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Abstract—In extremely large-scale multiple input multiple
output (XL-MIMO) systems, near-field beam training (NFBT)
is an essential way to acquire channel state information (CSI)
knowledge. To reduce the high training overhead caused by the
distance dimension of the near-field codebook, some overhead-
reduced NFBT schemes were proposed in the literature. However,
existing schemes ignore the correlation between different near-
field beams, which promises to provide prior knowledge for
the reduction of training overhead. Aligned with this vision,
this paper proposes a Bayesian regression (BAR)-based NFBT
scheme, which fully utilizes the strong correlation between near-
field codewords to achieve near-optimal and low-overhead NFBT.
Specifically, inspired by Bayesian regression, we model the re-
ceived signal corresponding to different codewords as a Gaussian
process. Then, the optimal codeword can be determined by
iteratively updating the posterior distribution and designing the
codeword searching order. Besides, different codeword inference
strategies are analyzed and compared. The proposed scheme only
requires searching for a few codewords instead of the entire
codebook thus avoiding the high training overhead. Simulation
results verify that, compared to the existing schemes, the pro-
posed scheme can significantly reduce the training overhead while
maintaining a near-optimal achievable rate performance.

Index Terms—Beam training, Bayesian regression, near-field,
extremely large-scale MIMO (XL-MIMO).

I. INTRODUCTION

O empower burgeoning applications such as digital

replica, the six-generation (6G) communication is pre-
sumed to improve 10-fold spectrum efficiency compared to 5G
[1]. To achieve this vision, extremely large-scale MIMO (XL-
MIMO) is proposed as one of the potential key technologies
in 6G [2]. Different from massive MIMO systems in 5G, XL-
MIMO deploys extremely large-scale antenna arrays (ELAA),
which could achieve high spatial resolution and spatial mul-
tiplexing gain [3]-[5]. To fully utilize the high diversity-
multiplexing gains provided by XL-MIMO, obtaining precise
channel state information (CSI) is especially crucial and beam
training is an efficient way to acquire CSI. Specifically, the
process of beam training is carried out through searching
codewords which correspond to beamforming vectors from a
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predefined codebook and determining the optimal codeword
that maximizes the achievable rate of MIMO systems.

A. Prior Works

Generally, the electromagnetic radiation field could be
broadly classified into three categories: Reactive near-field,
radiative near-field, and far-field region [6]. As the reactive
near-field region is negligible in practical wireless systems,
for illustration simplicity, “near-field” in this paper particularly
refers to “radiative near-field”. In 5G massive MIMO systems,
as the array aperture of the base station (BS) is not large
and the near-field region is limited, the far-field channel
can be modeled by planar-wave presentations, which can be
fully characterized by Fourier orthogonal bases. Therefore, the
discrete Fourier transform (DFT) codebook is widely used
for the far-field beam training (FFBT), where each codeword
corresponds to a far-field beam focusing on specific spatial
angle like a flashlight [7].

In contrast, with the increasing number of antennas in
XL-MIMO systems, the near-field region is enlarged and it
should be accurately modeled by the spherical-wave model.
Unlike the far-field channel only related to the angle, the
near-field channel is determined by both angle and distance.
Accordingly, the near-field polar-domain codebook is proposed
in [8]. Specifically, it divides the entire space into different
“angle-distance” grids, where the angle is uniformly sampled
and the distance is non-uniformly sampled. Therefore, each
polar-domain codeword corresponds to a beamforming vector,
which could focus the beam on specific locations like a
spotlight [9]. Compared to the DFT codebook, the polar-
domain codebook considers an additional distance dimension,
whose size is the product of the number of angle and distance
sampling grids. As a result, if the exhaustive searching of the
polar-domain codebook is carried out, it will face the challenge
of high training overhead.

To reduce the high overhead of XL-MIMO beam train-
ing, several low-overhead near-field beam training (NFBT)
schemes have been proposed. Among these schemes, there
are two typical representative categories: two-phase scheme
and hierarchical scheme. For the first category, the two-
phase NFBT scheme was proposed in [10], where in the first
phase the angle is searched and selected through the DFT
codebook and the distance is determined in the second phase.
Furthermore, a joint angle and range estimation scheme was
proposed in [11], where only the DFT codebook is used and
the joint angle-distance information can be obtained through
the received beam pattern. For the second category, some
near-field hierarchical beam training schemes were proposed
[12]-[14]. Specifically, it is performed through the hierarchical
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codebook with different spatial resolution, where the reso-
lution gradually increases as the searching range gradually
decreases during the entire process.

In addition to these two typical schemes, there are other
novel low-overhead NFBT schemes. For example, a hashing
multi-arm NFBT scheme is proposed in [15], where the multi-
arm NFBT codebook is constructed by the random hash
functions and the optimal codeword is selected through the soft
decision and voting methods. In addition, artificial intelligence
(AI) technologies such as neural networks and contrastive
learning are also applied in NFBT [16]-[20].

However, although the existing NFBT schemes could reduce
the training overhead compared to the exhaustive searching
scheme, there are still obvious drawbacks that prevent them
from achieving near-optimal performance. For the two-phase
beam training (TPBT) scheme, the energy spread effect will
affect the accuracy of the first stage angle searching, thereby
further affecting the performance of the overall scheme [8]. For
the hierarchical beam training (HBT) scheme, the error prop-
agation effect will become more obvious with low SNR and
cause serious performance degradation [21]. Consequently,
how to address the drawbacks in existing schemes and achieve
a near-optimal NFBT scheme with low training overhead is a
critical problem, which is however still a blank in the literature.

