′) = α2Jv

(
‖xn − xn′‖

η2

)
(11)

for all n, n′ ∈ {1, · · · , N}, wherein Jv is the v-order Bessel
function of the first kind. It has the flexibility to adapt to data
that exhibits regular and repeating fluctuations, thus Σbes is
suitable to reconstruct the channels with periodic patterns.

3) Covariance Kernel: An ideal approach is to use the real
covariance of h as the kernel for reconstruction, i.e., Σcov =
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(a) P = 1, M = 1. (b) P = 2, M = 2. (c) P = 3, M = 3. (d) P = 4, M = 4.

(e) P = 1, M = 1. (f) P = 2, M = 2. (g) P = 3, M = 3. (h) P = 4, M = 4.

Fig. 1. An illustration of employing S-BAR scheme to estimate FAS channel h. (a)-(d) provide the real part of h versus the index of ports. (e)-(h) provide the
imaginary part of h versus the index of ports. Particularly, the curve “Truth” denotes the real channel h, and the circle marks denote the sampled (measured)
channels. The dotted line “Mean” denotes the posterior mean of Bayesian regression µΩ, i.e., the estimated channel ĥ. The highlighted shadows in the figures
represent the confidence intervals of h, defined as [µΩ(n)− 3ΣΩ(n, n),µΩ(n) + 3ΣΩ(n, n)] for the n-th port.

E
(
hhH

)
. Since Σcov is unknown in practice, we can train an

approximated Σcov before employing S-BAR, given by

Σcov ≈
1

T

T∑
t=1

hth
H
t , (12)

where ht is the channel at the t-th training timeslot and T is
the number of training timeslots. Since the channel covariance
E
(
hhH

)
does not change so frequently as channels, Σcov is

only updated in a large timescale.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify the
effectiveness of the proposed S-BAR scheme. Since we have
assumed the normalized transmit power, the receiver signal-to-

noise ratio (SNR) is defined as SNR =
E(‖h‖2)
σ2 , of which the

default value is set to 20 dB. Let ĥ denote the estimated value
of channel h. The performance is evaluated by the normalized
mean square error (NMSE), i.e., NMSE = E

(
‖h−ĥ‖2
‖h‖2

)
.

1) Simulation Setup: The simulations are provided based
on both the QuaDRiGa channel model and the spatially-sparse
clustered (SSC) channel model. For existing model-based
estimators, these two models can be viewed as the matched
case and mismatched case, respectively. Otherwise particularly
specified, the system parameters are set as: N = 256, M = 4,
P = 10. The carrier frequency is set to fc = 3.5 GHz, and
the length of the fluid antenna array is set to W = 10λ. For
the QuaDRiGa channel model, all parameters are generated
according to Table 7.7.1-2 in 3GPP TR 38.901. For the SSC

channel model, the number of clusters is set to C = 9 and
that of rays is set to R = 100. Both models have assumed
the maximum angle spread to be 5◦. For kernel settings, the
hyperparameters are set as α2 = 1 and η2 = λ

2π to generate
the exponential kernel Σexp and Bessel kernel Σbes [11].
Inspired by the covariance model in [1], [2], the order of
Bessel function in Σbes is set to ν = 0. To account for an ideal
baseline, the number of training timeslots is set to T = 100
to train the covariance kernel Σcov.

2) Simulation Schemes: We consider the following three
schemes for simulations. 1) FAS-OMP: Assuming that the
FAS channels are spatially sparse, the scheme in [9] is
modified and employed at the BS to explicitly estimate h.
2) SeLMMSE: The SeLMMSE proposed in [8] is adopted to
estimate channel h, which can be achieved by sequentially
measuring channels of PM equally-spaced ports and then
using zero-order interpolation to reconstruct h. 3) Proposed
S-BAR: Given a kernel Σ, the proposed S-BAR scheme, i.e.,
Algorithm 1, is employed to estimate h. Particularly, due to
the lack of obvious regularity, the exponential kernel Σexp

is selected as the input of S-BAR for QuaDRiGa channels.
Due to their periodic patterns in the spatial domain, the
Bessel kernel Σbes is selected as the input of S-BAR for
SSC channels. To provide an ideal baseline, the pre-trained
covariance kernel Σcov is considered for both channel models.

3) Simulation Results: To better understand the working
principle of the proposed S-BAR, we plot Fig. 1 to intuitively
show its behavior, where the QuaDRiGa channel model is

Authorized licensed use limited to: Tsinghua University. Downloaded on December 21,2024 at 10:41:37 UTC from IEEE Xplore.  Restrictions apply. 



0 2 4 6 8 10 12 14 16 18 20

-30

-25

-20

-15

-10

-5

0

5

Fig. 2. Model-mismatched case: The NMSE as a function of the number of
pilots P under the assumption of QuaDRiGa channel model.

considered and the covariance kernel Σcov is used to enable
S-BAR. From this figure, we have two observations. Firstly,
as the number of samples increases, the confidence interval is
gradually reduced. It indicates that more pilots or antennas can
better eliminate the uncertainty of FAS channels. Secondly,
one can note that the sample spacing is usually large. The
reason is that, for each sampling, the proposed S-BAR samples
the channel with the largest posterior variance. When a port is
selected and measured, the channel uncertainty of its nearby
ports will decrease, which reduces the trend of selecting them
as samples.

Then, we plot the NMSE as a function of the number
of pilots P in Fig. 2 for QuaDRiGa model and Fig. 3 for
SSC model, respectively. From these two figures, we have the
following observations. Firstly, the proposed S-BAR achieves
the highest estimation accuracy in both cases. The reason is
that, the existing methods do not fully utilize the channel
prior for estimation. For FAS-OMP, due to the non-ideal port
selection, the information provided by the randomly measured
channels may not be sufficient to capture all channel patterns.
For SeLMMSE, the unmeasured channels are directly obtained
by zero-order interpolation, while their potential estimation
errors are not considered. In contrast, the proposed S-BAR
incorporates the effect of prior correlation into its estimator,
which naturally considers the potential estimation errors of
all channels. Through kernel-based sampling and regression,
S-BAR can eliminate the uncertainty of many channels with
a few pilots. Secondly, the S-BAR enabled by the experiential
kernels Σexp and Σbes can achieve similar performance as
that enabled by covariance kernel Σcov. Recall that Σexp

and Σbes are generated by experiential parameters, while
Σcov is trained from real channel data. This observation
indicates that, even if the real channel covariance E

(
hhH

)
is

unknown, experiential parameters still allow S-BAR to achieve
considerable performance.

V. CONCLUSIONS

In this paper, we have proposed S-BAR as a general solution
to estimate channels in FASs. Different from the existing
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Fig. 3. Model-matched case: The NMSE as a function of the number of pilots
P under the assumption of SSC channel model.

channel estimators relying on channel assumptions, the general
S-BAR utilizes the experiential kernel to acquire CSI in a
non-parametric way. Inspired by the Bayesian regression, the
proposed S-BAR can select a few informative channels for
measurement and combine them with experiential kernel to
reconstruct high-dimensional FAS channels. Simulation results
reveal that, in both model-mismatched and model-matched
cases, the proposed S-BAR can achieve much higher estima-
tion accuracy than the existing schemes.
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