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Abstract—1In extremely large-scale multiple-input-multiple-
output (XL-MIMO) systems for future sixth-generation (6G)
communications, codebook-based beam training stands out as
a promising technology to acquire channel state information
(CSD). Despite their effectiveness, existing beam training methods
suffer from significant achievable rate degradation for remote
users with low signal-to-noise ratio (SNR). To tackle this chal-
lenge, leveraging the error-correcting capability of channel codes,
we incorporate channel coding theory into beam training to
enhance the training accuracy, thereby extending the coverage
area. Specifically, we establish the duality between hierarchical
beam training and channel coding, and build on it to propose
a general coded beam training framework. Then, we present
two specific implementations exemplified by coded beam training
methods based on Hamming codes and convolutional codes,
during which the beam encoding and decoding processes are
refined respectively to better accommodate to the beam training
problem. Simulation results have demonstrated that, the pro-
posed coded beam training method can enable reliable beam
training performance for remote users with low SNR, while
keeping training overhead low.

Index Terms—Beam training, channel codes, hierarchical
codebook, convolutional codes, Hamming codes.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (mMIMO) [1]

has been considered as a technological enabler for
current fifth-generation (5G) communications. To achieve
spectral efficiency enhancement in mMIMO systems, accu-
rate channel state information (CSI) at the transmitter is a
prerequisite, which can be realized either by the explicit
CSI acquisition (i.e., channel estimation) or the implicit CSI
acquisition (i.e., beam training) [2]. To further increase spectral
efficiency, future sixth-generation (6G) communication sys-
tems are expected to employ extremely large-scale MIMO
(XL-MIMO) antenna arrays [3], [4]. Unfortunately, due to the
high-dimensional XL-MIMO channels, the pilot overhead of
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channel estimation will increase dramatically, making explicit
CSI acquisition challenging [5], [6], especially with pas-
sive antenna elements in XL-reconfigurable intelligent surface
(RIS) systems [7], [8]. In such cases, implicit CSI acquisi-
tion, i.e., beam training, serves as a more practical way for
CSI acquisition [9]. This implicit procedure is performed by
transmitting several predefined directional beams (codewords)
toward the users, and determining the users’ direction from
their received power [10], [11].

An important way to conduct beam training is exhaustive
beam sweeping [12], [13], which sequentially tests the narrow
beams predefined in the codebook, and selects the codeword
with the highest received power. Thanks to the high beam-
forming gain of narrow beams, exhaustive beam sweeping by
narrow beams ensures reliable beam training performance even
for remote users (usually located in the cell-edge area) with
low signal-to-noise ratio (SNR) [12]. Despite the consider-
able reliability of exhaustive beam sweeping, this exhaustive
method brings unaffordable training overhead in XL-MIMO
communication systems. Specifically, the size of a typical
exhaustive codebook is equal to the number of BS antennas
with each codeword corresponding to a narrow beam focused
on a specific direction. In recent years, a polar-domain code-
book [14] has been proposed to improve the XL-MIMO CSI
acquisition accuracy by considering the physically spherical
wave property in the near-field region. In this codebook, each
codeword aligns with a sampled location in the angle-distance
domain, thus the size of the codebook is even larger (i.e. the
product of antenna number and sampled distance grid) [15].

To reduce the training overhead, hierarchical beam training
methods have been proposed [16], [17], [18], [19]. In hierar-
chical beam training, the possible user directions are narrowed
down in a layer-by-layer manner. Specifically, hierarchical
beam training utilizes a hierarchical codebook comprising
multi-layer codewords. In this codebook, the spatial region
covered by a certain codeword at any layer of the codebook
is partitioned into two smaller disjoint spatial regions in
the next layer [16]. Then, applying this codebook, the BS
can gradually narrow down the possible user direction by
choosing the spatial region with larger received power based
the user’s feedback signal in each layer. Owing to the half
reduction of uncertain region of the user’s direction in each
layer, this hierarchical scheme can exponentially speedup the
beam training process compared with the exhaustive beam
sweeping [17]. Thus, the idea of hierarchical beam training
has triggered various improvement efforts for designing binary
search-based hierarchical codebooks [16], [17], [18], [20],
[21], [22]. Besides, the idea of hierarchical beam training
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is also widely employed to perform efficient near-field beam
training [15], [19], [23].

However, due to the “error propagation” phenomenon,
hierarchical beam training methods suffer from serious per-
formance deterioration for remote users with low SNR. The
error propagation originates from low directional beam gain
of wide beams in the upper layers. With reduced beam gain,
these upper-layer beams are especially susceptible to errors,
causing unrecoverable errors in the subsequent layers of the
hierarchical process.

To our best knowledge, existing beam training methods,
both exhaustive and hierarchical, can hardly resolve the con-
flict of reliability and efficiency in beam training for remote
users with low SNR. To solve the problem, the authors of [24],
[25] proposed a heuristic approach to introduce channel codes
into beam training. Inspired by these works, in this paper,
we propose a unified coded beam training framework by
exploiting the error correction capability of channel codes.
With elaborated adaptation for the beam training problem,
the proposed framework enables reliable beam training per-
formance with exponentially reduced pilot overhead, even for
remote users. Specifically, the main contributions of this paper
are summarized as follows.'

1) By analyzing the binary algebraic structure of hier-
archical beam training, this paper reveals the duality
of hierarchical beam training problem and channel
coding problem, based on which a unified coded
beam training framework is proposed. Leveraging this
duality, almost all kinds of channel codes can be seam-
lessly integrated into the proposed coded beam training
framework.

2) To perform coded beam training, we design the
space-time coded beam patterns for generating the code-
words and the transmitting beamformers during beam
training, where different spatial directions are encoded
into different time sequences based on the channel
encoder to improve the tolerance to noise. Then, we uti-
lize the sequence of received signal power to decode
the spatial directions of the user by exploiting the
error correction capability of channel codes, yielding the
desired codeword for the user.

3) To better accommodate to the beam training problem,
we improve the coding algorithms in two aspects. Firstly,
existing channel coding algorithms are designed for
Gaussian channel for data transmission, while the user’s
received power during beam training obeys a non-central
x? distribution. Therefore, we modify the log-likelihood
ratio (LLR) calculator in the beam training decoder
to better adapt to the probabilistic properties in the
beam training problem. Secondly, we propose an adap-
tive encoding process where we dynamically adjust the
coded beam pattern based on the outcomes of previous
decoding iterations. The adaptive beam training encoder
can exclude impossible directions, thus improve the
real-time beam gain.

ISimulation codes will be provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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4) We employ classical Hamming codes and convolu-
tional codes respectively as examples to illustrate our
proposed coded beam training method. We provide sim-
ulation comparison of our proposed coded beam training
method with other methods, demonstrating the proposed
coded beam training method can enable reliable beam
training for remote users with low SNR. Besides, simula-
tion results also validate that the x? decoder outperforms
the traditional Gaussian decoder.

The rest of this paper is organized as follows. In Section II,
the system as well as channel models are introduced, and the
problem of beam training is formulated. Then, the principles
and implementation of the proposed coded beam training are
elaborated in Sections III and IV, respectively. Simulation
results are provided in Section V. Finally, Section VI con-
cludes this paper.

Notations: Lower-case and upper-case boldface letters rep-
resent vectors and matrices, respectively; || - ||, denotes the
p-norm of a vector; C,R denote the set of complex and
real numbers, respectively; [-]7,[-]* denote the transpose, and
conjugate-transpose operations, respectively; | J, (") denote the
union and intersection operation of sets; CA/(u, X) denotes
the Gaussian distribution with mean . and covariance X'; @
denotes the exclusive OR (XOR) operation; I,, denotes the
v-th order modified Bessel function of the first kind.