B. Our Contributions

To fill in this blank, we propose a Bayesian regression
(BAR)-based NFBT scheme, which fully utilizes the strong
correlation between near-field codewords to achieve near-
optimal and low-overhead beam training. Our contributions
are summarized as follows':

o We highlight that the received signals corresponding
to different near-field beams are highly correlated due
to the inherent similarity between channels associated
with adjacent locations. This correlation implies that the
received signal at the user can provide measurement
information not only for its corresponding codeword
but also for nearby codewords. Bayesian regression is
particularly well-suited to model this correlation and
exploit it for efficient codeword selection. Specifically,
by modeling the received signal power corresponding
to different codewords as a Gaussian process, Bayesian
regression allows us to iteratively update the posterior
distribution based on real-time feedback from the user.
This adaptive approach enables us to strategically select
the next codeword to search, thereby reducing the number
of required searches compared to exhaustive methods.
To the best of our knowledge, this is the first work
to apply Bayesian regression [22]-[24] to NFBT, and
we demonstrate that it can significantly reduce training
overhead while maintaining near-optimal performance.

o As described above, the complete process of Bayesian
regression can be summarized as modeling the objec-
tive function as a random process, reconstructing the
objective function by designing a sampling sequence

!'Simulation codes are provided to reproduce the results in this paper: http:
/loa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

and performing a posterior regression based on a kernel
function containing prior information. Therefore, we can
set the received signal power corresponding to different
codewords as the objective function and model it as
a Gaussian process. Then, analyzing the information
input from each signal measurement is expected to pro-
vide strategic guidance for the next codeword selection,
thereby reducing the number of searching required to find
the optimal codeword.

« Based on the Bayesian regression, we propose the BAR-
based NFBT scheme and provide the overall framework.
The key idea is to model the problem of selecting the opti-
mal codeword in NFBT problem as finding the maximum
value point of the posterior mean of the reconstructed
objective function in Bayesian regression. Specifically,
the BS transmits the pilot to the user and iteratively
updates the posterior mean, covariance, and variance
according to the received signal from user’s feedback. In
each iteration, different inference strategies correspond to
different acquisition functions, where the next searching
codeword is determined by maximizing the acquisition
function. After completing multiple iterations of search-
ing, the optimal codeword can be determined.

o We analyze and compare different inference strategies,
which are particularly important for the overall perfor-
mance of the proposed scheme. Specifically, we analyze
the strengths and drawbacks of the exploitation-based
strategy, exploration-based strategy, and exploration-
exploitation balanced strategy. Besides, we focus on
analyzing the exploration-exploitation balanced strategy,
which could significantly balance reducing uncertainty
with offering performance improvement. Simulation re-
sults demonstrate the efficiency and superiority of the
BAR-based NFBT scheme, showing its ability to achieve
near-optimal achievable rate performance with low train-
ing overhead.

C. Organization and Notation

The remainder of this paper is organized as follows. Section
II introduces the system model and the problem formulation.
In Section III, two benchmark schemes for NFBT are ana-
lyzed, and the challenges and opportunities of the NFBT are
discussed. Then the proposed BAR-based NFBT scheme is
provided in Section IV. Simulation results are carried out in
Section V. Finally, conclusions are drawn in Section VI.

Notation: C denotes the set of complex numbers; Upper-
case and lower-case boldface letters represent matrices and
vectors; ()71, ()T, (-)¥ denote the inverse, transpose, and
conjugate transpose, respectively; |-| denotes the absolute op-
erator; GP(u, X) and CN (u, X) denote the Gaussian process
and Gaussian distribution with mean p and covariance 3
dim(-) represents the dimension of its argument.

II. SYSTEM MODEL

In this section, the signal and channel model are first
introduced. Next, the NFBT problem is formulated.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 01,2025 at 07:25:51 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3571488

Near-field beamtraining

Far-field beamtraining

Fig. 1. An illustration of NFBT in XL-MIMO systems.

A. Signal Model and Channel Model

As illustrated in Fig. 1, a downlink XL-MIMO communi-
cation system is considered, where a BS deployed with a N-
element uniform linear array (ULA) serves a single-antenna
user. The fully-digital precoding structure is adopted where
Ngrr = N and it could be easily extended to hybrid precoding
structure by applying corresponding beam design methods
[21], [25], which will be elaborated in Section IV-E.

Let h € CNV*! denote the downlink channel, and the
received signal y, at the user could be expressed as

yT:hst—i—n7 @))]

where w € CV*1 denotes the transmit beamforming vector,
s denotes the power-normalized transmitted signal and n
denotes the received noise following CA (O7 02). It should be
emphasized that since the channel h is generally determined
by the main path, only the direction of the main path needs
to be searched by beam training [26]. Therefore, in this paper
only the main path is considered, as assumed by [12], [26].

Generally, the channel model could be separated into the far-
field and near-field channel model by the electromagnetic wave
propagation characteristics. The Rayleigh distance is usually
considered as the boundary, which is defined as R = %,
where D denotes the array aperture and A represents the carrier
wavelength [27]. In XL-MIMO systems, as the number of
BS antennas increases, the Rayleigh distance becomes larger
accordingly. Therefore, the spherical-wave propagation model
should be used to model the near-field channel. Based on the
widely-adopted Saleh-Valenzuela model [28], the near-field
channel h, can be expressed as [8]

h, = VNkob(6,r), )

where k¢ denotes the complex path gain of the line-of-sight
(LoS) path, b(6,r) denotes the near-field beam steering vector
and 6 € [—1, 1] denotes the spatial direction. Unlike the far-
field beam steering vector focusing the beam energy towards
specific directions, the near-field beam steering vector could
focus the beam energy on specific locations, which is also
called the near-field beam focusing vector [9]. For the ULA,
the near-field beam focusing vector b(6, ) can be expressed
as

. . _ T
b(6,7) = = [T L e TTIEO]T g)

)

L
VN

where k = 2&

3 is the wavenumber, (") and r denote the
distance between the user and the nth element and center of the
BS antenna, respectively. The distance (™ can be expressed

as

rm = \/7‘2 — 2ndrf + n2d?

a 242 “)
(z)rfnd0+n d (1—6%),

r
where approximation (a) is the Fresnel approximation, which
is derived by 1+ =1+ 5 — % + O(z3). It has been
proven in [6] that the Fresnel approximation (a) is commonly
accurate enough when the distance between the user and the
BS is larger than 0.5@. It can be obtained from (2) and
(3) that the near-field channel is determined by both the angle
and the distance of the user.

