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Abstract—Accurate channel prediction is essential for address-
ing channel aging caused by user mobility. However, the actual
channel variations over time are highly complex in high-mobility
scenarios, which makes it difficult for existing predictors to obtain
future channels accurately. The low accuracy of channel predic-
tors leads to difficulties in supporting reliable communication.
To overcome this challenge, we propose a channel predictor
based on spatio-temporal electromagnetic (EM) kernel learning
(STEM-KL). Specifically, inspired by recent advancements in
electromagnetic information theory (EIT), the STEM kernel
function is derived. The velocity and the concentration kernel
parameters are designed to reflect the time-varying propagation
of the wireless signal. We obtain the parameters through kernel
learning. Then, the future channels are predicted by computing
their Bayesian posterior, with the STEM Kkernel acting as the
prior. To further improve the stability and model expressibility,
we propose a grid-based EM mixed kernel learning (GEM-KL)
scheme. We design the mixed kernel to be a convex combination
of multiple sub-kernels, where each sub-kernel corresponds to a
grid point in the set of pre-selected parameters. This approach
transforms the non-convex STEM kernel learning problem into
a convex grid-based problem that can be easily solved by weight
optimization. Finally, simulation results verify that the proposed
STEM-KL and GEM-KL schemes can achieve more accurate
channel prediction. This indicates that EIT can improve the
performance of wireless systems efficiently.

Index Terms—Channel prediction, electromagnetic infor-
mation theory (EIT), spatio-temporal electromagnetic kernel
learning (STEM-KL), grid-based electromagnetic mixed kernel
learning (GEM-KL), multi-input multi-output (MIMO).

I. INTRODUCTION

N RECENT years, with the development of new applica-
tions such as digital twins and virtual reality, the demand
for spectral efficiency is predicted to increase rapidly [1]. As
a key technology in current wireless communication, massive
multiple-input multiple-output (MIMO) can achieve significant
improvements in spectral efficiency and system capacity [2],
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The effective communication of massive MIMO systems
highly relies on accurate and timely channel state information
(CSI) [5]. However, dynamic environments, characterized by
user mobility, complicate the acquisition of CSI [6], [7].
According to the current 5G standard [8], in time-division
duplexing (TDD) mode, CSI acquisition, or channel esti-
mation, is performed periodically. When user mobility is
high, significant channel changes may occur within a single
channel estimation period, leading to outdated CSI [9]. This
phenomenon is termed as channel aging [10]. For example,
when the user speed is 60km/h, channel aging could result
in approximately 30% loss in achievable sum-rate perfor-
mance [11].

To achieve higher spectral efficiency, XL-MIMO, which has
many more antennas than massive MIMO, is considered a
key technology for 6G [12]. In future 6G scenarios, as the
number of antennas in MIMO systems increases significantly,
the number of pilots required for channel estimation will also
increase. Although pilot density can be increased to accom-
modate this growing demand, when the number of antennas
increases several times, the pilot density cannot withstand the
dramatic increase subsequently. Consequently, extending the
channel estimation period becomes inevitable, leading to more
severe channel aging. Therefore, addressing channel aging
has become an urgent priority for XL-MIMO communication
systems.

A. Prior Works

To address the challenges posed by channel aging, various
channel prediction techniques have emerged that utilize the
temporal correlation between historical CSI and future CSI.
Existing channel prediction methods can be categorized into
two main types: The model-based methods and deep learn-
ing (DL)-based methods. The model-based methods can be
divided into two categories, i.e., the sparsity-based methods
and the autoregressive (AR)-based methods.

Sparsity-based methods typically exploit the Doppler
domain sparse structure of channel responses to predict
future channels. For instance, the sum-of-sinusoids model-
based predictor [13] represents the channel response as a
combination of sinusoidal waves. This scheme first identifies
the dominant sinusoidal components and then uses the har-
monic retrieval method [14] to obtain these components for
channel prediction. To be more suitable for predicting massive
MIMO channels with a larger number of vector elements, the
authors of [15] proposed the Prony vector (PVEC) method,
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which fits a linear prediction model for the observed channel
response. Specifically, PVEC applies to predicting uniformly
sampled signals composed of damped sinusoidal components.
It models the future channel as a linear combination of the
past channels, where the combination weights are computed
from the received pilot signals. The authors of [16] believe
time-varying channels have sparsity in the Doppler frequency
domain. Consequently, compressive sensing algorithms such
as orthogonal matching pursuit (OMP) [17] can be used to
obtain the dominant Doppler frequencies for predicting future
channels.

