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Abstract
Our examination of existing deep generative mod-
els (DGMs), including VAEs and GANs, reveals
two problems. First, their capability in handling
discrete observations and latent codes is unsatis-
factory, though there are interesting efforts. Sec-
ond, both VAEs and GANs optimize some cri-
teria that are indirectly related to the data likeli-
hood. To address these problems, we formally
present Joint-stochastic-approximation (JSA) au-
toencoders - a new family of algorithms for build-
ing deep directed generative models, with applica-
tion to semi-supervised learning. The JSA learn-
ing algorithm directly maximizes the data log-
likelihood and simultaneously minimizes the in-
clusive KL divergence the between the posteriori
and the inference model. We provide theoreti-
cal results and conduct a series of experiments
to show its superiority such as being robust to
structure mismatch between encoder and decoder,
consistent handling of both discrete and continu-
ous variables. Particularly we empirically show
that JSA autoencoders with discrete latent space
achieve comparable performance to other state-
of-the-art DGMs with continuous latent space in
semi-supervised tasks over the widely adopted
datasets - MNIST and SVHN. To the best of our
knowledge, this is the first demonstration that
discrete latent variable models are successfully
applied in the challenging semi-supervised tasks.

1. Introduction
Semi-supervised learning (SSL) considers the problem of
classification when only a small subset of the observations
have corresponding class labels, and aims to leverage the
large amount of unlabeled data to boost the classification
performance. Several broad classes of methods for semi-
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supervised learning include generative models (Zhu, 2005),
transductive SVM (Joachims, 1999), co-training (Blum &
Mitchell, 1998), and graph-based methods (see (Zhu, 2005)
for more introduction). In recent years, significant progress
has been made on representation, learning and inference
with Deep Generative Models (DGMs) (Dayan et al., 1995;
Hinton et al., 2006; Kingma et al., 2014; Goodfellow et al.,
2014; Li et al., 2015; Xu & Ou, 2016), and this stimulates an
explosion of interest in utilizing DGMs for semi-supervised
learning.

Semi-supervised learning with DGMs usually involves
blending unsupervised learning and supervised learning.
One justification is that the unsupervised loss (e.g. the
negative marginal likelihood over the unlabeled data) pro-
vides additional regularization for the supervised loss over
the labeled training data (Zhu, 2005; Erhan et al., 2010;
Larochelle et al., 2012). Therefore, successful SSL methods
often develop or adapt from unsupervised learning methods
for DGMs.

DGMs define distributions over a set of variables, consist-
ing of observation variable x and hidden variable (or say
latent code) h, often organized in multiple layers. Early
forms of DGMs dated back to works on Sigmoid Belief
Networks (SBNs) (Saul et al., 1996), Helmholtz machines
(Dayan et al., 1995), and probabilistic autoencoders (Zemel,
1994). In recent years, deep generative modeling techniques
has been greatly advanced by inventing new models with
new learning algorithms, such as Variational Autoencoders
(VAEs) (Kingma et al., 2014), Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014), auto-regressive
neural networks (Larochelle & Murray, 2011) and so on;
all are originally proposed in the context of unsupervised
learning. Two most prominent techniques are VAEs and
GANs, both of which have been successfully adapted to
semi-supervised learning. These two also represent two
important classes of existing techniques in model represen-
tation, learning algorithm, and adaptation to SSL.

VAEs use prescribed generative models (Mohamed & Laksh-
minarayanan, 2016) and variational learning, i.e. maximize
the variational lower bound of the data log-likelihood w.r.t.
both the generative and inference models jointly. Adapta-
tion to SSL is straightforward by introducing class label
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y as another latent variable, in addition to h. Remarkably,
continuous hidden variables is in dominant use with the re-
parameterization trick - even when the underlying modality
is inherently discrete. Using discrete hidden variables in
VAEs still remains a challenge, although there are some
prior efforts (Mnih & Gregor, 2014; Jang et al., 2016; Mad-
dison et al., 2016b; van den Oord et al., 2017). The applica-
tion of VAEs to text data has been far less successful, and
recently been improved in (Yang et al., 2017).

GANs use implicit generative models (Mohamed & Laksh-
minarayanan, 2016) and adversarial learning, i.e. minimize
a lower bound on the Jensen-Shannon (JS) divergence be-
tween the generator distribution and data distribution, along
with a discriminator (Nowozin et al., 2016). Adaptation to
SSL either use the (K + 1)-class discriminative objective
(Salimans et al., 2016; Dai et al., 2017; Saatchi & Wilson,
2017) or still use K-class classifier but with various addi-
tional regularization terms (Springenberg, 2016; Li et al.,
2017) . Remarkably, GANs lack the ability to infer the latent
variable given the observation, and this limitation has been
addressed by some recent studies (Dumoulin et al., 2016;
Donahue et al., 2016). Learning GANs with discrete hidden
variables remains unexplored. The application of GANs to
discrete data is also rather restricted yet with some efforts
(Kusner & Hernández-Lobato, 2016; Yu et al., 2016; Che
et al., 2017; Saatchi & Wilson, 2017).