Before the downlink date transmission, the BS should
perform the beam training procedure to ensure that the beam to
be transmitted aligns with the main path. The NFBT problem
will be formulated as follows.

B. Problem Formulation

For the given beamforming vector w, the achievable rate R
can be expressed as

H |2
by wl > 5)

R =log, <1 + =
The main purpose of the NFBT is to select the codeword from
the predefined codebook to maximize R. The NFBT problem
can be expressed as

w" = arg gleag\(} R, (6)

where W represents the predefined near-field codebook. Ac-
cording to Algorithm 1 in [8], it can be expressed as

W = [b(01,71), - ,b(01,77"), - ,b(On,r3)], (D)

where each column of WV corresponds the codeword focusing
on a specific position, and .S,, denotes the number of sampling
distances at 6,,. As illustrated in Fig. 1, unlike the FFBT that
only searches the angle of the user, the NFBT searches both the
angle and distance. One easy way to solve the NFBT problem
(6) is exhaustive scheme. However, due to the additional
distance dimension, the training overhead of the exhaustive
searching scheme is the product of angle samples and distance
samples, i.e., [W| = 25:1 Sn, which is unacceptable in
practical XL-MIMO systems. Therefore, overhead-reduced
NFBT schemes are required and some existing low-overhead
benchmark schemes will be introduced as follows.

III. BENCHMARK SCHEMES OF NFBT

In this section, to reveal the challenges and opportunities
of the NFBT, we introduce two typical schemes. Specifically,
the near-field TPBT scheme and HBT scheme are introduced
at first. Then, the challenges and opportunities of NFBT are
discussed.
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A. Near-Field TPBT

To reduce the high NFBT overhead of the exhaustive
searching scheme, a TPBT scheme is proposed in [10]. In the
first phase, the DFT codebook is used to search the optimal
angle, which can be expressed as

Worr = {w; - a(ﬂn)}, ®)

where a(6,) = \/% [17e—jkd9n7... 7e_jkd(N—1)9n:|. It has
been analysed in [10] that the optimal angle 0,,; of the first
phase can be selected as the middle angle of the dominant
angular region. Next, in the second phase, only the codeword
corresponding to ,,; need to be searched to get the distance
of the user. In addition, the beam training accuracy can
be improved by increasing the number of candidate optimal
angles Ky. However, the training overhead also increases with
the increase of Kjy. After the two-phase NFBT, the optimal
near-field codeword can be gotten.

B. Near-Field HBT

To achieve the trade-off between the overhead and per-
formance, the hierarchical schemes based on near-field hi-
erarchical codebook consisting of several sub-codebooks are
proposed [12]-[14]. The resolution and size of different sub-
codebooks are determined by the angle sampling step Ay
and distance sampling step A,.. Specifically, as the sampling
steps increase, the size of the corresponding sub-codebook
becomes smaller and the resolution decreases. The near-field
HBT scheme is summarized in Algorithm 1 in [12].

Specifically, the sampling steps of different layers of
codebooks gradually decrease through the control parame-
ter o(0 < da < 1). Taking the binary-search codebook
where dp = % as an example, we suppose the angle range
and distance range of the k-th sub-codebook [0%. 6% ]
are [rk. 7k ], respectively. Then the angle sampling step
and distance sampling step in the k-layer and (k+1)-layer
codebook are AIGC = (ar]ilax - grkrzlin)/2’ Aﬁ = (Trlilax _Tfnin)/Q’
AT = AE/2 and AR = AF /2, respectively. By searching
from the K-layer sub-codebooks in turn, the optimal codeword
of the last K-th sub-codebook is selected as the final codeword.

C. Challenges and Opportunities

Challenges: Although the above TPBT and HBT schemes
could reduce the training overhead compared to the exhaustive
searching scheme, there are still obvious drawbacks limiting
their performance. For the TPBT scheme, applying far-field
DFT codebook in the first phase may experience significant
performance degradation due to the energy spread effect [8].
The energy spread effect causes that the energy of one near-
field path component will be spread into several angles, not
centered at one angle, which affects the accuracy of the angle
searching, further affecting the performance of the overall
scheme. For the HBT scheme, it may suffer from serious
performance degradation with low SNR [21]. Specifically, the
codewords in higher layers codebooks with wider beamwidth
are more susceptible to the noise interference. Once an er-
ror judgment occurs in the search of one certain layer of

codebook, the “error propagation” will occur, which leads to
unrecoverable beam training performance loss.

Opportunities: Both the above two schemes can hardly
solve the conflict of reliability and efficiency in NFBT with
low SNR. The key issue is that they have not fully utilized
the prior knowledge obtained through users’ feedback, i.e.,
the corresponding received signal of the previous transmitted
beam. Specifically, the received signal corresponding to dif-
ferent codewords is correlated, thus we can infer the received
signal corresponding to other codewords based on the known
received signal. Inspired by it, we propose a BAR-based NFBT
scheme, which can select the optimal near-field codeword by
carefully designing the searching order of codewords and only
searching for fewer codewords. It will be analysed in the
following section.

IV. PROPOSED BAR-BASED NFBT SCHEME

The BAR-based NFBT scheme is proposed in this sec-
tion. Specifically, the preliminary knowledge of Bayesian
regression is introduced first. Then, the proposed BAR-
based NFBT scheme is analysed and a overall framework
is given. Next, we compare different inference strategies, in-
cluding exploitation-based, exploration-based and exploration-
exploitation balanced strategy. For the exploration-exploitation
balanced strategy, three acquisition functions are discussed
and analysed. Besides, the computational complexity of the
proposed BAR-based NFBT scheme is analysed. Finally, we
provide how our proposed BAR-based NFBT scheme can
be extended to hybrid precoding structure and multi-user
scenarios.