AR-based methods use autoregressive principle to process
channel time series [18]. The original AR prediction method
models the future channel as a weighted sum of its past values,
where the weights, i.e., the AR parameters, are obtained from
the autocorrelation function of channels at different times
[19], [20], [21]. The Wiener channel predictor and Kalman
channel predictor are extensions of the AR prediction method
[22], [23], [24], [25]. The Wiener predictor enhances channel
prediction by predicting an autoregressive multivariate random
process using a Wiener linear filter [26]. Moreover, the authors
of [27] and [28] explore the application of the Kalman predic-
tor within a time-correlated channel aging model. This method
implements channel prediction by modeling the channel as a
linear dynamic system with state and observation equations.
It predicts the next state based on the current estimate and
the state transition model, then improves this prediction using
new CSI to correct the estimate and reduce uncertainty.

DL-based methods utilize neural network architectures
to learn complex patterns from historical channel data for
prediction [28], [29], [30], [31]. Specifically, fully connected
neural networks (FCN) model the channel as a non-linear
mapping from past observations to future states, where layers
of interconnected neurons process input features to capture
underlying dependencies [28]. However, training such FCNs
may be challenging due to the high-dimensional input channels
in previous frames. To avoid the high-dimensional input,
recurrent neural networks (RNNs) extend this by incorporating
feedback loops to handle sequential data, enabling the pre-
diction of time-varying channels through hidden states that
retain temporal information [32]. Long short-term memory
(LSTM)-based methods address the vanishing gradient prob-
lem with gating mechanisms (input, forget, and output gates)
to selectively remember long-term dependencies, making them
effective for channel prediction in high-mobility scenarios
[33]. More recently, transformer-based predictors utilize self-
attention mechanisms to capture global temporal interactions
across channel sequences, outperforming traditional RNNs by
parallelizing computations and focusing on relevant depen-
dencies [11], [34]. These DL approaches have been applied
to various wireless systems, such as massive MIMO and
vehicular communications, often achieving better performance
in data-rich environments by training on large datasets of
simulated or measured channels.

The existing two categories of channel prediction meth-
ods mentioned above can accomplish channel prediction for
massive MIMO systems. However, DL-based methods require
extensive historical datasets for training, which may be imprac-
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tical in practical wireless deployments. Moreover, DL. models
typically function as black boxes [35], often lacking explicit
physical interpretability and failing to incorporate underlying
electromagnetic principles. Additionally, the training overhead
is usually high, involving computationally intensive processes
and significant time for optimization. As for the existing
model-driven methods, simply modeling time-varying chan-
nels as sinusoidal or Gaussian random processes is inaccurate.
Due to inaccurate channel modeling, these methods cannot
accurately predict the channel. The low accuracy of chan-
nel predictors can lead to difficulties in supporting reliable
communication in high-mobility scenarios. Therefore, it is
essential to investigate a more accurate channel prediction
method with physical interpretability.

B. Our Contributions

To design a high-accuracy channel predictor with physi-
cal interpretability for the XL-MIMO system, we propose a
channel prediction scheme based on electromagnetic kernel
learning, which simultaneously utilizes the spatio-temporal
electromagnetic correlation characteristic of the channel from
the perspective of electromagnetic information theory (EIT)
[36], [37]. The contributions of this paper are summarized as
follows:

e Unlike existing channel prediction schemes that do not
utilize channel EM characteristics, the proposed scheme
uses the EIT-based channel model. Inspired by the spa-
tial correlation function based on electromagnetic (EM)
physical principles [38], we consider the time-varying
property of the channel and derive the spatio-temporal
electromagnetic (STEM) correlation function, i.e., STEM
kernel. Specifically, we introduce the velocity parameter
in the correlation function to describe user mobility. This
STEM kernel originates from EM physics; thus, it is
more suitable for modeling practical wireless propagation
environments than other kernel functions.