II. SYSTEM MODEL

In this section, the channel model of the XL-MIMO system
used in this paper will be introduced first. Then, we will
formulate the beam training problem.

A. System Model

We consider a mmWave/Terahertz (THz) XL-MIMO system
with one base station (BS) and a single-antenna user equip-
ment (UE). The BS employs a uniform linear array (ULA)
equipped with Nt \/2-spaced antennas, each being connected
to one RF chain, i.e., we adopt the fully-digital precoding
structure. It is worth emphasizing that our main technical con-
tributions are not restricted to full-digital precoding and can
be extended to arbitrary precoding architecture by applying
corresponding beam design methods [16], [26], [27], [28],
[29], [30], examples include the hybrid precoding elaborated
in Section IV-E.

For the downlink transmission, let s; € C be the
power-normalized transmitted symbol, then the received signal
y at the UE is given by

Y= \/ﬁhwso + n, (D

where P > 0 is the transmit power, h € CY*Nt the downlink
channel, w € C¥T*1 the unit-norm transmit beamformer, and
n the complex circularly-symmetric additive white Gaussian
noise n ~ CN(0,0?) at the UE receiver.

According to the well-known Saleh-Valenzuela channel
model [21], the channel h can be expressed as

NT Lo—1
b=\ 7= 2 Aale), )
=0

Authorized licensed use limited to: Tsinghua University. Downloaded on April 28,2025 at 06:23:07 UTC from IEEE Xplore. Restrictions apply.



930 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 3, MARCH 2025

where Lg is the number of multipath components, 3; and ¢
represent the complex gain and the angle-of-departure (AoD)
of the I-th path. a(p) € C**N7 is the array steering vector,
which is defined as
1

ap) = o

where ¢ = sinf € [—1,1] denotes the spatial direction and
0 € [—m/2,7/2] the physical direction. The significant scatter-
ing attenuation at high frequencies makes the power of the LoS
path considerably higher than its NLoS counterparts, rendering
the former a dominant component for data transmission at
mmWave/THz bands. Therefore, this paper mainly considers
the channel with only LoS component, which also determines
the pointing direction from the BS to the UE [6]. Thus, the
channel model in (2) can be simplified into

[1’e*j7w, efj(NTfl)mP]’ (3)

geeey

h = \/NrBoex(p0), “4)
where the path gain of the LoS path is modeled as [3]
Ao
= — 5
/60 Ay’ ( )

with r denoting distance from the UE to the center of the
antenna array.

B. Problem Description

The objective of beam training is to steer the beamformer
w to the AoD of the dominate path (LoS path). Specifically,
according to the structure of the array steering vector in (3),
we define the DFT codebook, WV, also known as the exhaustive
codebook, as

W={a(p)|p=-142n—1)/Np,ne{1,2,--- ,Np}}.
6)

the diagram of which is illustrated in Fig. 1(a). Codebook-
based beam training attempts to select a codeword from W to
maximize the received signal power, i.e.,

|hw|
s.t. weW. (7

max
w

To solve the problem (7), a straightforward way is to per-
form exhaustive beam sweeping [12]. The BS first sequentially
sweeps all codewords from V. Then, the UE selects the
best codeword having the highest received signal power and
feedbacks the selected codeword index. Clearly, the beam
sweeping process occupies Nt time slots, equivalent to the
number of the BS antennas. This fact means that although this
exhaustive beam sweeping could achieve a good beam train-
ing performance, it inevitably consumes unaffordable training
overhead, especially for XL-MIMO systems.

To avoid the unacceptable training overhead incurred by
exhaustive beam sweeping, hierarchical beam training utilizing
binary-search based codebook are widely adopted. As pre-
sented in Fig. 1(b), a typical hierarchical codebook [16],
Cher has 2! codewords at the ¢-th (t € {1,2,--- ,log, N1})
layer. We denote the b-th codeword in the ¢-th layer as Cﬁ}fr,
which covers two higher-resolution codewords with narrower

Angle domain

w(1) \ w(2) \ w(Ng)
(a) Exhaustive codebook.
Angle domain
c(11) c(1,2)
c1) ‘ c22) c23) ‘ o)
w(1) \ w(2) \ ’w(NT)

(b) Hierarchical codebook.

Fig. 1. Tllustration of the DFT codebook, WV, and the hierarchical codebook,
chier where the upscript “hier” in omitted in the figure.

coverage angle at the ¢ 4 1-th layer. During the beam training
process, we test the power of the received signal with two
selective low-resolution codewords at the upper layer, choose
the one with higher received power, and then narrow down the
beam width in a layer-by-layer manner, until a specific code-
word at the bottom layer is obtained. Through this way, the
beam training overhead is reduced to 2log, N1 [16]. However,
the performance of hierarchical beam training suffers from
the “error propagation” phenomenon, and thus cannot ensure
reliable beam training for remote users with low SNR, leading
to a restricted coverage area. Specifically, the codewords at
higher layers have wider beamwidth and lower beam gain,
making it more vulnerable to noise. Since hierarchical beam
training works on a binary tree in a sequential manner, any
erroneous decision at some layer on the tree will lead to
unrecoverable training failure.

In this paper, to alleviate the “error propagation” curse,
we propose a new hierarchical beam training method utilizing
the self-correcting capabilities of channel codes, which can
reduce training overhead while maintaining the beam training
success rate for remote users with low SNR.

III. OVERVIEW OF CODED BEAM TRAINING

Channel codes are well-established error control techniques
to protect the transmission data against channel noise by
adding redundant bits. Compared to non-coded systems, coded
systems are able to dramatically decrease the bit error rate
(BER) under the same channel condition and data payload
requirements, which is known as the waterfall effect of the
BER. Inspired by channel coding, we develop an ultra-reliable
hierarchical beam training framework, namely coded beam
training. In the proposed framework, exploiting the error cor-
rection capability, channel codes are introduced to hierarchical
beam training by adding extra layers of codewords to protect
the hierarchical beam training process from channel noise.

This section elaborates on the principles of coded beam
training. We first illustrate the fundamental idea of coded beam
training using an introductory example of a (7,4) Hamming
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code. Then, this idea is extended to a general framework of
coded beam training.

A. An Introductory (7,4) Hamming Code Example

To help understand of the proposed framework, we start
from comparing the traditional binary-search based hierarchi-
cal beam training [16] with the coded beam training exploiting
(7,4) Hamming code in an Ny = 16-antenna system.

1) Motivation of Coded Beam Training: In traditional hier-
archical beam training, the codebook CM¢' contains Ther =
log, N1 = 4 layers, the ¢-th layer of which has 2! codewords.
The detailed beam training procedure is carried out as follows.
We divide the spatial direction into Nt = 16 segments
uniformly and let the length-4 bitstream u € {0,1}* label
the spatial direction of the user. At the first layer of codebook
Chierthe BS sequentially transmits Cfifr and C{‘fgr to the UE.
Then, the UE compares the received signal power of C{‘ffr
and C{"igef, and set u(l) = 0 if the first codeword yields
higher signal power, and u(1) = 1 otherwise. After that, the
UE feeds back the bit u(1) to the BS, according to which
the BS selects the two possible codewords in the second
layer. We sequentially perform these steps until approaching
the bottom layer of C"°*. The BS can finally recover the
spatial direction and decide the optimal index according to
the bitstream u = [u(1), u(2), u(3), u(4)]. For example, if the
received bitstream u = [0, 0, 1, 0], the selected codeword index
is bintodec([0, 0, 1,0])+1 = 3. According to (6), beamformer
w=a(-1+(2x3-1)/16) = o (~11/16) is adopted
for data transmission. However, for a remote user with low
SNR, if the first layer of codebook chooses the wrong index
due to low directional gain of wide beam, the subsequent
training process is invalid since we have missed the optimal
index. Suppose the original u(1) = 0 is incorrectly decided
as u(l) = 1, then the selected codeword index is 11 instead
of 3. This issue is referred to the “error propagation” problem,
which will be alleviated using the Hamming code to protect
the index against incorrect bits.