A. Preliminary Knowledge of Bayesian Regression

To reconstruct the objective function f(x) only from few
samples, Bayesian regression is widely considered an efficient
solution, which can design the sampling order and recover
f(x) via its experiential kernels [22]. In this paper, we apply
Bayesian regression to achieve efficient codeword selection
and NFBT.

Specifically, the objective function f(x) could be mod-
eled as a Gaussian stochastic process GP (p (x),k (x,x)),
where any stochastic process with finite dimensions follows
the consistent multivariate Gaussian distribution [29]. It is
completely determined by the mean p(x) and covariance
kernel k (x,x’). It should be emphasized that the selection
of the kernel functions is crucial for the Bayesian regression
process. Without loss of generality, the squared exponential
kernel is considered in this paper, which could be expressed
as

N
k(x,x') =ae” )
where o and 7 are adjustable hyperparameters. It can be
obtained from (9) that adjacent sampling points have higher
correlation and the correlation decreases rapidly with increas-
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BS

Determine the next codeword

based on the searching strategy:
wn*

L)

Bayesian Regression: update
posterior mean and covariance
pa and Xq

Fig. 2. A flowchart of the BAR-based NFBT scheme.

ing distance. Based on (9), the kernel matrix K could be
expressed as

E(xt,xt) - k(xt,x™)
K= : : (10)

k(x™,x!) E(x™,x™)
After determining the kernel function, let yt =
[yl - ,4']T denote t measurements for samples in S* =
{x!,--- x'}, where ' = f(x*)+n; and n; denotes the noise

following n; ~ CN (O, 02). The f(x) and y* follow the joint
Gaussian distribution, which could be expressed as

f(x) px)] [ kExx)  (k(x)"

[ y ~ CN pto | kt(x) K + o021, , (11)
[k: xl,x) e 7k(xt,x)]T
[ (x!), -+, pu(x")]". For given y’, the posterior distribution
of f(x) is also a Gaussian process, and its posterior mean,

covariance and variance could be obtained by the following
lemma.

where k! = and pt =

Lemma 1. For given y!, the posterior mean, covariance and
variance of f(x) could be expressed as

it () = () + ()" (K" +0%L) 7 (v' - wf) . (12)
K (x,x') = k (%, x))— (K (x)) " (K +0°T,) " K (x), (13)
o' (x) = k' (x,%). (14)

Proof. The proof is provided in Appendix A. O

Then, the sampling strategy can be formulated based on
the posterior mean (12), covariance (13) and variance (14), so
the next sampling point can be determined. So far, we have
introduced the preliminary knowledge of Bayesian regression
and the BAR-based NFBT scheme will be analysed as follows.

B. Proposed BAR-based NFBT

In NFBT problem, the received signal corresponding to
different codewords is highly correlated and the final objective
is to find the codeword to maximize the received signal

Transmit new pilot

Data feedback

UE

Obtain corresponding
received signal

4

Update received signal :

go =g(Q) +ng

power. Inspired by this, we model the problem of selecting the
optimal codeword in NFBT problem as finding the maximum
value point of the objective function in Bayesian regression
and propose the BAR-based NFBT scheme. Specifically, for

different codewords w;, where i = 1,2, - -+ ,|W|, the noiseless
received signal vector g could be expressed as
g =h"w, (15)

where g € C*WI W ¢ CV*WI and |W)| denotes the
number of codewords in W as defined in (7). We can model
g as a Gaussian process GP (Oy, %), where ¥ € CWIxIWI
denotes the squared exponential kernel matrix, which could be
expressed as

2
lhwi—w |

3(i,7) = e PER (16)

where i, € {1,---,|W|}. Let Q denote the index of
the previous searched codewords, VW denotes the set of all
codewords w;, and go € CU™(®) denotes the correspond-
ing received signal, where g = g () + ng with ng ~
CN(OdiIn(Q),0-2IdiIn(Q)). Therefore, similar to (11), the joint
distribution of g and gq could be expressed as

b bR s d )

Thus, for given gq, the posterior mean g, covariance g
and variance o can be obtained according to Lemma 1:

Ko = E(:a Q) (E(Qa Q) + U2Idim((2))71 ga,
EQ :E_(E(Q7 ))H (E(Qv Q)—i_O-QIdlm(Q))71 2(97 :)7 (19)
(20)

(18)

oo =Xq(n,n).

To summarize, the flowchart and overall framework of the
proposed BAR-based NFBT scheme is shown in Fig. 2 and
Algorithm 1, respectively. Specifically, the BS selects the
codeword and transmits the corresponding pilot signal. For the
first codeword, it is randomly selected. Then, the UE updates
the received signal g and reports the data feedback to the
BS. It should be noted that the feedback data in proposed
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Algorithm 1 Overall Framework of the proposed BAR-based
NFBT
Inputs: Near-field polar-domain codebook W, kernal matrix
3%, number of pilots T}y ,x.
Qutput: Optimal codeword w*.
1: Initialization: Q@ = @.
2: fort=1,2,--- ,Thax do
3:  Received signal power update: go = g (€2) + ng.
4 Posterior mean g, covariance X and variance o
update according to (18), (19) and (20).
5. Determine the next codeword by maximizing the ac-
quisition function V(x) according to the inference

strategy: @:41 = argmax V().
TEW/Q
Index of searched codewords update: €2, U @, 1.

7: end for

8: Determine the index of the optimal codeword based on the
maximum point of pq and select corresponding codeword
as the optimal codeword w*.