The above examination of VAEs and GANs in the context
of unsupervised and semi-supervised learning reveals two
problems with existing DGM techniques for SSL. First,
their capability in handling discrete observations and latent
codes is unsatisfactory, though there are interesting pro-
gresses. One fundamental reason is the difficulty of back-
propagation of gradients through discrete random variables.
Second, although maximum likelihood (ML) has been the
de-facto standard for training generative models, both VAEs
and GANs optimize some bounds that are indirectly related
to the data likelihood.

To address these problems, we note that recently, a new
learning algorithm called Joint-stochastic-approximation
(JSA) is developed for a broad class of DGMs which
are characterized by pairing a generative model (decoder)
with an auxiliary inference model (encoder) which approxi-
mates the posterior inference in the generative model. The
JSA learning algorithm directly maximizes the data log-
likelihood and simultaneously minimizes the inclusive KL
divergence the between the posteriori and the inference
model. We call this new DGM technique by JSA autoen-
coders, or JAEs for short. Inspired by the success of un-
supervised learning with JAEs in (Xu & Ou, 2016), we
examine its adaptation to SSL in this paper, which addresses
the above two problems with existing DGM techniques for
SSL.

The contributions of this work can be summarized as:

(1) We formally introduce Joint-stochastic-approximation
autoencoders (JAE) - a new family of algorithms for build-
ing deep directed generative models for semi-supervised
tasks, and show its theoretical consistency in the nonpara-
metric limit. Two distinctive features of JAEs are that they
directly optimize the data log-likelihood and provide a sim-
ple, consistent and principled way to handle both discrete
and continuous variables in latent and observation space.

(2) Synthetic experiments are given to help us analyze JAEs
in-depth and understand their behaviors.

(3) We empirically show that JAEs with discrete latent space
achieve comparable performance to other state-of-the-art
DGMs with continuous latent space in semi-supervised tasks
over the widely adopted datasets - MNIST and SVHN. To
the best of our knowledge, this is the first demonstration
that discrete latent variable models are successfully applied
in the challenging semi-supervised tasks.

2. Related work
In this work, we are mainly concerned with semi-supervised
learning with deep generative models. Currently most state-
of-the-art SSL methods are based on DGMs. The main idea
is that generative training over unlabeled data provides reg-
ularization for finding good classifiers (Zhu, 2005). From
the perspective of regularization, virtual adversarial train-
ing (VAT) (Miyato et al., 2017) seeks virtually adversarial
samples to smooth the output distribution of the classifier,
temporal ensembling (Laine & Aila, 2016) and mean teacher
(Tarvainen & Valpola, 2017) maintain running averages of
label predictions and model weights respectively for regu-
larization. These SSL methods also achieve good results. It
can be seen that these SSL methods utilize different regu-
larization from SSL with DGMs. Their combination could
yield further performance improvement in practice.

SSL with DGMs often develops or adapts from unsupervised
learning methods for DGMs. Recently there have emerged a
bundle of DGMs, among which VAEs and GANs represent
two important classes. For fitting a generative model to
data, the optimization criterion used has profound effect
on the behavior of the fitted model (Theis et al., 2016).
Additionally, some auxiliary model are often introduced
to facilitate the optimization, e.g. the inference model in
variational learning and JSA learning, the discriminator in
adversarial learning. In the following we list a few important
optimization criteria (not a complete list) along with the
models or learning algorithms which use them. For the sake
of clarity, we omit to compare the criteria for optimizing the
auxiliary models. Note that JSA learning is distinctive since
it directly optimize the data log-likelihood.
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• Maximizing the data log-likelihood, or equivalently
minimizing the Kullback-Leibler (KL) divergence be-
tween the data distribution and the generative model,
used by JSA (Xu & Ou, 2016)

• Maximizing the variational lower bound of the data
log-likelihood, or equivalently minimizing the KL di-
vergence between the inference model and the poste-
riori, used by the wake-sleep algorithm (Hinton et al.,
1995), NVIL (Mnih & Gregor, 2014), VAEs (Kingma
et al., 2014);

• Maximizing the importance sampling (IS) approxi-
mated lower bound of the data log-likelihood, used by
reweighted wake-sleep (RWS) (Bornschein & Bengio,
2014), importance weighted autoencoders (IWAEs)
(Burda et al., 2015);

• Minimizing the JS divergence between the generator
distribution and the data distribution, used by GANs.

• Minimizing the Wasserstein distance between the gen-
erator distribution and the data distribution, used by
WGAN (Arjovsky et al., 2017), WAE (Tolstikhin et al.,
2017).

While learning under most criteria is provably consistent
given infinite model capacity and data, in practice it learns
very different kinds of models with different behaviors, for
example, VAEs’ mode covering behavior, GANs’ mode
missing behavior. There are interesting efforts to design
new criteria, e.g. connecting the best of GANs and VAEs
(Makhzani et al., 2015; Mescheder et al., 2017; Pu et al.,
2017) for better sample generation, but few evaluate the
improvements over semi-supervised tasks. Remarkably, for
adaptation of GANs to SSL using the (K + 1)-class discrim-
inative objective, it is observed that good semi-supervised
classification performance and a good generator cannot be
obtained at the same time (Salimans et al., 2016); and it
is further analyzed that good semi-supervised learning in-
deed requires a bad generator (Dai et al., 2017). Neverthe-
less, among various criteria, maximum likelihood is still
appealing due to its nice property (consistency, statistical
efficiency, and functional invariance).