e Since the proposed STEM kernel characterizes the chan-
nel temporal correlation, we utilize the STEM kernel
to construct time-domain channel predictors. To get the
STEM kernel parameter, we formulate a maximum like-
lihood (ML) problem, where the kernel parameters are
optimized to fit the noisy channel observations. Further-
more, we design the velocity and concentration kernel
parameters to reflect the time-varying propagation of the
wireless signal. After determining the kernel parame-
ters, future channels are predicted by computing their
Bayesian posterior, with the STEM kernel acting as the
prior. Therefore, we introduce EM information into the
channel predictor in a physically interpretable way.

e To deal with the non-convexity of the ML problem, we
convert it into a convex problem by introducing additional
grid weight parameters, leading to a convex grid-based
problem that can be easily solved by weight optimization.
Specifically, the STEM kernel is approximated by a new
grid-based EM mixed (GEM) kernel, which is composed
of STEM sub-kernels. For each sub-kernel, parameters
are fixed at a set of pre-selected grid points, leaving only
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the weights to be optimized. Thus, the original contin-
uous parameter optimization problem is converted into
a discrete weight optimization problem with favorable
convexity and reliability.

e Finally, through performance analysis and numerical
experiments, it can be verified that the proposed GEM-
KL channel predictor outperforms the PVEC and AR
baselines, which demonstrates that EIT can benefit the
performance of wireless communication systems.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
introduces the channel model and signal model. Section III
formulates the channel prediction problem. In Section IV,
we first introduce the spatio-temporal electromagnetic correla-
tion function (STEM-CF). Then, Gaussian process regression
(GPR) is introduced to solve the channel prediction problem.
Kernel learning is considered to improve EM-based GPR chan-
nel prediction, and finally, the GEM-KL scheme is proposed.
Simulation results are provided in Section V, and we conclude
this paper in Section VI

Notations: X and x denote matrices and vectors, respec-
tively. E[X] denotes the expectation of random variable X (w);
C denotes the set of complex numbers and R denotes the set
of real numbers; (-)* denotes the conjugate operation; []~1,
[]7, []" and diag(-) denote the inverse, transpose, conjugate-
transpose and diagonal operations, respectively; i denotes the
imaginary unit; Iy is an IV x N identity matrix; For x € C” or
R", |x| = Vx'x € C denotes the pseudonorm; ||x|| denotes
the standard vector 2-norm vxHx € R>; % denotes x/ |x|;
R {-} and T {-} respectively represent the real and imaginary
part of the arguments; j,,,(2) is the mth-order spherical Bessel
function of the first kind.

II. SYSTEM MODEL

In this section, we review the Gaussian random field (GRF)-
based channel model and explain the signal model.

A. Channel Model

Traditional channel models express the channel matrix as
a weighted Gaussian mixture of steering vectors, which is
a discrete special case of a Gaussian random field. In this
section, we model the channel with a complex symmetric
Gaussian random field (CSGRF) to capture the continuously
varying properties of the wireless channel [39], [40]. Let
function h (p) : R* — C represent a circularly symmetric
Gaussian random field (CSGRF). The variable is p = (x,1),
where x = (z,y, z) represents the spatial location, ¢ represents
time indicator, and (x,t) € R*. For any @ points, the joint
distribution of their function values (h(p;), h(ps), - - -, h(pg))
follows a multivariate Gaussian distribution, then the ran-
dom field is a Gaussian random field, denoted as h(p) ~
GRF(0,k(p, p")), and its probability measure is determined
by their autocorrelation function

k(p, p) =E[h(p)h"(p)]. (D
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The autocorrelation function is usually called the kernel.
Note that the kernel function of the GRF must be semi-positive
definite. To enable CSGRF to represent the wireless channel,
some restrictions should be imposed on k(p, p') so that the
h(p) generated by it satisfies the EM propagation constraints.
We use h(p) to model the electric field distribution E(p) :
R* — C3. Then, the autocorrelation function can be defined
as Kg(p, p') = E [E(p)E(p')"] € C**3 [41]. Similarly, for
a channel vector with Ngg components, it can also be modeled
using CSGRF by constructing the autocorrelation function of
p, forn=1,2,... Npgg.