9: return Optimal codeword w*.

scheme is actual value not a binary sequence. Next, the BS
can update the posterior mean g, covariance X, variance
oq and determine the next codeword based on the inference
strategy. Specifically, different inference strategies correspond
to different acquisition functions V'(x), which determine the
searching sequence of codewords and the accuracy of the
posterior predictive distribution in Bayesian regression [30].
The acquisition functions serve as critical tools that guide
the optimization process by quantifying the utility of potential
input points for sampling. In each iteration, the next codeword
is determined by maximizing the acquisition function, i.e.,

41 = argmax V(x), 2n

TEW/Q
where / denotes the set difference. For the iteration, €2, can be
updated by 2;Ux; 1. By maximizing the acquisition function,
we can strategically select the next input point that is expected
to yield the most informative or beneficial outcome, thereby
enhancing the efficiency of the optimization process.

In summary, the main advantage of our proposed BAR-
based NFBT scheme is its ability to efficiently exploit the
correlation between codewords and adaptively refine the search
process. This leads to a significant reduction in training over-
head while maintaining near-optimal performance. It should be
emphasized that selecting the appropriate inference strategy is
particularly important for the overall performance of the BAR-
based NFBT scheme, which will be discussed as follows.

C. Comparison between Different Searching Strategies

In this subsection, different inference strategies of the
proposed BAR-based NFBT scheme are analysed and com-
pared. Without loss of generality, we define Ggq, =
[gﬂlvgﬁza"' 7gQT]’ where ga, = g(wt> + ng, g o~
CN (0,0?), w; denotes the selected codeword at time slot
t and T < |W]|. For simplicity, we use x; to represent wy.
As discussed before, the inference strategy is the key factor

affecting the performance of the BAR-based NFBT scheme.
For clarity, in Fig. 3 we summarize three different inference
strategies, whose details are analysed as follows.

1) Exploitation-based Strategy:

The objective of NFBT is to select codeword which maxi-
mizes the user’s received signal power. In other words, we only
need to determine the maximum value point of the posterior
mean of the reconstructed objective function go and select
its corresponding codeword without accurately reconstructing
the entire objective function [22]. Thus, the exploitation-based
inference strategy can be directly applied, which focuses on
exploiting the already known high-performing regions.

For the exploitation-based inference strategy, the acquisition
function Ve*Ploit() could be expressed as

Vexploit ((L’) = iy (22)

Therefore, the exploitation-based inference strategy can be
expressed as

loit
11 = argmax V,7P%(

TEW/Q

x) = argmax i (x), (23)

TEW/Q

where ; = {@x1,...,x:} and W denotes the set of all ;.
Thus, we can update €2; by 2, Uz, and iterate the process
until selecting the optimal codeword. The main strength of this
exploitation-based strategy is that it may obtain the extreme
point quickly. However, it may face the risk of obtaining a
local optimal solution.

2) Exploration-based Strategy:

Another strategy to select the optimal codeword is to first
globally reconstruct the objective function, then determine
the estimated maximum value point of the posterior mean of
the objective function and choose its corresponding codeword
[31]. Thus, the exploration-based inference strategy can be
applied, which tends to search the regions of high uncertainty.
In other words, its goal is to reconstruct the entire unknown
objective function as accurately and quickly as possible, which
is called Gaussian process active learning [24].

Specifically, to reduce the uncertainty of the estimated
objective function, the main objective is to maximize the
mutual information (or the information gain) between g and
gq [32], which could be expressed as

max I(go; g) = H(ga) — H(galg)
(24
= log

)

1
Liim(o) + ;29

where H(-) denotes the entropy and for a Gaussian distri-
bution, H(N (11, %)) = %log|2meX|. However, solving the
problem (24) is NP-hard. We can use the Gaussian process
regression (GPR) based algorithm to approximate the solution
[31]. Specifically, we set F'(Q?) = I(gn;g) and set the pos-
terior variance as the acquisition function of the exploration-
based inference strategy, which can be expressed as

Vel (p) = g (25)

Therefore, the exploration-based inference strategy can be
expressed as

x,41 = argmax V7P (z) = argmax o(x), (26)

TEW/Q TEW/Q
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Fig. 3. Comparison between different inference strategies of the proposed BAR-based NFBT scheme.
where Q; = {x1,...,x:}. The main strength of this where ( -
. . . He—8(Tmax)—
exploration-based strategy is that it can reconstruct the en- 7 — ey O > 0 (29)
tire objective function accurately and quickly by gradually 0, oz =0,

reducing the uncertainty which prevents plunging into a local
optimal solution. However, it may search for many “worthless
points” and increase training overhead.

3) Exploration-exploitation Balanced Strategy:

Based on the above analysis, a exploration-exploitation bal-
anced strategy should be adopted, which can dynamically trade
off between bringing performance improvement and reducing
uncertainty when determining the next codeword. Thus, corre-
sponding acquisition function V'Palanced () of the exploration-
exploitation balanced strategy should be determined and three
effective functions are discussed as follows.

A) Probability of improvement (PI): A typical acquisition
function of the exploration-exploitation balanced strategy is
called probability of improvement [33], which could be ex-
pressed as

Pl(z) = P(g(x) = g(®max) + &)
— % (M:c — g(wmaX) — f) ’

fo
where ®(-) denotes the normal cumulative distribution func-
tion (CDF), g(xmax) = argmax g(x;), and £ denotes the

T EQ
adjustable trade-off parameter. It is recommended in [33] that £

should decrease gradually throughout the entire search process.
Specifically, when & is enough high early, it tends to search the
regions of high uncertainty and the exploration-based strategy
dominates. When £ becomes 0, the exploration-exploitation
balanced strategy is transformed into the exploitation-based
strategy.

27

B) Expected improvement (EI): Another acquisition func-
tion of the exploration-exploitation balanced strategy is ex-
pected improvement, which considers both the probability
and degree of the improvement [34]. Specifically, the EI
acquisition function could be expressed as

Bl(x) = {(()/f.z-g(mmax)ﬁ)cb(zwazqs(Z), ZZ > 8
(28)

®(-) and ¢(-) represent the CDF and probability density
function (PDF) of the standard normal distribution and £ is the
adjustable trade-off parameter like in (27). Besides, it has been
proven that setting £ = 0.01 can achieve good performance in
most cases [35].