2) Beam Encoding: To alleviate the error propagation issue,
we consider to incorporate (7,4) Hamming code to beam
training. Our novelty lies in the design of a new codebook, say
Cham ' comprising seven layers (four information layers and
three additional check layers) as presented in Fig. 2. Compared
with the classical hierarchical codebook, Cer  the proposed
codebook, CP®™, contains two complementary codewords in
each layer, featuring sawtooth-shaped beam patterns, which
makes it capable of encoding beams. The detailed construction
of CPa™ inyolves two step: 1) space-time beam pattern design
relying on the Hamming code, 2) codebook generation based
on the beam pattern, which are elaborated below.

o Space-time beam pattern design: To begin with, it is
necessary to determine the space-time 0-1 beam pattern,
yham  fop building the codebook Cham Fach element of
Yham reflects the desired beam pattern of one codeword
of CPa™  Specifically, for the desired beam generated by
the b-th codeword in ¢-th layer, Cth_‘zm, its beam pattern
Vt}fgm is composed of Nyt = 16 binary numbers, i.e.,
Viam = {0,1}'6. By dividing the spatial region [—1, 1]
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into Nt = 16 segments uniformly, the s-th bit Vthim(s)
is set as 0 if the beam generated by codeword C,'}™ is
expected to have a high gain in the s-th segment (s €
{0,1,---,15}) and V}3™(s) = 1 otherwise.

Applying this definition, we can build V'™ using the
Hamming codes. To be specific, we first index the
s-th spatial segment, s € {0,1,---,15}, by a length-k =
4 bits us. According to the encoding operation of (7,4)
Hamming coding, the coded bitstream x, corresponding
to the s-th spatial direction is expressed as

z; = u,G € {0,1}7, (8)
where G is the generator matrix, which is denoted as
1000 11

1
0100110
Gr_00101

01 ®)
0001011

In our codebook design, the s-th encoded space bitstream
x5 € {0,1}7 defines the beam pattern of the codewords
Cé‘_?m,t = 1,2,---,7 over the s-th segment, while its
ﬂip determines the beam pattern of Cﬁgm. Therefore,
the corresponding space-time beam pattern vggm,t €
{1,2,---,7},b € {1,2} can be expressed as

{Wﬁ%) = ,(t)

Vgt (s) = as(t)

where Z denotes the bit flip and x(s) denotes the s-th
bit of a vector . The designed beam pattern by (10) is
illustrated in the left part of Fig. 2. For example, for the
s = 2 direction, the spatial bitstream is uy = [0,0, 1, 0]
and the encoded bitstream can be calculated as x5 =
[0,0,1,0,1,0,1]. Thus, the beam pattern of s = 2-th
segment in the layer sequence is also [0,0,1,0,1,0,1],
which means that the 1,2, 4,6-th layers present high
beam gains while the others present low beam gains,
as shown in Fig. 2.

o Codebook Generation: After obtaining the space-time
beam pattern, we are able to generate the codebook,
Ccham  employing various beam design methods, such
as the weighted sum of narrow beams [31] and the
Gerchberg-Saxton (GS) algorithm [23].

As illustrated in Fig. 2, the first four layers of the beams
are regular square beams and the extra three check layers
are irregular multi-mainlobe wide beams. In each layer, the
BS sequentially sends all codewords to the UEs. The UEs
compare the received signal power of two codewords and
feedback one bit to label the stronger codeword. In the same
example, if the original spatial information bitstream is u =
[0,0,1,0], then the desired feedback bit time sequence is
x =10,0,1,0,1,0,1].

3) Beam Decoding: In the beam decoding part, we aim to
decide the optimal codeword (i.e. space information) index
according to the received bitstream. If we suppose the first
layer is decided incorrectly due to the influence of noise again
in this example, the received bitstream will change to & =
[1,0,1,0,1,0,1]. Then we illustrate how we obtain the correct
index with the error correction ability of Hamming code.

, s€{0,1,---,15}, (10)
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- = - Ideal beam pattern V(5,1)

—— Beam pattern of €(5,1)

02 04 06 08 1

Fig. 2. The codebook CP*™ designed by the (7,4) Hamming code (14 codewords in 7 layers in total), where the upscript is omitted in the figure.

TABLE I

ERROR PATTERNS AND THE CORRESPONDING
SYNDROMES OF (7,4)HAMMING CODE

error bit c error bit c
by 111 bo 110
b3 101 by 011
bs 100 be 010
by 001 no 000

Based on the parity check matrix H, Hamming decoder
helps determine whether the received bitstream contains error
bit and the specific position of the error bit. The syndrome is
computed as

c=aHT, (11)
where parity check matrix can be expressed as
1110100
H=|1101010 (12)

1011001

Then we can decide the error pattern based on the syndrome
as in Table. I.

Based on (12), in this example, we calculate the syndrome
as ¢ = [1, 1, 1], which means the first bit is wrong. Therefore,
we correct the information bitstream as & = [0,0,1,0,1,0, 1].
The selected codeword index is 3, which successfully correct
the erroneous bit. In this way, by exploiting the “self-
correcting” capabilities of channel coding, it is possible to
obtain the correct angular index for beamforming even if the
wide beam in the upper layer leads to incorrect decision.
Thanks to the coding gain, it is promising that the proposed
hierarchical beam training method can enable reliable beam
training for remote users with low SNR.

B. Overall Idea Description

In this subsection, we generalize the specific example of
(7,4) Hamming code to a unified coded beam training frame-
work. We will first present the theoretical foundations of the
proposed coded beam training and then the general coded
beam training framework is illustrated.

1) Theoretical Foundations: The theoretical foundations of
coded beam training lies in the duality of hierarchical beam
training and channel coding, which are elaborated below.

o Channel coding: Following Shannon’s seminal
paper [32], a channel code consists of an encoder
function f and a decoder function g. The encoder f
maps a message u € U to a codeword © = f(u) € X",
where X is the output alphabet of the encoder (usually
binary, i.e., X = {0,1}), and n is the code length.
The channel W : X™ — )" randomly maps a coded
sequence x to a received sequence y € Y", where )
is the received alphabet. Finally, the decoder g maps y
to an estimated message @ € U, which is expected to
equal u with high probability, i.e., Plu = 4] is close
to 1. The number of different messages |{/| determines
the number of payload bits k = log,(|i/]), and the code
rate is defined as R = k/n. Thus, an (n,k)-code is a
pair of encoder-decoder that takes k bits into n channel
input symbols, and recovers the k payload bits from n
output symbols.

Beam training: As mentioned in Section II-B, the target
of beam training is to determine the angular directions of
the users from the received signals after the BS transmits
a pre-designed beam training codebook C. Generally,
an (T, Nt)-beam training code (BTC) is defined as
a beam training procedure capable of distinguishing
Nt different angular directions via an T-layer beam
training codebook. We denote the codebook C
{Cip e CNTXL e {1,2,--- \ THbe{1,2,-- ,b}}
with b; codewords for layer ¢. Besides, we denote the
beam pattern corresponding to the codeword C;; as
Vo € {0,1}V7, which describes the 0-1 pattern of the
multi-mainlobe beam in the angular domain as is defined
in Section III-A. An information-theoretic insight is
that it is only possible to construct (7', N7)-BTC with
|T| = Q(log Nt), since during beam training the user
can obtain at most one bit of information within each
training slot.