B. Signal Model

For the signal model, the XL-MIMO system is considered,
in which a single base station (BS) with Npg antennas serves
a single user with 1 antenna. We will try to solve the problem
of uplink channel prediction in a narrowband system. Consider
the simplest communication scenario, assuming we use an
Npg-antenna base station with fully digital precoding, where
each antenna is connected to a dedicated radio frequency (RF)
chain. The uplink signal model is

Yy = /ph; 4+ ny, )

where y;, € CVBs*l g the BS received pilots at time ¢,
h; € CNMss*lis the normalized channel vector satisfying
E[|[h¢||*] = Ngs, p denotes the pilot transmit power, and n,
is the complex-valued additive white Gaussian noise (AWGN)
with zero mean and covariance 021y, .

The least squares (LS) and minimum mean square error
(MMSE) channel estimation methods [42] can be used to
estimate the channel. Let hS and hMMSE represent the LS
and MMSE estimation results of h;, respectively, and calculate
them using the following two formulas:

A~ 1
h® = —y,, 3)

VP

. 1 -1
h}fVIMSE =K [hf‘yt] = Eht (th “+ SNRINBS) Yi,
4)

where Xy, = ]E{hth';'} is the prior covariance matrix of
channel. The symbol SNR = p/o2 represents the received
signal-to-noise ratio of the BS. In the subsequent analysis, for
convenience, the pilot power p is set to 1.

IIT. PROBLEM FORMULATION

In this section, the channel aging issue is illustrated, and
the channel prediction problem is formulated to alleviate the
channel aging.

As shown in Fig. I, in the XL-MIMO communication
system, the user moves at velocity v, and the Doppler shift will
cause significant differences in the channel at different times.
We refer to the period of channel estimation as a frame, which
contains Ny time slots. Channel estimation is only performed
in the first slot. In mobile scenarios, because of the influence
of the Doppler effect, except for the channel at the first slot,
the actual time-varying channels of the follow-up slots may
have significant differences from the channels obtained by the
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Fig. 1. The XL-MIMO communication system with scatterers distributed on
the spherical surface surrounding the base station. User is in motion with
velocity v.
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Fig. 2. An illustration of channel prediction: Taking a component of a channel
vector as an example, represent the variation of the channel and its uncertainty
over time.

channel estimation, resulting in a decrease in the accuracy of
the obtained CSI and thus affecting communication quality.
Specifically, according to [43], the channel coherence time 7
is defined as the time during which the channel can be well
regarded as time-invariant, which is inversely proportional to
the carrier frequency and user motion speed, i.e.,
¢ A
CT2fv 2w’
where f is the carrier frequency, A is carrier wavelength and v
represents the user’s moving speed. Channel coherence time is
a rough estimate used to describe the time interval. Let v, < v
represent the radial velocity relative to the BS. The calculation
of Doppler shift fy is

®)

Ja= (6)

Y
%

The larger the Doppler frequency shift, the shorter the
channel coherence time, and the more severe the channel
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aging. When the channel coherence time is shorter than the
channel estimation period, using the channel estimation result
of the first time slot for subsequent time slots will result
in performance loss. The variations of the channel and its
uncertainty due to imperfection of channel measurements over
time are shown in Fig. 2. The solid curve represents the
real part of a channel vector component, and the shadow
area represents its uncertainty region. It can be observed that
the channel uncertainty significantly increases at future time
moments.