C) Gaussian process upper confidence bound (GP-UCB):
Additionally, GP-UCB is widely used as the acquisition func-
tion, which measures the quality of the codeword searching
process by quantifying regret [31]. Specifically, the goal of
BAR-based NFBT is to select the codeword which maximizes
corresponding received signal power, i.e.,

¥ = argmax g(x), (30)

zeW
where x* denotes the optimal codeword. One equivalent
method for (30) is to minimize the cumulative regret, which
could be expressed as

T
Ry => m, 31)
t=1
where r, = g(x*) —g(x;). However, solving (30) or minimiz-
ing the cumulative regret is NP-hard. Thus, GP-UCB can be
applied as the acquisition function, which could be expressed
as

GP-UCB(z) = pi;—1(x) + V/B,01-1(x),

where (; is an adjustable hyperparameter, which balances
exploration and exploitation. Besides, (; is usually set as:
B = 2log(|W|t?n%/66), where § € (0,1) [31]. Different
from the classical multi-armed bandit problem [36], the regrets
of the GP-UCB is highly correlated to the kernel matrix 3. It
can be proven that the cumulative regret of GP-UCB algorithm
is bounded and sublinear for 7" by the following lemma, which
means each round of regret could gradually decrease to choose
the better point.

(32)

Lemma 2. For the Gaussian process g with mean zero
and covariance kernel k (x,x’), applying GP-UCB algorithm
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with 8, = 2log(|W|t?>72/65) could obtain a regret bound

O*(\/T~yrlog |W|) with high probability, which can be ex-
pressed as

_8TBrvyr >1-4,
log(1+ 0—2)

where § € (0,1) and 77 denotes the maximum information
gain after 7" rounds, i.e.,

Pr {RT < (33)

= ma; I ; . 34
aroax (g0ri87) 34)
Proof. The proof is provided in Appendix B. O

Therefore, based on Lemma 2, it could be concluded
that the GP-UCB algorithm has sublinear bound on cumu-
lative regret with high probability, which also means the
GP-UCB algorithm is no regret with high probability, i.e.,
limy_ o0 % = 0. It should be noted that v; depends on the
form of kernel and it has been proven the squared exponential
kernel is sublinear for 7" [22].

So far, we have analyzed our proposed BAR-based NFBT
scheme and compared different inference strategies based on
distinct acquisition functions. Simulation results are carried out
to substantiate the efficacy and superiority of the BAR-based
NFBT scheme in the following section.

D. Computational Complexity of BAR-based NFBT Scheme

In this subsection, we will analyse the computational com-
plexity of proposed BAR-based NFBT scheme. Specifically,
the entire signal processing of the BAR-based NFBT scheme
is composed of iterative update of the acquisition function
V(z) and selecting optimal codeword after the iteration. For
the iterative update of V' (x), the computational complexity
is determined by the calculation of posterior variance. Ac-
cording to (19), (20), and (32), its computational complex-
ity is O (T2 (T2 + |\WIT + \W\2>> For selecting optimal
codeword after the iteration, the computational complexity is
O (IW|T).

It should be noted that although the computational com-
plexity of iterative update of the acquisition function V' (z) is
relatively high, it can be carried out offline in advance. Then,
the corresponding calculated posterior mean pg, covariance
3o and variance oq can be saved at the BS for the optimal
codeword selection stage. Besides, as the iterative update
of the acquisition function V'(x) isn’t determined by the
specific user, the optimal codeword selection can work parallel.
These confirm the practicality of our proposed BAR-based
NFBT scheme. Besides, beam training overhead generally
refers to the number of time slots used for beam training
and the training overhead of different schemes is compared
in subsection V-C.

E. Extension to Hybrid Precoding Structure and Multi-User
Scenarios

In this subsection, we will demonstrate how our proposed
BAR-based NFBT scheme can be extended to hybrid precod-
ing structure and multi-user scenarios.

1) Extension to Hybrid Precoding Structure:

For the hybrid precoding structure, the number of RF
chains Ngrp is usually much smaller than the number of BS
antennas [V, i.e., Ngp < N. In short, the optimization of
hybrid precoding can be decomposed into analog and digital
precoding design. For analog precoding, the training process
is similar to the fully-digital structure and the differences lies
in that the codewords should be generated in hybrid structure
and they meet the requirements of envelop constraint. Besides,
there are already several schemes for analog codewords design
[25], [37], [38]. After getting the analog precoding, the digital
precoding can be obtained through several schemes, such as
zero-forcing (ZF) [39] and weighted minimum mean square
error (WMMSE) [40].

2) Extension to Multi-User Scenarios:

For simplicity, the single-user scenarios is considered in
this paper. It is worth noting that our proposed BAR-based
NFBT scheme is also suitable for multi-user scenarios. For
our proposed BAR-based NFBT scheme, the codewords gen-
eration and selection process is independent of UE. Thus
different users can independently perform the BAR-based
NFBT process with the BS as described in Fig. 2.

V. SIMULATION RESULTS

In this section, simulation results are carried out to sub-
stantiate the performance of the BAR-based NFBT scheme.
Specifically, the simulation setup is first introduced. Then,
the performance of Bayesian regression applied in NFBT is
presented. Besides, the overhead and performance of different
schemes are compared.

A. Simulation Setup

We set the number of the BS antennas as N = 256. Besides,
we set the carrier frequency as 30 GHz and the antenna spacing
isd= % = 0.5 cm. For simplicity, the single-user scenario is
considered, i.e., the number of users is X = 1. For the user
distribution, the user is randomly distributed in a sector, where
the spatial angle range and distance range are [—%, %] and
[8 m, 80 m)], respectively. Besides, the monte-carlo simulation
is carried out and its number is set to Njier = 500. The
complex path gain of the LoS path is kg ~ CN(0,1).