The above comparison reveals that beam training is intrin-
sically an information transmission problem. In the beam
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Fig. 3.

training problem, the payload bits are the unknown physical
direction of the UE, the channel is the angular response
function of the physical channel, and the receiver is the UE.
In this context, the BTC plays the same role as the channel
codes during data transmission.

From above description, we summarize the relationship
between a BTC and a channel code: An (n, k)-channel code is
equivalent to an (n, 2%)-BTC. This relationship ensures that an
arbitrary channel code can be converted to a reliable BTC to
protect beam training against noisy channel conditions, which
motivates the following channel code-BTC framework.

2) Framework Description: As illustrated in Fig. 3, the
framework of coded beam training comprises two stages. They
are the beam encoding for designing the BTC codebook, C,
and the beam decoding to recover the users’ spatial directions,
respectively. These two stages are detailed as follows.

2.1) Beam encoding: The target of beam encoding is to
construct an n-layer BTC codebook, denoted as C, from
an (n, k)-channel code, which is capable of distinguishing
2% angular directions. Similar to the design of C"*™ in the
Hamming code case, each layer of the general codebook, C,
contains two complementary codewords, which are built on the
following two steps: 1) design the space-time beam pattern,
V, according to an arbitrary channel code, 2) generate the
codebook C based on V.

¢ Space-time beam pattern design: Recall that the set VV
records the ideal beam patterns of all codewords belong-
ing to C. For easy understanding, we provide an overall
explanation for space-time beam pattern design. During
beam training, we divide the spatial direction into Nt
segments and attempt to recover the optimal direction.
Each spatial information s € {0,1,2,---,Np — 1}
is encoded to a time sequence x. The time sequence
determines the beam pattern of the s-th segment of
the layers in the coded beam training codebook, which
will sequentially transmit to the UE. And the received
power sequence is employed to recover the direction later.
To achieve it, we index all the possible angular directions
5s€10,1,---,2F — 1} by a length-k spatial information
bits u, € {0, 1}*, then the encoded bits =, € {0,1}" is
given by

zs = f(us) €{0,1}",

where f(-) denotes an arbitrary channel encoder.
In this context, the space-time beam pattern V;;,t €
{1,2,---,n},b € {1,2} can be established according

s€{0,1,---,2¥ —1}, (13)

S —

Overall framework of channel codes-aided hierarchical beam training with adaptive convolutional codes as an example.

to the encoded bits as

{ Vii(s) = z(t)
Via(s) = 24 (t)

Consequently, the different spatial directions are encoded
into different time sequences (i.e. different beam gains
in the layer sequences), which is illustrated in Fig. 4.
The figure depicts the space-time beam pattern of the
first codeword in all layers. Note that |C| = 2n, i.e., the
number of training time slots needed in the constructed
BTC is 2n.

o Codebook generation: Consider the generation of C.
Each codeword of C, is optimized and generated by mak-
ing its beam pattern as close to the ideal beam pattern,
labeled by V), as possible. This step can be efficiently
performed using existing beam design methods [23], [31],
[33], with the consideration of array structure constraints,
such as the full-digital precoding and hybrid precoding.

te{l,2,---,n},

14
sef{0,1,---,2 -1} (19

2.2) Beam decoding: After acquiring the codebook C, the
beam decoding can be performed to decode the spatial direc-
tions of the user with the received power sequence of the
transmitted codewords in C.

Specifically, the BS sequentially assigns the beamformer
w with C;; and C; 2 layer-by-layer and transmits pilots to
the UE. Denote the UE’s received signal power as P ; and
P, 5. To perform hard decoder, the UE compares the received
power pair and records the results in a bit sequence &, i.e.,
Z(t) = 0if P,; > P2 and Z(t) = 1 otherwise. After the
training phase, UE feeds back the bit sequence & to the BS
for carrying out hard decoding. Once receiving the feedback
bit sequence &, BS can obtain i = g(&) as the estimation of
the user’s angular direction §, by invoking the channel decoder
g(+). In contrast, if the soft decoder is implemented, the UE
needs to compute and record the log likelihood ratio (LLR)
based on signal power sequence P;; (in this case, only the
first codeword in each layer needs to be transmitted). And
the estimation of the user’s angular direction is calculated as
u = g(LLR).

In this way, the above constructed space-time beam pattern
can distinguish Np = 2F different directions, which completes
the beam decoding stage.

IV. IMPLEMENTATION OF CODED BEAM TRAINING

The preceding example of (7,4) Hamming code is only
suitable to 16-antenna systems. To this end, this section
considers the practical implementation of coded beam training.
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Space-time beampattern
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Fig. 4. Space-time beam pattern: directions are encoded into @ and then
beam pattern V is constructed based on it.

Specifically, we will first apply the convolutional channel code
into the framework of coded beam training for communication
systems with arbitrary number of antennas. Then, we also pro-
vide the extension of coded beam training to hybrid precoding
architecture.

A. A Brief Introduction to Convolutional Codes

Invented by P. Elias in 1955, convolutional codes are
efficient error-correcting codes that have already been widely
adopted in 4G LTE control channel coding standards [34].

1) Convolutional Encoder: The (n,k,N) convolutional
code is a coding scheme with memory that accepts a bitstream
in blocks of length-£ and outputs a bitstream in blocks of
length-n. Each block of n output bits are determined by both
the current input k bits and preceding N — 1 blocks, where
N represents the constraint length. Convolutional encoders are
implemented by IV shift registers with taps determined by the
generator polynomials. Here we adopt a convolutional encoder
of N =3,k =1,n =2, and the output bits x(2i — 1), (27)
can be computed as

z(2i—1)=uli)®ut—1)du(t —2),
x(2i) =u(l) ®ui —2).

15)
(16)

The operation of the encoder proceeds as follows: Denote the
bits u(éi — 1), u(i — 2) in the register M1, M2 as “state” and
initialize the state as 00. Then the first input bit is fed into
register MO as u(é) and outputs x(2i — 1), x(2i) according
to (15) and (16). Then, the next bit enters MO while the
previous bits in M0, M1 are shifted right to M1, M2. The
process continues until eventually the last bit enters the register
and the entire process is denoted as feony.

2) Viterbi Decoder: There are a variety of algorithms
for decoding the received power sequence, among which
Viterbi algorithm is an effective and practical technique [35].
Exploiting dynamic programming [35], the Viterbi decoder
works in a sequential manner, where the output LLRs of the
noisy channel are sequentially fed into a trellis graph. Then,
sequential maximum a posteriori (MAP) estimators are applied
to this trellis graph, in order to retrieve the most possible

Inputs/Outputs

10 ©

1 o

Turn 1

Decoding turn

Fig. 5. Trellis of the convolutional decoder.

information sequence as survival paths and exclude impossible
paths gradually. Fig. 5 illustrates the trellis of the utilized
decoder with the initial state being 00. In the trellis, each node
denotes one of 2V ~1 = 4 states and each column corresponds
to a decoding turn with 4 nodes.

B. Convolutional Beam Encoding

As proposed in Section. III, to perform coded beam train-
ing, we divide the spatial direction into Np segments and
recover the direction with (n,k) (k¢ = logy, N1) channel
codes. To further improve the performance, inspired by [36],
we propose an improved codebook. The codebook contains
Te°™ = 2log, N1 — 1 layers, consisting of two parts: bottom
layer and 7°°™ — 1 remaining upper layers. The bottom
layer can be designed according to (6), making use of the
high direction gain of codebook W to improve beam training
performance. For the upper layers, we only divide the spatial
direction into % parts and select one of the % directions
through coded beam training, which contains two codewords
in the bottom layer. Then the two codewords will be tested
later to determine the optimal codeword.