To solve the problem of severe channel aging mentioned
above, some channel prediction methods have been proposed.
The channel prediction is to obtain future channels through
past channels. The existing channel prediction methods are
typically based on sequential prediction. Specifically, it is to
use the channels from frame 1 to frame 7' to predict the
channel at frame 7" + 1, and then use the channel at frame
T + 1 as known information to predict the channel at frame
T + 2 from frame 2 to frame 7 + 1, and so on. However,
due to errors in the channel prediction results at frame 7"+ 1,
using it as a known channel to predict subsequent channels
will bring errors to the subsequent predicted channels, which
is the problem of error propagation.

To avoid performance loss caused by error propagation,
unlike existing sequential channel prediction methods, we
formulate the channel prediction problem in parallel form.
That is, using the channel estimation results of the past
L channels to predict the future channel of the next F'
channels. It should be noted that the channels of future F
channels are predicted simultaneously. Considering the char-
acteristics of the GRF channel, achieving accurate channel
prediction requires an appropriate autocorrelation function,
i.e., the kernel. We can then predict the future channel
through inference based on this kernel. The appropriate kernel
form will be discussed in the next section. Let w € €
denote model parameters of the kernel, and €2 is the set
of model parameters. y = (yI,y3,...,y}) € CNesbxl
denotes the column vector composed of the received pilot
sequences in the past L time frames. Let £ denote the
set of past channel indices and F denote the set of future
channel indices. hy = (h], hl, ... h])T € CVeslx! denotes
the column vector composed of the previous L channels.
hr = (h] ;,h] ,,....h] )T € CNesF*1 denotes the
column vector composed of F' future channels that need to be
predicted. By using the ML criterion to obtain kernel param-
eters and then using the MMSE criterion to predict future
channels, the channel prediction problem can be formulated
as

w(y)= arg max {ln / p(.vlhc)p(hclw)dhz:} :

~

hr(y) = argmax {lnp(ylhr)+Inphrlo(y))}. (7)

h]:ECNBSFXl

In (7), @ is the ML estimate of w and hp is the MMSE
estimate of h . Due to the characteristics of the GRF channel,
MMSE estimation is equivalent to maximum a posteriori
(MAP) estimation. h; and h;,; can be used to determine the
channel of the n-th slot. For example, for the ¢-th frame, if
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0 < n < Ng/2, then determine that the channel of time slot
n is h;. Otherwise, it is determined as h;; ;. In the following
Section IV, we need to accurately solve the problem in (7).

IV. PROPOSED SPATIO-TEMPORAL ELECTROMAGNETIC
KERNEL LEARNING BASED CHANNEL PREDICTION

In this section, we propose a parallel channel prediction
scheme that simultaneously utilizes the temporal and spatial
EM correlation between channels to improve the accuracy
of channel prediction. Firstly, in Section IV-A, we introduce
the construction of the spatio-temporal EM kernel. Then,
in Section IV-B, we introduce Gaussian process regression
(GPR), which can be used to infer future channels. Moreover,
the parameters of the spatio-temporal electromagnetic kernel
need to be obtained through kernel learning as described
in Section IV-C. In Section IV-D, we propose a grid-based
electromagnetic mixed (GEM) kernel to further enhance relia-
bility. Finally, in Section I'V-E, the proposed GEM-KL channel
prediction algorithm is elaborated.

A. Construction of STEM Correlation Function

To fully utilize the EM physical characteristics, it is essential
to consider the fundamental physical principles behind the
communication processes [44], including electromagnetics and
information theory [45], [46]. The integration of these two
theories could advance research in electromagnetic infor-
mation theory (EIT), which provides insights into wireless
communication issues from the perspective of electromag-
netic wave propagation [47], [48]. We use the EIT-based
channel model. Specifically, based on the channel model of
the Gaussian random field described in subsection II-A, we
analyze the characteristics of EM channels and their correla-
tion. Electromagnetic information can be combined with the
autocorrelation function of the channel [49]. We calculate the
correlation integral of the electric field on the scatterer sphere
S2 shown in Fig. 1 to obtain the correlation function of the
time-varying channel, i.e.,

K(x,t; x’,t’)oc/

RES?