For SSL to make up for the lack of labeled training data,
good matching of model assumption with the structure of
data is critical. We need to handle different modalities in
both observation and latent space. The most appropriate
latent space may be discrete, continuous or even mixed,
depending on the structure of data. However, learning with
VAEs and GANs in discrete settings (consisting of three
main cases) encounter some difficulties, lagging far behind
the progress in continuous settings.

For GANs to work with discrete observations (Case I), it
is difficult to propagating gradients back from the discrimi-

nator through the generated samples to the generator. For
VAEs to work with discrete latent variables (Case II), there
exists basically the same difficulty of back-propagation of
gradients through discrete random variables1. There have
some efforts to address this difficulty. For variational learn-
ing of discrete latent variable models, the REINFORCE-
like trick is employed with various variance-reduction tech-
niques in (Mnih & Gregor, 2014; Mnih & Rezende, 2016);
VQ-VAE (van den Oord et al., 2017) approximates the gradi-
ent with the straight-through estimator (Bengio et al., 2013);
a few studies utilize the Concrete (Maddison et al., 2016a)
or Gumbel-softmax (Jang et al., 2016) distribution as a con-
tinuous approximation to a multinomial distribution, and
then use ’reparameterization trick’, although the gradients of
these relaxations are biased. For learning GANs on discrete
sequences, (Kusner & Hernández-Lobato, 2016) resorts to
the Gumbel-softmax distribution; (Yu et al., 2016; Che et al.,
2017) models the generation of the discrete sequence as a
stochastic policy in reinforcement learning and perform gra-
dient policy update. Remarkably, JAEs do not suffer from
such difficulty, since optimizing some expectation w.r.t. dis-
crete variables is solved by stochastic approximation, as we
show in the following sections.

The application of VAEs to discrete observations (Case III)
has no theoretical difficulty for gradient propagation, but has
been far less successful (Bowman et al., 2016; Miao et al.,
2016). It is found that the LSTM decoder in textual VAE
does not make effective use of the latent code during train-
ing. This training collapse problem may reflect structure
mismatch between the encoder and decoder, and is allevi-
ated in (Yang et al., 2017) after controlling the contextual
capacity of the decoder by using dilated CNN. Structure
mismatch between the encoder and decoder causes an irre-
ducible biased gap from the data log-likelihood for VAEs.
While this mismatch also affects the statistical efficiency
for JAEs, JAE learning is still consistent, since the MIS
accept/reject mechanism in JAE learning will compensate
for the mismatch.

3. Method
3.1. Background

Our method is an application of the stochastic approxima-
tion (SA) framework (Robbins & Monro, 1951), which basi-
cally provides a mathematical framework for stochastically
solving a root finding problem, which has the form of ex-
pectations being equal to zeros. Suppose that the objective

1Gradient back-propagation through continuous random vari-
ables works by using the ’reparameterization trick’. Both VAEs
and GANs use this trick in continuous settings to achieve lower
variance in the gradients.
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is to find the solution λ∗ of f(λ) = 0 with

f(λ) = Ez∼p(·;λ)[F (z;λ)], (1)

where λ ∈ Rd is a parameter vector of dimension d, and
z is an observation from a probability distribution p(·;λ)
depending on λ, and F (z;λ) ∈ Rd is a function of z. Given
some initialization λ(0) and z(0), a general SA algorithm
iterates as follows.

1. Generate z(t) ∼ Kλ(t−1)(z(t−1), ·), a Markov tran-
sition kernel that admits p(·;λ(t−1)) as the invariant
distribution.

2. Set λ(t) = λ(t−1) + γtF (z(t);λ(t−1)), where γt is the
learning rate.

During each SA iteration, it is possible to generate a set of
multiple observations z by performing the Markov transition
repeatedly and then use the average of the corresponding
values of F (z;λ) for updating λ, which is know as SA with
multiple moves (Wang et al., 2017). This technique can
help reduce the fluctuation due to slow-mixing of Markov
transitions. The convergence of SA has been studied under
various regularity conditions, e.g. satisfying that

∑∞
t=0 γt =

∞ and
∑∞

t=0 γ
2
t < ∞. In practice, we can set a large

learning rate at the early stage of learning and decrease to
1/t for convergence.

3.2. Joint-stochastic-approximation Learning

In the following we present the JSA learning algorithm in a
more general form, which was originally proposed in (Xu &
Ou, 2016) for learning a broad class of directed generative
models.

Consider a generative model2 pθ(x, h) ≜ p(h)pθ(x|h), con-
sisting of observation variable x, hidden variables (or say
latent code) h, and parameters θ. It is usually intractable to
directly evaluate and maximize the marginal log-likelihood
logpθ(x), but it is well-known that we have

∂

∂θ
logpθ(x) = Epθ(h|x)

[
∂

∂θ
logpθ(x, h)

]

We can pair the generative model pθ(x, h) with an auxil-
iary inference model qϕ(h|x), parameterized by ϕ, which
approximates the posterior pθ(h|x) in the generative model,
and jointly train the two models. This basic idea has been
proposed and enhanced many times - initially by Helmholtz
machines and recently by NVIL (Mnih & Gregor, 2014),
VAEs (Kingma et al., 2014), RWS (Bornschein & Ben-
gio, 2014), IWAE (Burda et al., 2015), and so on. The

2It is straightforward to develop the algorithm when the priori
p(z) depends on θ.

distinctive key idea of JSA learning is that in addition to
maximizing w.r.t. θ the marginal log-likelihood, it simul-
taneously minimizes w.r.t. ϕ the inclusive KL divergence
KL(pθ(h|x)||qϕ(h|x)) between the posteriori and the infer-
ence model, and Fortunately, we can use the SA framework
to solve the optimization problem.