1) Space-Time Beam Pattern Design: First, we focus on
the design of the space-time beam pattern in the upper layers
based on the encoding algorithm of convolutional code feopy-
Each of upper layer only includes one codeword since we
utilize a soft decoder instead of a hard decoder to improve
the performance. Denote the codebook in the upper layers as
C°™ and corresponding space-time beam pattern as V"V,
To design the space-time beam pattern, we index all the
possible angular directions with a bitstream of length £ =
logy N1 — 1 and obtain the coded bit sequence as

Ty = feonv(us) € {0,137 71 se{0,1,---,2F —1}.

a7

Then, we construct the space-time beam pattern V;°™V,t €
{1,2,...,7°°™ — 1} in codebook C°™ according to the
encoded bits as

Vtconv(s) :iL's(t), s E {071, 72k_1}7 (18)

Here, since each layer only contains one codeword, we skip
the subscript b.

2) Generate Corresponding Codewords: Next, we focus
on generating the codewords corresponding to the designed
space-time beam pattern. In general, the normalized codewords
of t-th layer t € {1,2,...,7°°™} is denoted as C{°"" and the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 28,2025 at 06:23:07 UTC from IEEE Xplore. Restrictions apply.



ZHENG et al.: CODED BEAM TRAINING

corresponding complex beam gain vector of a multi-mainlobe
beam C;°"V with beam coverage B, is denoted as

gt = [9:(61), 9:(d2), -+ 5 9:(Par)],

where M is the sampled angle number for beam genera-
tion. The beamforming gain can be presented as g:(¢.,) =
|g¢ (¢ )|e“™ where w,, is phase information and the absolute
beam gain |g¢(¢y,)| is predefined as [36] and [37]

\% 2/|Bt|a ¢m € By
07 ¢m ¢ Bt

where |B;| is the coverage length of B;. In convolutional
coding aided hierarchical codebook, the B; can be written
as

By = UDS, if Veorv(s) = 0,5 € {0,1,---,28 — 1}, (21)

19)

19¢(¢m)| = { (20)

where Dy = [—1 4+ s/2F1 —1 + (s +1)/2¥1] C [-1,1].
Note that for the proposed method, each of the codeword
corresponds to a sawtooth-shaped beam covering half of the
entire angular range [—1,1]. Thus, the |B;| equals 1 for all
layers in the codebook. Therefore, the ideal beam gain can be
calculated as +/2/|B;| = v/2 for all layers.

Obtaining the absolute beam gain vector we can generate the
codewords based on GS codeword design algorithm proposed
in [23]. Employing the similarity of phase retrieval problem
and codeword design [38], GS-based codeword design proce-
dure is shown in Algorithm 1.

Algorithm 1 GS-Based Codeword Design

Input: |g|, Ihew, A
1: Randomly initial phase information w,,,m € {1,2,---,
M} to obtain g°

: for each i € [1, [,;,4,] do
calculate v* based on g
g' = [g|£ATv!

end for

Ceonv = (AAH>_1AgImam

Output: Designed codeword Ceony

i—1 according to (22)

AN

Firstly, for each codeword, we randomly initial the phase
information w,,,m € {1,2,---, M} to obtain g° (since the
codeword generation is the same for each layer of codeword,
we omit the subscripts of layer ¢ here). Then in the i-th
iteration, v’ is calculated by least square algorithm as

vi=(AAT)TAgiTT (22)
where A € CNT*M can be expressed as
A =laf(¢1),a(g2),- -+ af(om)]  (23)

In this way, the current complex beam gain can be written
as Afv? In order to maintain the amplitude information of
desired g, we only utilize the phase information of current
beam pattern A v to update g’. After the iteration number
reaches I,,,q., the designed codeword C°™ can be obtained.
Futhermore, to fairly compare different codewords in each test,
we usually normalize C{°™ so that ||Cfo™V]|2 = 1.

935

In the beam training process, the BS sequentially transmits
ceewvot e {1,2,...,7°°" — 1} to the UE. Then the UE
records the received signal power sequence P, for beam
decoding in the following section.

C. Convolutional Beam Decoding

The objective of beam decoding is to select the optimal
codeword in V. Based on the received signal power sequence,
we are capable of determining whether the UE is in the
coverage B; of C;/°™, and thus recover the spatial information
to select codeword with the aid of convolutional decoding
algorithm.

1) Calculate LLR: As discussed above, the critical compo-
nent to the efficiency of convolutional decoder is the accurate
computation of LLR. Therefore, in this paragraph, we will
focus on the calculation of LLR.

In majority of typical research on channel codes, only Gaus-
sian channel is employed. However, when it comes to beam
training problem, only the power of the received signal, rather
than the entire signal, can be measured. Since the received
power obeys x? distribution rather than Gaussian distribution
for typical channel codes research, modifications are supposed
to be made to the LLR calculator to adapt to the beam training
problem. Specifically, according to (1), the received power can
be calculated as P, = |v/Phw +n|? with transmitted symbol
so = 1, where n the complex circularly-symmetric additive
white Gaussian noise n ~ CN(0,02).

If the UE is in the coverage B; of the beam in the ¢-th
layer, the ideal received beam gain is |ﬁhw| = A;, which
is determined by the coverage length of B; as (20). Thus, the
power of received signal is P; = |A; +n|?. In such cases, the
received power obeys non-central x? distribution with degree
of freedom df = 2. Therefore, the existing decoding algorithm
can not be directly employed. The conditional probability
density function of P, should be recalculated as

1 _evaf A2z
p('Pt = I|9UE S Bt) = 726 o2 Io < 5 ¢ > y (24)
o 02/2

where I is zeroth order modified Bessel function of the first
kind. Similarly, if the UE is not in the coverage B; of the
beam in the ¢-th layer, the received beam gain is |[v/Phw| =
0 and the signal power is |n|?, correspondingly. Thus, received
power obeys central x? distribution with degree of freedom
df =2, i.e.

1 =
p(Pt = waE ¢ Bt) = ;8 a2, (25)
Therefore, the modified LLR can be expressed as
p(Pt = 1‘|9UE S Bt)
LLR =lo
® p(P, = 1l0us ¢ B.)
A2 VA2
==t 4 logI t 26
o2 + 0og 1o < 0_2/2 ( )

After obtaining LLR, beam decoding can be performed to
recover the information bits through the Viterbi decoder, which
is specified in next paragraph.
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2) Recover the Spatial Index Through Decoding Process:
The Viterbi algorithm-based beam decoding process proceeds
in a step-by-step fashion as follows:

For initialization step, set survival paths as empty and
initial loss of survival paths loss, € R'** as 0 for all
2N-1 — 4 states (i.e. nodes in the trellis). In the decoding
process, we divide the received power sequence into L groups
of n = 2 received powers Py;_1, Py, 1 € {1,2,...L}. Each
group of powers Ps;_1, P5; corresponds to a decoding turn.
In the [-th decoding turn, firstly, the BS records the received
powers Py 1, Py, and compute the LLR as [lr1; and lir2;
according to (26).