Moreover, for the BAR-based NFBT scheme, we set the
hyperparameters of the squared exponential kernel as a? = 1
and n? = ﬁ, where Ape = (/A3 + 3z, Ag and A,
denote the angle and distance sampling steprs of the polar-
domain codebook. It should be emphasized selecting the
appropriate hyperparameters is particularly important for the
performance of the BAR-based NFBT scheme as they affect
the correlation between different near-field codewords. The
optimal hyperparameters could be obtained by the maximum
likelihood (ML) criterion [41] and only a value with good
performance is set here. Besides, for the PI and EI acquisition
function of the exploration-exploitation balanced strategy, we
set £ = 0.01 [35]. For the GP-UCB acquisition function, we
set § = 0.1 of S;.
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Fig. 4. The performance of Bayesian regression applied in NFBT.
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Fig. 5. Performance comparison of the BAR-based NFBT scheme with

different searching strategies.

B. The Performance of Bayesian Regression Applied in NFBT

The performance of Bayesian regression applied in NFBT is
evaluated in this subsection. The considered exponential kernel
matrix is plotted in Fig. 4(a) and the normalized beamforming
gain corresponding to different codewords is plotted in Fig. 4.
Specifically, we suppose that the angle and distance of the
user are § = 0 and r = 15 m, respectively. The blue line
denotes the true normalized beamforming gain and the red
line denotes the reconstructed normalized beamforming gain
through Bayesian regression. Different from the problems like
channel estimation in [29] which require fast and accurate
reconstruction of the objective function, we only need to
determine the maximum value point of the posterior mean of
the reconstructed objective function and select its correspond-
ing codeword in NFBT. As shown in Fig. 4, although there
are deviations between the true and reconstructed normalized
beamforming gain, the maximum value point can still be
accurately determined to select the optimal codeword.

To evaluate the different searching strategies mentioned in
subsection IV-C, we compare the performance of the BAR-
based NFBT scheme with different searching strategies in
Fig. 5. It can be shown that the performance of applying
the exploration-exploitation balanced strategy will be superior

to applying the other two strategies, which confirms the
strengths and drawbacks of the different strategies analyzed
and summarized in subsection I'V-C.

C. Comparison of the Beam Training Overhead

In Table. I, the training overhead of different schemes
is compared. Beam training overhead usually refers to the
number of time slots or searched codewords’>. We compare
the BAR-based NFBT scheme with far-field exhaustive search-
ing scheme, near-field exhaustive searching scheme, near-
field TPBT scheme [10] and near-field HBT scheme [12].
Specifically, the number of sampled angles and distances are
N = 256 and S = 5. For the exhaustive searching schemes,
the far-field and near-field training overhead are 256 and
256 x 5 = 1280, respectively. Besides, the training overhead
of the near-field TPBT scheme is 256 + 5 = 261. Moreover,
for the near-field HBT scheme, the training overhead is
O (log (N) +log (S)). In this paper, we use two-layer hierar-
chical scheme, where the control parameter of the sampling
steps is set to 6 = 0.5. Let N and S denote the number
of sampled angles and distances in the [-th layer searching,
respectively. Thus, the training overhead of the near-field HBT
scheme is NS 4+ N2 = 128 x 343 x 3 = 393. For
the BAR-based NFBT scheme, the training overhead can be
dynamically adjusted. To demonstrate the advantages of the
BAR-based NFBT scheme over the benchmark schemes, we
set it to a constant value. Compared to the near-field exhaustive
searching scheme, it could reduce almost 96% of the overhead.

Besides, the achievable rate performance of different
schemes against the training overhead is shown in Fig. 6,
where SNR = 10 dB. It can be shown that the BAR-based
NFBT scheme only needs 50 overhead to almost achieve the
performance of the near-field exhaustive searching scheme.
For the near-field TPBT and HBT scheme, their beam training
overhead are still strongly related to the size of the codebook
and are usually unacceptable when the size of the codebook
in XL-MIMO systems is large. For our proposed scheme, it
can perform well with low overhead. This is because it fully
utilizes the correlation between different codewords and when
the number of transmitting pilots increases, the reconstructed
objective function in Bayesian regression becomes more ac-
curate and the optimal codeword can be quickly determined.

D. Comparison of the Beam Training Performance

First, the achievable rate performance of different schemes
against the SNR is plotted in Fig. 7. Specifically, it can be
shown that the BAR-based NFBT scheme can almost achieve
the performance of the near-field exhaustive searching scheme
and outperform the near-field TPBT and HBT scheme. For
the TPBT scheme in [10], as it applies DFT codebook in
the first phase, the energy spread effect affects the accurracy
of angle searching and causes the performance loss. For
the near-field HBT scheme in [12], as the wide beam is
easily affected by noise, it faces the serious performance

%In subsection V-C and V-D, based on the comparison of different searching
strategies above, we adopt the exploration-exploitation balanced strategy and
select GP-UCB as the acquisition function for the BAR-based NFBT scheme.
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TABLE I
COMPARISON OF BEAM TRAINING OVERHEAD
Schemes Overhead Value
Far-field exhaustive searching scheme N 256
Near-field exhaustive searching scheme NS 1280
Near-field TPBT scheme [10] N+ S 261
L
Near-field HBT scheme [12] Sy NOSO 393
Proposed BAR-based NFBT scheme \ 50
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Fig. 6. Achievable rate performance vs. the beam training overhead.

degradation at low SNR. The proposed scheme can exclude
the influence of the above two factors and perform well.
Additionally, we compared our proposed BAR-based NFBT
scheme with Al-based methods in [18]. Although the AI-
based scheme performs well, it require extensive training data
and computational resources. In contrast, our proposed BAR-
based scheme leverages the inherent correlation between near-

Fig. 7. Achievable rate performance vs. the SNR.

field codewords, providing a more efficient alternative that is
particularly suitable for practical implementation in extremely
large-scale MIMO systems.