Suppose that data D = {x1, · · · , xn}, which consists of n
observations drawn from the true but unknown data distri-
bution p0(x) with support X . p̃(x) ≜ 1

n

∑n
k=1 δ(x − xn)

denotes the empirical distribution. Then we can formulate
the maximum likelihood learning as jointly optimizing

min
θ

KL [p̃(x)||pθ(x)]

min
ϕ

KL [p̃(x)pθ(h|x)||p̃(x)qϕ(h|x)]
(2)

By setting the gradients to zeros, the above optimization
problem can be solved by finding the root for the following
system of simultaneous equations:

Ep̃(x)pθ(h|x)

[
∂

∂θ
logpθ(x, h)

]
= 0

Ep̃(x)pθ(h|x)

[
∂

∂ϕ
logqϕ(h|x)

]
= 0

(3)

It can be shown that Eq.(3) exactly follows the form of
Eq.(1), so that we can apply the SA algorithm to find its root
and thus solve the optimization problem Eq.(2).

Proposition 1. If Eq.(3) is solvable, then we can apply the
SA algorithm to find its root.

Proof. This can be readily shown by recasting Eq.(3) in the
form of f(λ) = 0, with λ ≜ (θ, ϕ)T , z ≜ (k, h1, · · · , hn)

T ,
p(z;λ) ≜ 1

n

∏n
k=1 pθ(hk|xk), and

F (z;λ) ≜

( ∂
∂θ logpθ(xk, hk)
∂
∂ϕ logqϕ(hk|xk)

)
,

where k denotes a uniform index variable over 1, · · · n.

To apply the SA algorithm, we need to construct a Markov
transition kernel Kλ(z

(t−1), ·) that admits p(z;λ) as the
invariant distribution. There are many options. Particularly,
we can use the Metropolis independence sampler (MIS),
with p(z;λ) as the target distribution. However, the proposal
q(z;λ) is defined by first drawing k uniformly over 1, · · · n,
and then only drawing hk ∼ qϕ(hk|xk) without changing
other hj for j ̸= k. Given current sample z(t−1), MIS works
as follow3:

3We update one hk at a time so that in w(z)

w(zt−1)
, we can cancel

the intractable pθ(xk) which is appeared in the importance ratio
w(z). In practice, we run SA with multiple moves.
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1. Propose z ∼ q(z;λ),

2. Accept zt = z with probability

min

{
1,

w(z)

w(zt−1)

}
, w(z) =

pθ(hk|xk)

qϕ(hk|xk)
.

Since the parameters of the target and auxiliary models are
jointly optimized based on the SA framework, the above
method is referred to as JSA learning. It can be seen from
the above derivation that JSA learning is general, which
places no constrains on the handling of discrete variables
for x and h. In the following, we provide more comments
and comparisons with existing learning techniques.

First, note that as in JSA iterations, minimizing
KL(p̃(x)pθ(h|x)||p̃(x)qϕ(h|x)) w.r.t. ϕ encourages the in-
ference model to chase the posteriori, which subsequently
improves the sampling efficiency of using the inference
model as the proposal for sampling the posteriori. Also the
inclusive KL divergence ensures that qϕ(h|x) > 0 wherever
pθ(h|x) > 0, which makes qϕ(h|x) a valid proposal for
sampling pθ(h|x).

Second, note that adversarial learning of GANs involves
finding a Nash equilibrium to a two-player non-cooperative
game. Gradient descent may fail to converge, as analyzed in
(Salimans et al., 2016). In contrast, Eq.(2) in JSA learning
is not finding a Nash equilibrium, and thus is more stable.

Third, variational learning is to optimize the variational
lower bound (VLB):

max
θ,ϕ

Ep̃(x)qϕ(h|x)log

[
pθ(x, h)

qϕ(h|x)

]
While the gradient w.r.t. θ is well-behaved, the trouble is
that the gradient w.r.t. ϕ is known to have high variance. To
address this problem, there are a lot of efforts, as discussed
in Related work.

Fourth, note that JSA learning mainly seeks ML estimates of
θ, with an additional optimization over ϕ. So JSA estimator
of θ enjoys the same theoretical properties as ML estimator,
even if qϕ has finite capacity. Furthermore, if both pθ and
qϕ have infinite capacity, we will obtain not only the perfect
generative model but also the perfect inference model. The
following proposition shows the theoretical consistency of
JSA learning in the nonparametric limit.

Proposition 2. Suppose that n → ∞, and pθ(x, h) and
qϕ(h|x) have infinite capacity, then we have (i) both KL
divergences in Eq.(2) can be minimized to attain zeros. (ii) If
both KL divergences in Eq.(2) attain zeros at (θ∗, ϕ∗), then
we have pθ∗(x) = p0(x), qϕ∗(h|x) = pθ∗(h|x), x ∈ X .