Then we attempt to calculate the survival paths for the nodes
in the [-th decoding turn. Denote the two coded sequences (i.e.
outputs of channel coding) of the paths entering the node s as
ys1 and ys2 and the corresponding incoming nodes as node
t1 and to, respectively. For example, for the node s in Fig. 5,
the incoming nodes are ¢; = 1 and {9 = 2 while the coded
sequences of entering paths are ys3 = 00 and ys2 = 11.
Then UE can compute the “distance” for two paths entering
each state of the trellis by adding the “distance” of incoming
branches to the “distance” of the connecting survival path from
incoming node ¢ level [ — 1 as

Iy =lossi_1(t1) + (—1) =2 W=011p1 4 (—1)1F=2 =032
©2))
1){=2(@=0770

(28)

Iy = loss;_1(t2) + (—=1)1=2W=077p1 4 (—

where I(+) is the indicator function. According to maximum a
posteriori estimators, UE can select the lowest “distance” as
the loss;(s) of survival path for node s in I-th turn, which can
be presented as

loss;(s) = min{iy, 2}, (29)

and the selected node is node ¢*. Denote the input bit corre-
sponding to the selected incoming path as b(s) € {0,1}. Then
the BS updates the survival paths as

path; (s) = append(path;_;(t*),b(s)) (30)

Continue the computation until the algorithm completes its
forward search. Then the BS can select the node with lowest
“distance” at the terminal decoding turn and the corresponding
survival path as q. Then the path q will be feedback to the
BS. Through this way, BS can obtain a decimal index 7 =
bintodec(q) which includes two codewords in the bottom
layer. Lastly, in the bottom layer, we test two codewords of
index 27 + 1 and 27 + 2 in codebook W to acquire the final
selected codeword.

3) ML Decoder: Different decoding algorithms can result
in different beam training performances, therefore to intu-
itively evaluate the effectiveness of our improved decoder
we attempt to derive the performance bound of convolutional
code. Maximum likelihood (ML) decoding is the optimal
decoding method that minimizes the probability of decoding
errors when each codeword is sent with an equal probability.
The computational complexity of ML decoder prohibits it from

practical employment since the required computation com-
plexity grows exponentially with the input length. However,
it serves as the performance bound of convolutional codes. For
the first 7°°"™ —1 layers, ML decoder selects the UE direction
index ¢dxr = s with the maximal probability of received signal
x, i.e.

s = argmax p(z|j) 31

J
Let Mos = {t|Vs(s) = 0,t € {1,2,...,T°™ —1}} be the set
where the beam pattern is 0, while N5 = {t|V;(s) = 1,t €
{1,2,...,7°°™ —1}} be the set where the beam pattern is 1.
Therefore, p(z|s) can be expressed as

1 _=
pals) = [ e+
teENos
1 zrtAY \/A%th
11 ¢ 7 Do | Y5 2 (32)
teN1s

Thus, the log likelihood is

log p(z|s)
Tt T + A
:72N10g072§72 2
teNO te/\/ls
VAix
+ Z log I < 2/2t>
teEN1s
Ny A2 VA2
= —2Nlogo — %m + Z log Iy (ﬂ)
o 02/2
t€N1S
(33)
where Ni5 = |Nis| is the number of elements in the set Ns.

Then the ML decoder then can be simplified as

/A2,
s= arg max Z ( + log I (aél;;t>> 34)

teN;
Based on (34), we sequentially test all Nt direction indexes
to select the optimal index s and then acquire the performance
bound of convolutional decoder. The more the performance of
a designed decoding algorithm approaches that of ML decoder,
the more efficient the designed decoder is.

D. Adaptive Beam Encoding Based on Decoding Algorithm

According to the proposed method in the subsections above,
although the error correction capabilities can help resolve the
“error propagation” dilemma, the reliability of beam training
performance for UEs may be limited by the low directional
gain of wide beams. Specifically, for traditional binary-search-
based hierarchical beam training, the spatial region covered by
a certain codeword at any layer of the codebook is reduced to
half in the next layer based on the feedback from the UE.
In this way, the beamforming gain can gradually improve.
On the contrary, the proposed method above is a non-adaptive
method. The beams of the coded codebook are all wide beams
or sawtooth-shaped covering half of the overall search angular
space, which limits its performance.
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To tackle this challenge, we address the problem by an
adaptive method. Specifically, we exploit the “self-truncation”
feature of the Viterbi decoder to narrow down the beam
width layer-by-layer in the coded beam training procedure, just
like the traditional hierarchical beam training does. To better
illustrate the idea, we recall the “self-truncation” feature of the
Viterbi decoder with a (n, k, N) convolutional codes. In each
decoding turn of Viterbi decoder, sequential MAP estimators
are employed to select the most possible input sequences from
the 2% incoming paths as the survival path and exclude the
remaining 2¥ — 1 paths. Inspired by this feature, the adaptive
coded beam training method attempts to focus the energy of
the beam on the directions corresponding to the survival paths
only, while allocating no beam energy to those referring to
the 2 — 1 excluded paths. By this means, the beam width
becomes narrow and the beam gain is gradually increased.
In this way, we can employ the error correction capabilities of
channel codes while still retaining the advantage of traditional
hierarchical beam training to gradually narrow down the beam
coverage. The main adjustments for the adaptive method lie in
two steps: space-time beam pattern design and calculation
of the adaptive beamforming gain, which is presented in
detail as follows.

Step 1: Space-time beam pattern design. Compared to the
predefined space-time beam pattern in non-adaptive method,
the adaptive method requires previous decoding results, i.e.
survival paths to adjust the space-time beam pattern in the
following layers. Thus, it requires the UE’s feedback the
survival path to the BS after each decoding turn.

Consider the (2,1, 3) convolutional codes employed in this
work. As shown in Fig. 5, from the third decoding turn
of Viterbi decoder (i.e. receiving the power of the 5-th and
6-th layer of codewords), the decoder retains a survival path
path;(s),s € {1,2,3,4} and exclude another impossible
path according to (27)-(30) for each node (i.e. state) in the
l-th decoding turn. In such cases, for the [ + 1-th group of
encoding layers, we only inject energy to the intersection
direction of the original non-adaptive beam coverage and the
direction range corresponding to the survival path. The orig-
inal non-adaptive beam coverage can be acquired according
to (17),(18) and (21), which is the same as Section. IV-B.
Besides, the specific survival direction range can be obtained
as follows: transfer the survival paths path,;(s), s € {1, 2, 3,4}
in the I-th decoding turn to decimal index d;(s), and the
indicated direction corresponding to the path is

Diry(s) = [~1 +di(s)/2" 71, =1 4 (dy(s) +1)/2"71]. (35)

Then the survival direction range can be expressed as

Sy = Dir(s), s € {1,2,3,4}. (36)

Note that survival direction region length after the [-th (I >
3) decoding turn can be calculated as |S;| = 23!, which
reduces to half of that in the last turn. It means that for the
I + 1-th group of encoding layers, the beam coverage is no
more than 23~ (exponential decline as traditional hierarchical
beam training). Based on it, coverage of adjusted beam pattern

937
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Fig. 6. Example of determining the beam pattern of the adaptive codebook.

inlayer t =2/ +1 and t =2/ + 2 as

BnewtthﬂSg,t=2l+1,2l+2. (37)

To provide a better intuitive understanding of the proposed
adaptive method, we take the space-time beam pattern design
in the 7-th layer as an example. As illustrated in Fig. 6, the
original beam coverage of 7-th layer codeword Ccony(7) is
Byr. If the survival paths are 000,010,001,011 (red lines in
Fig. 5), the corresponding survival direction range is [—1,0].
Thus, the adjusted beam pattern only covers the intersection
of the above set. In this way, the beams are narrowed down
and the beamforming gain is improved.

Second step: Calculate the adaptive beamforming gain.
Different from the non-adaptive method, due to the different
beam coverage length in different layers, beamforming gains
also vary across different layers. Based on (20), the beam-
forming gain in each layer should be respectively calculated
as At = \/2/|Bnewt|.