(I_’%,%T)eikofe((xfx/)+v(t7t/))V(,%)ds’

®)
where the integration is carried out over the surface of the
unit sphere S2, kg = 27/)¢ is the wavenumber. & denotes
the unit radial vector, and v : S? — R, denotes the angular
power spectral density of the incident wave, with units of Watts
per steradian per polarization. This function is also named as
electromagnetic correlation function (EMCF) [49]. For time-
varying channels, we incorporate the Doppler frequency shift
into the EM correlation function by introducing the velocity
vector v; hence, this EMCF can also be referred to as the
spatio-temporal kernel function (STEM-CF). To represent the
incoming direction of electromagnetic waves, we use the von
Mises-Fisher (vMF) distribution, i.e., (&) = (¢?/(87))e*.
d € C? is the concentration parameter, and its direction
represents the direction in which the electromagnetic wave
is concentrated. If the electromagnetic incidence is isotropic,
v(k) is a constant (?/(87). It should be noted that the larger
the concentration, the stronger the channel sparsity.
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Remark 1: In the construction of the EM kernel, the distri-
bution of EM wave concentration represented by the parameter
& on the spherical surface S? is called the von Mises Fisher
(VMF) distribution [50], which is widely used for modeling
wireless channels.

We can compute the closed-form expression [49] for STEM-
CF as follows:

Kstou(p, ) = E [E(p)E(p))"]

CQ

Sian " ©
where KgTgrny is a 3% 3 complex matrix, tr(Kgmcr(p, p')) =
2, ¢ = kow = ko(x —x' +v(t —t)) —id € C3.
S(6) = sinh(0)/4 is an additional normalisation factor, where
d = ||§|| € Ry. We utilize the commonly used spherical
Bessel functions j,(£) in 3D scenes to represent the corre-
lation function 3(§&)

S(€) = £ (4ol€) ~ (s + 1 (72(6) — 2io()EE . (10)

where £ = [£] = /£7¢, and € = &/¢ denotes the normalized

&. The spherical Bessel function j,(£) is expressed as

. B of1d )" sin &
i = o (gag) T

It is important to note that w = x — x' + v(t — ') —
id/ ko contains the spatial and temporal variables, which means
that the correlation function we use is capable of describing
the spatial and temporal correlation in an EM-consistent way.
The proposed STEM-CF can be used as prior information in
Gaussian process regression to address prediction problems,
which will be discussed in the next subsection.

Remark 2: The kernel, as a function of the covariance matrix
of the channel vector, contains the EM characteristics of the
channels across spatial and temporal dimensions. By incorpo-
rating parameters such as the concentration & (indicating the
direction of the EM wave) and the user’s motion velocity v
(affecting the Doppler-induced temporal correlation), the ker-
nel accurately reflects the channel’s physical characteristics.

(1)

B. Gaussian Process Regression

Gaussian process regression (GPR) [51] can obtain pre-
dictions through prior information and observation data of
GRE. Specifically, for the GRF f(x) ~ GRF (u(x), k(z, ")),
GPR uses observation data y; = f(x;) + ni ng ~
CN(0,02),i = 1,2,...,Ly to get a set of F-point pre-
diction F = {f(xLN+1)7 f(‘rLN+2)7 BER) f(xLNJFFN)}' where
LN = NBsL and FN = NgsF.

The joint probability distribution of the observed and

predicted joint vector g = [y1,Y2,.. YL, f(TLy+1),
F(@pyi)s. o f(xrysry)]" satisfies
Kee+021n, Ker

~CN 1274 7 LL ntLn 7 12

& ([Hr Kre Krr (12)
where p, = [M(xl)’u(x2)7"-7M(x%N)]T and pr =
[/“L(xLN-‘rl)a ﬂ(xLN+2)a B ,u(xLN-‘rFN)] . The (m‘a n)'
th entry of Ky € CIvXIv is k(zy,,2,), for
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Channel prediction

y(t) y(tz) y() Bt - hGwn)
_ 7:1 %2 ty, tr41 ti+F _
Kre+ooln, K,r
Kre Krr

Fig. 3. Gaussian process regression for time domain channel prediction.