Proof. By the property of the KL divergence, and p̃(x) →
p0(x) as n → ∞.

Algorithm 1 Semi-supervised learning with JAEs
repeat

Monte Carlo sampling: Draw a unsupervised mini-
batch U ∼ p̃(x)pθ(y, h|x) and a supervised minibatch
S ∼ p̃(x, y)pθ(h|x, y);
SA updating: Update θ by ascend-
ing: 1

|U|
∑

(x,y,h)∼U
∂
∂θ logpθ(x, y, h)

+ 1
|S|

∑
(x,y,h)∼S

∂
∂θ logpθ(x, y, h) Update ϕ

by ascending: 1
|U|

∑
(x,y,h)∼U

∂
∂ϕ logqϕ(y, h|x)

+ 1
|S|

∑
(x,y,h)∼S

∂
∂ϕ [logqϕ(y, h|x) + αlogqϕ(y|x)]

until convergence

Finally, note that pθ(x|h) is often termed the decoder, and
qϕ(h|x) the encoder. They could be defined either with
multiple stochastic hidden layers such as SBNs (Saul et al.,
1996), or with multiple deterministic hidden layers such as
in VAEs (Kingma et al., 2014). JSA could be applied in
both cases, resulting in JSA autoencoders, or JAEs for short.
In this paper, we define them like those in VAEs4. Next, we
examine SSL with JAEs.

3.3. Semi-supervised Learning with JAEs

In semi-supervised tasks, we consider the generative model
pθ(x, y, h) ≜ p(y)p(h)pθ(x|h), where, with abuse of no-
tation, the hidden variables are decomposed to the class
label y and the latent code h. The inference model is
generally denoted as qϕ(y, h|x). Suppose that among
the data D = {x1, · · · , xn}, only a small subset of the
observations, for example the first m observations, have
class labels, m ≪ n. Denote these labeled data as
L = {(x1, y1), · · · , (xm, ym)}, with p̃(x, y) representing
the empirical distribution. Then we can formulate the semi-
supervised learning as jointly optimizing



min
θ

KL [p̃(x)||pθ(x)] +KL [p̃(x, y)||pθ(x, y)]

min
ϕ

KL [p̃(x)pθ(y, h|x)||p̃(x)qϕ(y, h|x)]

+KL [p̃(x, y)pθ(h|x, y)||p̃(x, y)qϕ(h|x, y)]

− α
∑

(x,y)∼L

logqϕ(y|x)

(4)

which is similar to those SSL criteria used in (Larochelle
et al., 2012; Kingma et al., 2014), which are defined by
hybrids of generative and discriminative criteria. By setting
the gradients to zeros, the above optimization problem can
be solved by finding the root for the following system of

4In this manner, the storage for saving the latent codes per
training observation is much reduced, as compared to (Xu & Ou,
2016).
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simultaneous equations:

Ep̃(x)pθ(y,h|x)

[
∂

∂θ
logpθ(x, y, h)

]
+ Ep̃(x,y)pθ(h|x,y)

[
∂

∂θ
logpθ(x, y, h)

]
= 0

Ep̃(x)pθ(y,h|x)

[
∂

∂ϕ
logqϕ(y, h|x)

]
+ Ep̃(x,y)pθ(h|x,y)

[
∂

∂ϕ
logqϕ(h|x, y)

]
+ α

∑
(x,y)∼L

∂

∂ϕ
logqϕ(y|x) = 0

(5)

Similarly, it can be shown that Eq.(5) exactly follows the
form of Eq.(1), so that we can apply the SA algorithm
to find its root and thus solve the optimization problem
Eq.(4). Also we can use MIS to draw samples from the
posteriori distributions pθ(y, h|x), pθ(h|x, y), while using
the proposals, qϕ(y, h|x), pϕ(h|x, y), from the inference
model. The SA algorithm with multiple moves for SSL is
shown in Algorithm 1.

In SSL experiments in this paper, the inference network is
implemented by qϕ(y, h|x) ≜ qϕ(y|x)qϕ(h|x). This imple-
mentation benefits efficient posteriori inference, which is
frequently executed in training. This approximation would
be safe as the MIS accept/reject mechanism will compen-
sate for the mismatch between the target distribution and
the proposal distribution. This is also empirically validated
in our experiments.

4. Experiments
To evaluate JAEs and compare with other SSL methods
(mainly VAEs and GANs), we conduct a series experiments.
We will release code to reproduce our experiments. Experi-
mental details are provided in Appendix. It is worthwhile to
emphasize that:

• In addition to giving the SSL results, we also present
some unsupervised learning results, because SSL with
DGMs usually involves unsupervised learning. These
experiments help us to understand different learning be-
haviors of different SSL methods, instead of competing
for unsupervised performance.

• In addition to showing the benchmarking results over
the widely adopted image datasets, experiments with
the synthetic datasets are useful for understanding
different learning methods since we know the oracle
model which creates the data.
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Figure 1. Results for factor analysis. Upper: KL divergences
between pθ(h|x) and qϕ(h|x) during training. Lower: KL diver-
gences between the oracle p0(x) and the estimated pθ(x) during
training.