Then we can employ the beamforming gain for codebook
generation based on GS algorithm and beam decoding pro-
cess, which are exactly the same with non-adaptive method.
We summarize the adaptive coded beam training framework
as Fig. 7.

E. Extension to Hybrid Precoding Structure

As we have clarified in Section. II-A, the proposed method
is independent of the precoding architecture, so we uti-
lize full-digital precoding scheme for concise representation.
In this subsection, we will demonstrate how the proposed
method can be conveniently transfered to hybrid precoding
scheme, which is widely employed in exsiting communication
systems.

Consider a typical mmWave/Terahertz massive MIMO sys-
tem where the BS employs Ngr(Nrr < Ntr) RF chains to
serve a single-antenna user. The BS employs hybrid precod-
ing, and the optimization problem can be decomposed into
two sub-problem: digital precoding optimization and analog
precoding optimization. For analog precoding, the training
process is the same with that of full-digital structure. The
codewords chosen finally in coded beam training meet the
requirements of constant envelop constraint due to phase
shifters. The only difference lies in that the codewords required
during beam training should be generated in hybrid structure
insetead of full-digital structure. As for this issue, the authors
in [27] have verified that the full-digital structure can be
approximate by hybrid precoding with Ngrr > 2Ng; RF
chain where N, denotes the data stream number. Besides,
several beamformers [16], [26], [28] have been proposed to
generate required wide beams with hybrid structure. Therefore,
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Fig. 7. Signaling diagram of the coded beam training procedure.

the proposed method can be directly transfered to analog
beamformer design.

After obtaining the analog beamformer, we design the
digital precoding based on the low complexity Zero Forcing
(ZF) algorithm [1].

F. Extension to Multi-User Scenarios

The above proposed model supposes single-user communi-
cation scenarios for clear expression, and in this subsection we
aim to reveal the scalability of proposed coded beam training
framework to multi-user scenarios.

For non-adaptive method, the space-time beam pattern and
codeword generation process described in Section IV-B is
independent of UE, so the BS can send the same codewords
to different users. Then each user performs Viterbi decoding
to find the survival paths simultaneously by their own. As for
the adaptive beam encoding where we adapt the beam design
according to the feedback during the training process, the only
difference is that we are supposed to inject energy to angular
directions of the union of survival paths for each user.

V. SIMULATION RESULTS

A. Complexity Analysis

In this subsection, we provide complexity analysis from
the perspective of training overhead, feedback overhead,
implementation complexity and computational complexity.
We attempt to depict a clear comparison across exhaustive
beam training, traditional binary search-based hierarchi-
cal beam training, and the proposed adaptive/non-adaptive
coded beam training, as shown in Table. II.

1) Training Overheads: In the proposed method, the BS
transmits a single codeword to the UE for upper T°°™V —
1 layers of C, which occupies 7°°™¥ — 1 time slots. At the
bottom layer of C, the BS sends two codewords to the
UE, for the determination of the ultimate chosen codewords,
which takes up 2 time slots. Therefore, the proposed beam
training scheme takes up 7°°™ 4+ 1 = 2log, Nt time
slots. Note that here we suppose the employed code rate
k/n = 0.5. For an arbitrary code rate k/n, the coded
layer number 7' — 1 = 7 (logy N1 — 1). Suppose Nt = 1024,
the training overheads of our proposed method, exhaustive
beam training and traditional hierarchical beam training are
20, 1024 and 20 time slots, respectively. Our proposed method
exhibits training overheads comparable to binary search-based
hierarchical beam training and substantially curtails training
overheads by 98% compared with exhaustive beam training.

2) Feedback Overheads: We also conduct a comparison of
the feedback overhead from the UEs to the BS. In the proposed
non-adaptive coded beam training method in Section. IV-B and
Section. IV-C, the method requires one time slot to feedback
the decoded angular direction after codewords in 7"V —
1 layers are all transmitted. Then after the beam training for
the bottom layer, an additional time slot is expended to feed
the beam index back to BS. Therefore, the number of the
cumulative feedback time slot is 2. In contrast, for the adaptive
coded beam training method, BS necessitates the feedback
from the UE to dynamically adjust the beam pattern every
two layers. In such cases, the time slots needed amount to
logy N7 —1. Adding the time slot required in the bottom layer,
there are log, N1 time slots required in total. It is consistent
with binary search-based hierarchical beam training which also
relies on the feedback from UE to choose codewords for the
subsequent layer within the codebook of length log, Nt. For
exhaustive beam sweeping, UE only needs to feed back after
receiving all codewords, which results in totally 1 times of
feedback.

3) Implementation Complexity: First, we consider imple-
mentation complexity for codebook generation. For adaptive
coded beam training, the beam patterns in the lower layers are
determined both by the encoding algorithm and feedback of
the upper layers. Therefore, the codebook is supposed to be
generated online. In contrast, the codebooks of the other three
methods can all be generated offline. Secondly, as discussed
before, adaptive coded beam training, as well as traditional
hierarchical beam training requires real-time feedback to deter-
mine the following codewords. While non-adaptive coded
beam training and exhaustive beam training can avoid the
need for real-time feedback and complex signaling control.
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Finally, as for the scalability of multi-user beam training, the
proposed non-adaptive method and exhaustive method enable
simultaneous beam training to different users directly. The
proposed adaptive method can also support multi-user beam
training simultaneously with modification in Section. IV-F.
However, the traditional beam training method has to perform
beam training to different users in a time division way.
In summary, the proposed non-adaptive coded beam training
presents very low implementation complexity, comparable to
simple exhaustive method. The implementation complexity of
proposed adaptive method is similar to that of traditional hier-
archical beam training (better scalability to multi-user beam
training but requirement for online codebook generation).

4) Computational Complexity: The additional computa-
tional complexity introduced by coded beam training is mainly
derived from online codebook generation and beam decoding.
To perform beam decoding, the users are supposed to utilize
Viterbi decoder to recover the optimal codeword index. The
computational complexity of decoding a L-bit information
bits with (n,k, N) Viterbi codes is O(L2*N~1). Thus,
the complexity of Viterbi decoder grows linearly with the
information bit length. Since the information bit length L in
beam training is much lower than the bit length during data
transmission in current 5G communications, the complexity
of beam encoding is relatively low and acceptable in practice.
Besides, adaptive coded beam training method will introduce
the complexity of online codebook generation, which depends
on the employed generation method. As for the GS-based
codeword design utilized in this work, the algorithm is quite
efficient only with complexity O(I,;,q. N1 log Nt1).

B. Performance Analysis

In this section, numerical results are presented to evalu-
ate the performance of the designed coded beam training
framework. We consider an XL-MIMO communication sys-
tem, where a single-antenna user is served by a BS. The
BS is equipped 1024-antenna ULA, with spacing between
antennas equal to \/2 in digital precoding system. The carrier
frequency is 60 GHz and the corresponding wavelength is set
as A = 0.005 m. We adopt the Saleh-Valenzuela channel model
described in (2) with LoS component being the dominant path.
We further assume the UEs are uniformly distributed within
physical direction [0, 27]. The performances are all averaged
on the instantaneous results of 1000 random Monte Carlo
realizations of channel. For convenient compression, we use
CBT to present coded beam training while BT to present beam
training in this section.

Since the beamforming gains vary for different codebooks
and layers, we utilize a Bre-beamforming SNR, which can be

calculated as SNR = 1:;620 . The large-scale fading and transmit
power are assumed to be the same across the array, thus we
just suppose P32 =1 for Fig. 8 to Fig. 13.