Besides, the achievable rate performance of different
schemes against the distance of the user from the BS is shown
in Fig. 8, where the spatial direction of the user is # = 0 and
SNR = 10 dB. It can be shown that as the distance increases the
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performance of the BAR-based NFBT scheme almost remains
unchanged, which confirms the universality and effectiveness
of the BAR-based NFBT scheme in both near-field and far-
field scenarios. In contrast, for the near-field TPBT scheme in
[10], its achievable rate performance gradually decreases with
the distance decreasing and it has poor performance when the
user is close to the BS. This is because the performance of the
near-field TPBT scheme is highly dependent on the accuracy
of the first phase angle searching, which is influenced by the
energy spread effect. Specifically, it has been proven in [11]
that with the distance decreasing, the energy spread effect be-
comes more pronounced, which in turn affects the accuracy of
angle searching. In other words, the near-field TPBT scheme
still applies the far-field DFT codebook to determine the angle
of the user in the first phase. With the distance decreasing and
the near-field propagation becoming more dominant, the far-
field DFT codebook and near-field model become increasingly
mismatched, which causes increasingly performance loss. For
the near-field HBT scheme in [12], its performance is almost

unaffected by user’s distance changing but still easily affected
by noise.

Furthermore, the achievable rate performance of different
schemes against the number of BS antennas N is shown
in Fig. 9, where SNR = 10 dB. It can be shown that the
proposed BAR-based NFBT scheme outperforms the bench-
mark schemes under different number of BS antennas N
settings. This confirms the universality of the BAR-based
NFBT scheme.

VI. CONCLUSIONS

In this paper, we first apply Bayesian regression into NFBT
and propose the BAR-based NFBT scheme. Different from
the existing NFBT schemes, the proposed scheme models
the problem of selecting the optimal codeword as finding the
maximum value point of the posterior mean of the objective
function in Bayesian regression, which fully utilized the cor-
relation between near-field codewords to reduce the training
overhead. Simulation results confirm that the efficiency of the
BAR-based NFBT scheme, which only requires searching for
few codewords instead of the entire codebook to select the
optimal codeword. For the future research, Bayesian regression
may be applied in other scenarios of near-field communi-
cations, such as channel estimation [42] and beam tracking
[43]. Low-overhead NFBT schemes of the extremely large-
scale reconfigurable intelligent surface (XL-RIS) may also be
a critical future research direction [44].

APPENDIX A
PROOF OF LEMMA 1

Based on (11), the joint PDF of f(x) and y* could be

expressed as
P(f(x).5") :CJVQ“,S’E)], [’“lﬁi‘(’;‘)/) Ig‘ff;%ﬂ). (35)

According to Bayes theorem, the joint PDF p(f(x), y*) could
also be expressed as

p(f(x),y") = p(f(X)ly" )p(f(¥"))-

First, the covariance matrix could be decomposed as follows

e R N

(36)

(37)
where
U = (k' (x))"(K! + o21,) 7L (38)
V =k (x,x) - (K x)HK' +°T,) ki (x).  (39)
W = (K' + o?T,) "'k (x). (40)

Based on (37), we can get

k(x,x) (kx)E] [ 1 o][v? 0
Kt (x Kt—i—aQIJ —[—W 1” 0 (K'+o0%,)"!
il

(41)
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Besides, based on the joint PDF (35), the quadratic expan-
sion of its exponential part can be expressed as (42). Thus,
based on (36) and (42), it could be expressed as

P(fR)Y") =CN (1(x) + U(y" —p), V).

According to (43), the posterior mean (12), covariance (13)
and variance (14) can be obtained and we complete the proof.

(43)

APPENDIX B
PROOF OF LEMMA 2

First, we prove that

Pr{Ig(w)—m ()| < VB0 ( }>1—5. (44)
Specifically, we assume g;_1 = (g1, ,gi-1)
and {x,---,x;_1} are determined, and g(x) ~

g(@)—pi—1(x)

Ut71($) ’

N(ui—1(x),0?_1(x)). Then, we set r =
r ~ N(0,1) and ¢ = S;, we could get

2
Pr{r > c} e Tdr

7.
1
7.

o2 1 -2
<e2 Pr{r>0}= 567.

_(r=o)?
2

=t —elr=Agy  (45)

Therefore, by substituting r and ¢, we can obtain

Bt .
Pr{lg(z) — pe—1(x)| = v/Bior-1(x)} < e 2. According
to the principle of applying union bound, then we can get

Pr {la(x - b ()] < V/B,o1-1( } >1— |Wle~ 7. Let
Wle™ 7 = 52, (44) holds as 3° -2 = 1.
Further, if |g( ) — pi—1(x)] < ftot 1(z) holds, we can
obtain
re = g(@") — glxy)
< p—1(x") + / Bror-a(x”) — gl@t) 46)
< pe—1(xe) + / Bror—1(xe) — g(xe)
< 24/ Bror—1(xy).
Based on (44) and (46), we can obtain
Pr{|ry <4B07 ()} > 1-06. (47)

As [(; is noncreasing, we can obtain that

ABro} 1 (ms) < ABro’(o %07 1 (xr))
—2

log(1+072)

< 4Bro? log (1+O’720't2_1(113t)) ,

(48)
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where  (a)  holds  since o207, (xy) <
W log (1+ 07207 (®;)) holds for 0 <
o202 () <02
Besides, for the information gain, we can derive that
I(ga,;8r) = Zlog (140720 (1)), (49)

for I(gQTng) = H(gQT) - %log |27T602I| and H(gQT) =
H(gQT—l) + H(gQT|gQT—1) = H(gQT—l) + %log(2W6(02 +
o?_1(z7))). Thus, by substituting (49) into (47) and (48), we
can get

Z =
(50)

Then, by applying the Cauchy-Schwarz inequality R% <
T

< 86rl(gorigr) _ _ 8Bryr
log(1+072) ~ log(1+072)

>1-6.

T Z rf into (50), we can get (33) and the proof is completed.
t=1
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