4.1. Factor Analysis

It is known that the encoders used in VAE training are
usually not expressive enough to capture the true posterior
distribution. They are often modeled as diagonal Gaussians
whose means and variances are determined by NN transfor-
mations of the observations. Structure mismatch between
the encoder and decoder causes an irreducible gap from the
data log-likelihood for VAEs. While this mismatch also
affects the statistical efficiency for JAEs, JAE learning is
still consistent, since the MIS accept/reject mechanism in
JAE learning will compensate for the mismatch.

To illustrate this difference, we conduct an experiment over
a factor analysis (FA) synthetic dataset. We create 100 3d
observations with 2d latent factors as follows:

x ∼ µ+ Ph+N(0, R), R = 0.04× I3,
h ∼ N(0, I2),

µ = (−1, 0, 1)T , P =

(
0.2 1 0.5
1 0.5 0.5

)T

,

We take the generative model pθ(x, h) to be the above fac-
tor analysis model with unknown parameters θ = (µ, P ),
so that the true posteriori pθ(h|x) can be tractably calcu-
lated, which is a 2d Gaussian with correlation coefficient
0.66 in the above setting. Also the oracle p0(x, h) and as-
sumed pθ(x, h) are from the same family of models, so that
we eliminate the possible bias caused by incorrect model
assumption and focus on the effect of structure mismatch
between the encoder and decoder.

For both VAE and JAE, the decoder qϕ(h|x) is implemented
as a 2d Gaussian with diagonal covariance matrix. The
means and variances are the four outputs from a 3-50-4
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Figure 2. Comparison of a VAE with 2d Gaussian prior for latent
code h (row 1), a JAE with 2d Gaussian prior (row 2) and a JAE
with a mixture of 4d Bernoulli and 1d Gaussian prior (row 3).

neural network, fully connected, with ReLU activations at
the hidden layer and linear activations at the output layer.
It can be seen from Figure 1 that while there is structure
mismatch between the encoder and decoder for both VAE
and JAE, this mismatch prevents VAE from learning the
data distribution. In contrast, JAE performs much better
even with a mismatched decoder.

4.2. Gaussian Mixture Model

This experiment serves two purposes. First, it help us to
understand the reconstruction behaviors of VAEs and JAEs,
which also reflect the performances of the inference models.
Second, it evaluates the capabilities of VAEs and JAEs for
supporting discrete latent modalities. Note that for GANs,
their reconstruction performance is still worse than autoen-
coders like VAEs, as evidenced in recent efforts to augment
GANs’ inference ability (Dumoulin et al., 2016). So we
mainly compare VAEs and JAEs in this experiment, and
also in the previous FA experiment for the same reason.

As similarly done in (Dumoulin et al., 2016), we create a
synthetic dataset, created by randomly drawing 1600 data-
points from a 2D Gaussian mixture model (GMM) with 16
equally-weighted, low-variance (0.052) Gaussian compo-
nents laid out on a grid This distribution exhibits lots of
modes separated by large low-probability regions, which
makes it a decently hard task for learning. It is also a good

Figure 3. Column 1: Part of the training data from the context free
grammar; Column 2/3/4 : data generated by JAE, GAN and VAE
respectively. Both GAN and VAE use the Gumbel-softmax trick.
The GAN result is copied from (Kusner & Hernández-Lobato,
2016). The temperature {0.1, 0.01, 0.001} is tested for Gumbel-
softmax with VAE.

example of distributions, whose latent space contains both
discrete and continuous modalities.

For both VAEs and JAEs, the inference network is imple-
mented by a 3-layer fully connected neural network with
400 units per layer and ReLU activations. The generative
network is also a 3-layer fully connected neural network
with 200 units per layer and ReLU activations. We compare
a VAE with 2d Gaussian prior for latent code h, a JAE also
with 2d Gaussian prior, and a JAE with a mixture of 4d
Bernoulli and 1d Gaussian prior. The results are summa-
rized in Figure 2.

With 2d Gaussian prior, the JAE and VAE perform similarly
for such continuous latent space, in terms of reconstruction
and sample generation. However, for this data, the most
appropriate latent space is in fact a mixture of discrete and
continuous modalities, instead of being purely continuous.
It can be seen that the JAE with the mixed latent code per-
forms the best, which successfully discover not only the 16
discrete modes (represented by 4d Bernoulli) but also the
variances surrounding each mode. This demonstrates that
JAE can consistently handle both discrete and continuous
latent codes.

4.3. Sequences of Discrete Elements

In this experiment, we compare VAEs, GANs and GANs
for handling discrete observations. Particularly, we consider
context free grammar (CFG) learning, as done in (Kusner &
Hernández-Lobato, 2016). The CFG is: S → x||S+S||S−
S||S ∗ S||S/S, which is used to create sequences with a
maximum length of 12 characters. We pad all sequences
with less than 12 characters with spaces. There are six
characters {+,−, ∗, /, x, space}.
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h

y

Figure 4. Conditional generation by the semi-supervised JAE over
the MNIST dataset, using 60d Bernoulli prior. The leftmost col-
umn shows images from the test set. The other columns are gener-
ated by varying class label y for each column, and keeping latent h
inferred from the leftmost column.