First, we compare the average rate performance of the
proposed adaptive/non-adaptive coded beam training with
soft/hard decoder, respectively in Fig. 8. Specifically, [25]
introduces the basic idea of channel codes-based beam training

with a linear block code. However, it only employs a hard
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Fig. 8. Comparisons of the average rate for adaptive/non-adaptive CBT with
soft/hard decoders.

decoder and non-adaptive encoding process. Thus, we extend
the method by utilizing convolutional codes as a benchmark.
Besides the proposed adaptive method with soft decoder,
we also depict the performance of adaptive method with
hard decoder and non-adaptive method with soft decoder to
demonstrate the source of gain better. Based on the simulation
results in Fig. 8, the proposed adaptive method with soft
decoder significantly outperforms other methods. Therefore,
we can safely conclude that proposed improvement of adaptive
encoding process and LLR calculator helps better accom-
modate to the beam training problem and thus significantly
improves the performance.

Thus, the following simulations are mainly based on the
adaptive coded beam training with soft decoder. Next, we draw
a comparison of the proposed method with other beam training
methods. Besides exhaustive beam sweeping and hierarchi-
cal beam training discussed above, we also add repetitive
code-based beam training as another benchmark. In [36], the
authors proposed a beam training method, which can simulta-
neously conduct beam training for multiple users. The method
can be viewed as a special kind of coded beam training with
an uncoded codebook, consisting of sawtooth-shaped beams
of log, Nt layers. For fair comparison, we are supposed
to compare the performance of the proposed coded beam
training with repetitive code-based beam training with the
same pilot overhead, rather than the uncoded one. To achieve
this, we increase the power of the transmitted signal by n/k
times, which is equal to repeatedly transmitting the signals.

Fig. 9 depicts a comparison of the success rate of beam
training for different schemes. For fair evaluation, we empha-
size that the proposed coded beam training method shares
equivalent training overheads with that of binary search-based
hierarchical beam training. In such a case, the performance
gain can be attributed to the coding gain facilitated by channel
codes, rather than an increased utilization of pilot resources.
It is evident that the scheme in [12] attains a superior perfor-
mance than the other schemes, which lies in the fact that the
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TABLE I
COMPARISONS OF COMPLEXITY FOR DIFFERENT SCHEMES

Schemes Adaptive CBT Non-adaptive CBT  Exhaustive BT  Traditional hierarchical BT
Training overheads 2logy N1 2logy N1 Nt 2logy N1
Feedback overheads logy N 2 1 logy N1
Real-time feedback and control yes no no yes
Online codebook generation yes no no no
Scalability to multi-user middle good good bad
Beam decoding required required not required not required

e BT denotes beam training, CBT denotes coded beam training, for expression clarity.
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Fig. 9. Comparisons of the success rate for different beam training methods.

exhaustive beam sweeping, whose training overhead is much
higher than the other schemes, inherently performs better at
the expense of training efficiency. Existing hierarchical beam
training method significantly reduces the training overheads,
but it is not capable of obtaining reliable beam training
performance for remote users with low SNR. This inadequacy
arises from the “error propagation” phenomenon with the
lower signal power of wide beam during beam training.
Our proposed method significantly improves the success rate
compared to existing beam training method, especially at low
SNR while maintaining training overhead low, thanks to the
leverage of the error correction capability of channel codes.
Fig. 10 offers a comparative view of the achievable rate for
different beam training schemes. The graph clearly illustrates
the performance of our proposed method outstands traditional
hierarchical beam training method with comparative training
overheads, especially at low SNR. Moreover, as the SNR
increases, the performance gap between our scheme and the
exhaustive beam sweeping scheme in [12] diminishes, where
the curves of our scheme and the beam sweeping scheme
almost coincide at SNR = 6 dB. However, it’s worth noting
that the proposed method achieves considerable reduction
(more than 98% reduction) in training overhead. As shown
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Fig. 10. Comparisons of the average rate for different beam training methods.

in Fig. 10, our proposed method outperforms the repetitive
code-based beam training in all SNR regions. It means that the
performance gain originates in the coding gain and adaptive
encoding process, rather than transmitting more pilots. Based
on the discussion above, we can conclude that our scheme
strikes a remarkable balance between training overhead and
beam training performance.

Furthermore, we verify the effectiveness of proposed
enhanced convolutional decoding algorithm. Fig. 11 reveals
the performance of proposed method and that with traditional
decoder. The simulation results highlight the superior perfor-
mance of our improved decoder in contrast to the traditional
Gaussian distribution-based decoder, which substantiates the
practicability of our modified decoding algorithm.

Besides, we have plotted the average rate performance under
different BS antenna configurations, as shown in Fig. 12. The
number of BS antennas increases from 64 to 2048 and the SNR
is set as 5 dB. As illustrated in Fig. 12, since the increased
number of antennas can acquire higher beamforming gain, the
average rate increases with the growth of antenna number.
The proposed method achieves near-optimal performance,
comparable to exhaustive beam training. It outperforms the
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Fig. 11. Comparisons of the performance for convolutional decoders with
different LLR calculators.
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Fig. 12. Average rate performance under different BS antenna configurations.

traditional hierarchical and repetitive code-based beam training
in the entire SNR regime.

Then, we have considered multi-path mmWave channel
model, which consists of one LoS path and three NLoS
paths. The complex channel gain of the LoS path is set
as (p. To account for the scattering loss induced in the
NLoS paths, their complex gains are generated by 3; =
Boaui, Vi € {1,2,3}, where «; follow the Gaussian distribution
CN(0,0.1). Fig. 13 compares the average rate performance of
different methods in such cases. The exhaustive beam training
method still achieves the highest rate with Ny training over-
heads. The proposed method outperforms other methods with
significantly reduced training overheads. Thus, the proposed
method is promising to enable reliable beam training with high
efficiency.

Besides, we present simulation experiments to illustrate the
capability of the proposed coded beam training method to
extend the coverage area. The simulation results are acquired
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Fig. 13. Comparisons of the average rate for different beam training methods
in mixed LoS and NLoS channel.
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Fig. 14. Comparisons of success rate of different beam training methods with
different distance, together with the illustration of the extended user coverage.

under carrier frequency f. = 60 GHz at mmWave frequency,
transmit power of BS P, = 50dBm, BS antenna number
Nt = 256, subcarrier number N,,;, = 256 and noise power
0? = —110dBm. As illustrated in Fig. 14, the proposed
coded beam training framework can extend coverage area
by more than 20m under the same success rate compared
with traditional hierarchical beam training and more than
50 m compared with repetitive code-based beam training. For
instance, the proposed coded beam training achieves success
rate 0.7 at 145 m while traditional hierarchical beam training
method can guarantee the same performance only at 120 m and
repetitive code-based beam training only 90 m. It is promising
that the proposed coded beam training method can enable
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beam training for remote users and thus extend the coverage
area.

VI. CONCLUSION

In this paper, we introduce channel codes into hierarchical
beam training to enable reliable implicit CSI acquisition
for remote users in future 6G wireless communications.
By proving the duality of hierarchical beam training and
channel coding, we reveal that the hierarchical beam training
problem can be transformed into designing channel codes,
which enables the exploitation of the coding gain. We also
demonstrate that the decoders need to be modified to fit
the beam training problem. Simulation results have verified
the effectiveness of the proposed method, which serves as a
promising way to achieve reliable coverage of remote users.
Future works can be focused on improving the multi-mainlobe
beam generation algorithm to produce wide beams with better
energy concentration. In addition, diverse channel coding
methods can be utilized to further improve the coded beam
training performance. The extension of the proposed coded
beam training method to near-field communications [9], [39]
and XL-RIS scenarios [7], [8] can be also considered in future
works.
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