We implement VAE and JAE for this learning task.
Both models use the same RNN-based seq2seq archi-
tecture for encoder-decoder. The decoder is basically
a 2-layer (50-6) LSTM, representing logpθ(x1...T |h) =∑T

t=1 logpθ(xt|xt−1, h), where xt is the one-hot encoded
character and x0 = 0. The prior p(h) is 20d Bernoulli with
µ = 0.5. The encoder is basically a 2-layer (50-50) LSTM,
representing qϕ(h|x1...T ). It calculates the posteriori of h by
a single layer neural network form last state of the LSTM.

The sequence generation results are shown in Figure 3. We
can see that the generative model of JAE has learned that
x1 should be the character ’x’, and the character ’x’ and
other symbols +,−, ∗, / should be generated alternately.
VAE has learned the importance of ’x’ and spaces, but omits
other symbols. This result shows that JAEs are superior in
learning with sequences of discrete elements.

4.4. Semi-supervised classification benchmarking

We evaluate SSL performances over the widely adopted
image datasets - MNIST and SVHN, and strictly follow
the experimental setup in previous benchmarking studies.
MNIST contains 28x28 gray images of ten digits, consist-
ing of 60k training samples and 10k test samples. SVHN
contains 32x32x3 RGB images of ten digits, consisting of
600k training samples (including the extra set) and 26k test
samples. We randomly choose 100 samples for MNIST
and 1000 samples for SVHN as labeled data, the others in
training set is unlabeled.

To demonstrate the ability of JAEs in handling discrete vari-
ables, we employ Bernoulli priors p(h) for both binarized
MNIST and SVHN. The JAE models run 10 times indepen-

Figure 5. Class-conditional traversal in the discrete latent space.
The center images in the two pictures are the reconstructions.
Surrounding images are generated with several units of the latent
codes flipped randomly. The number of flipped units follows the
board distance to the center.

dently for each dataset with randomly selected labeled data.
Table 1 compares the JAE results with state-of-the-art SSL
methods. It can be seen that JAEs with discrete latent space
achieve comparable SSL performance to other state-of-the-
art DGMs with continuous latent space. When compare
with the VAE, which uses Gumbel-softmax to handle cate-
gorical class but still uses Gaussian latent code (Jang et al.,
2016), JAE performs much better on binarized MNIST data.
In addition to superior SSL performance, we also show the
ability of semi-supervised JAE to disentangle classes and
styles. These resembles the two forms of analogical reason-
ing with VAEs (Kingma et al., 2014), but we show them
with discrete latent space. Figure 4 shows the results by
fixing the latent codes and then varying the class labels.
Figure 5 shows the results by fixing the class label and then
varying the latent codes over a range of values.

For SVHN, we find that it is beneficial to pre-process
RGB images to gray images, and the error rate is
around 6.80% on RGB images. For SVHN, we ad-
ditionally utilize the discriminative confidence loss to
regularize the JAE’s inference network, by minimizing∑

x∼p̃(x)

∑
y −qϕ(y|x)logqϕ(y|x).

5. Conclusion
In this paper, we formally present JSA autoencoders - a
new family of algorithms for building deep directed genera-
tive models, with application to semi-supervised learning.
We provide theoretical results and conduct a series of ex-
periments to show its superiority such as being robust to
structure mismatch between encoder and decoder, consistent
handling of both discrete and continuous variables. Partic-
ularly we empirically show that JSA autoencoders with
discrete latent space achieve comparable performance to
other state-of-the-art DGMs with continuous latent space
in semi-supervised tasks over the widely adopted datasets -
MNIST and SVHN. In addition to variational learning and



Joint-stochastic-approximation Autoencoders with Application to Semi-supervised Learning

Table 1. Comparison (% error) between state-of-the-art SSL methods over MNIST using 100 labels and SVHN using 1000 labels, without
data augmentation and self-ensembling.

METHODS MNIST SVHN CIFAR-10
LADDER NETWORK (2015) 1.06±0.37 - 20.40±0.47
CATGAN (2016) 1.91±0.10 - 19.58±0.45
IMPROVEDGAN (2016) 0.93±0.06 8.11±1.3 18.63±2.32
ALI (2016) - 7.42±0.65 17.99±1.62
BADGAN (2017) 0.80±0.01 4.25±0.03 14.41±0.30
TRIPLEGAN (2017) 0.91±0.58 5.77±0.17 16.99±0.36
VAE (2014) 3.33±0.14 36.02±0.10∗ -
SDGM (2016) 1.32±0.07 16.61±0.24∗ -
ADGM (2016) 0.96±0.02 22.86∗ -
ST GUMBEL-SOFTMAX (2016) 6.4 - -
JAE+GAUSSIAN 1.98±0.07 12.80±0.32∗ -
JAE+BERNOULLI 1.96±0.12 6.22±0.55∗ 44.8

Table 2. Evalution of log-likehood on binary MNIST dataset

METHODS logpx ≥ logp(x) =
AVB(8-DIM) -83.6±0.4 -91.2±0.6
AVB+AC(32-DIM) -79.5±0.3 -80.2±0.4
VAE(32-DIM) -87.2±0.2 -81.9±0.4
VAE+NF(T=80) -85.1 -
VAE+HVI(T=16) -88.3 -85.5
CONVVAE+HVI(T=16) -84.1 -81.9
VAE+VGP(2HL) -81.3 -
DRAW+VGP -79.9 -
VAE+IAF -80.8 -79.1
AUXILIARY VAE(L=2) -83.0 -
IWAE(2L,K=50) - -82.9
RWS - -86.8
JAE(32-DIM) -88.0 -80.3

adversarial learning, JSA learning provides another tool in
the machine learning toolbox, which deserves more devel-
opments.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017.
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A. Visualization
Figure 6 demonstrates the reconstruction result of SVHN data in test set trained by semi-JAE with 220d Bernoulli p(h).

Figure 7 demonstrates the manifold of MNIST dataset, images are represented as a 60d p(h|x) probabilistic vector trained by
unsupervised JAE with Bernoulli prior. It suggests that JAE can extract class features and benefit semi-supervised learning.

B. Training Details
B.1. Factor Analysis Dataset

For the synthetic factor analysis dataset, we used neural networks for the inference network with one hidden layer, containing
50 rectified linear units. The output of the inference network is a 4d vector, involve 2d for mean values and 2d for variances
of the Gaussian q(h|x). The generative network x = f(h) is a factor generate process that x = P̂ h + µ. Architectures
for JAE and VAE is the same. Parameters are initializer by the Xavier initialization. We optimizes JAE and VAE by
Adam(α = 10−2, β1 = 0.9, β2 = 0.999) with learning rate 0.01. The size of the dataset is 100, and we run 10000 iterations
with full batch data on it.

B.2. Almost Discrete Gaussian Mixture Dataset

Inference networks and generative networks we used are fully connected neural networks for the almost discrete Gaussian
mixture dataset. Inference networks for VAE and JSA are networks with 2 hidden layers with shape 400-400 and
the ReLU activation. Generative networks are networks 2 hidden layers with shape 200-200 and the ReLU activation.
Parameters are initializer by the Xavier initialization. The variance of Gaussian noise attached to the output of JAE’s
inference network is selected to be 0.05, and is decreased to 0.01 after 1000 iterations. We use the Adam optimizer
(α = 0.05, β1 = 0.9, β2 = 0.999). The size of the dataset is 1600, batch size is 100, and we run 10000 iterations on it.

B.3. Sequences of Discrete Elements Dataset

Architecture of the models for the discrete sequence dataset is shown in Figure 8. Numbers on the picture denotes widths of
layers. We show 4 time steps but LSTM networks run 12 time steps for every sequence. Squares denote LSTM layer and
the circle denotes the fully connected layer. All layers without annotation explicitly use tanh activation. Parameters are
initializer by the Xavier initialization. SGD optimizers with learning rate 0.0005 are used to train networks. The prior p(h)
for JAE and VAE is selected to be 20d Bernoulli distribution with µ = 0.5. The size of the dataset is 5000, batch size is 100,
and we run 10000 iterations on it.

B.4. MNIST

We leverage 60d Bernoulli prior of the hidden variables for MNIST. Figure 9 demonstrates networks for MNIST. Dense
denotes fully connected layer and noise denotes the addition of gauss ion noise with variance 0.32. All layers without
annotation explicitly use ReLU activation. Parameters are initializer by the Xavier initialization. The optimizer is SGD with
learning rate 0.001. The MIS process work without cache and restart for every datapoint with 10-step warm up. After 100
epochs, the learning rate decays to 0.995 times it for every epoch. We use 100 randomly selected images as labeled data,
and use the other 50k images as unlabeled data. The accuracy is evaluated on the test set with 10k images. The algorithm
runs 1.2 ∗ 105 iterations, and for every iteration parameters are updated by 100 labeled data and 100 unlabeled data. For first
500 iterations, only supervised learning is executed.

B.5. SVHN

We leverage 220d Bernoulli prior of the hidden variables for SVHN. Figure 10 demonstrates networks for SVHN. BN
denotes batch normalization. Dense denotes fully connected layer. And the keep probability for dropout we used is
0.8. All layers without annotation explicitly use ReLU activation. The variance of the Gaussian noise attached to the
output of JAE’s inference network is selected to be 0.1. Parameters are initializer by the Xavier initialization and biases
are set to be zero. Regulation are added into the criterion. Minimizing H(p(y|x)) for unlabeled data and the pseudo
loss KL(

∑
h p(x, y, h)||q(z|x)p(x)) improves the performance of the network. The optimizer is SGD with learning rate

0.00005. After 105 iterations, the learning rate decays to 0.995 times it for every 100 iterations. The MIS process work
without cache and restart for every datapoint with 10-step warm up. We use 1000 randomly selected images as labeled data,
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and use the other 600k images as unlabeled data. The accuracy is evaluated on the test set with 26k images. The algorithm
runs 1.2 ∗ 105 iterations, and for every iteration parameters are updated by 50 labeled data and 500 unlabeled data. For first
1000 iterations, only supervised learning is executed.
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Figure 6. Reconstructions (lower) for the images in the SVHN test set (upper), with 220d Bernoulli p(h). The two digits at the right of the
lower picture are the true labels and predicted labels respectively.
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Figure 7. t-SNE of 60d latent codes inferred by unsupervised JAE with 60d Bernoulli p(h). Different colors represent different class
variables in MNIST dataset.
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Figure 8. Architecture of the JAE model on context free grammar dataset.
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Figure 9. Architecture of the semi-JAE model on MNIST.
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Figure 10. Architecture of the semi-JAE model on SVHN.