all. m,n € {l,...,Ly}. The (m,n)-th entry of
K r € CENXEN s k(2p,, ,), for all m € {1,..., Ly} and
ne€{Ly+1,...,Ly+Fn}. Ker € CEVFNand Kz =
K%, € CF~*L~_ The (i,7)-th entry of Krr € CIv*FN
is k(x;,x;), for all 4,5 € {Ly+1,...,Ly + Fn}. We use
K, to represent K., + 07211 Ly - From the Gaussian posterior
formula [52], we can obtain

pre =k + KKy,

Kr=Krr— KK 'K r, (13)

The results of Bayesian regression are given by pur|, and
KFlE.

As shown in Fig. 3, the GPR-based channel predictor
utilizes the covariance matrix of the channels from past frames
(blue part) and the covariance matrix of the channels from
between past and future frames (red part) to achieve parallel
prediction of channels for multiple future frames. Since the
prior distribution is a complex Gaussian distribution, the GPR
predictor is consistent with the maximum a posteriori (MAP)
predictor. Due to its Bayesian optimality and flexibility in
adjusting kernel function parameters, GPR can be used for
various estimation and prediction problems. Furthermore, the
advantage of adjustable kernels makes GPR more widely
used. The kernel adjustment measure will be introduced in
subsection IV-C.

C. Kernel Learning

The kernel function k(z,z’) implicitly encodes the prior
information of the Gaussian random field f(x). This feature
allows for more parameter configurations, thereby enhancing
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the model’s ability to be adjusted. Choosing appropriate kernel
parameters is an important step in constructing an effective
regression model, which affects the accuracy of the kernel
function in reconstructing Gaussian processes. The parameters
that need to be adjusted in this process are usually referred to
as hyperparameters. Assuming that the hyperparameters w €
Q0 C RN« of the adjustable kernel k(xz;2'|w) is also tunable.
The process of finding the optimal hyperparameters for the
STEM kernel is called kernel learning.

It is necessary to specify a criterion for evaluating whether
hyperparameters are appropriate. The maximum likelihood
(ML) criterion is a commonly used method that can be
expressed as

wyr, = arg max ln p(y|w), (14)

weR
where the probability density function (PDF) of the pilot
observation y under the condition of parameter w is expressed
as

p(ylw) = mexp(—yHK;l}’)~ (15)

The kernel Ky = Ky (w) = Kz (w) + 021y, is a func-
tion of hyperparameter w. Function l(w|y) = Inp(y|lw) =
—IndetKy — (Ly+Fn)Inm— yHKgly is the log-likelihood
function. To obtain the maximum likelihood estimator of the
hyperparameter w, methods such as gradient descent, conju-
gate gradient descent, and Newton iteration can be used. All
of these methods require the derivative of the log-likelihood
function with respect to w. The calculation result of this

derivative is

lwly) 0 Hye—1
o = 8Wi(—lndetKy -y Ky)
0K
=t oK 16
r((gg y)aw), (16)
where w; for i = 1,2,..., N, represents each component of

hyperparameter w. For simplicity, let g = Ky, ly. When the
hyperparameter components are complex numbers, we need to
consider the Wirtinger derivatives (0/0w; re — 10/0w; 1m)/2.
Since /(wly) is an analytic function of each elements of Ky,
the derivative formula (16) remains unchanged.

For the STEM kernel capable of predicting four-dimensional
spatio-temporal channels, we design its hyperparameters.
According to Subsection IV-A, the concentration parameter
& represents the direction and intensity of electromagnetic
waves. Moreover, we introduce the velocity parameter v to
describe the time-varying characteristics of the channel caused
by user mobility. The channel energy is denoted as (2. The
Wirtinger derivatives of Kstgry W.r.t. §(m), v(m) and (f are
respectively expressed as

OKstem G [S'(6)d(m) 03(§)
5m) ~ 50 | 505 =€ tigemm |
OKstem _ Coko(ty —tg) 03(8)

ov(m) S(6)  0&(m)’
OKgrem  X(€)

o) S6) a
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where § = ||d]|, & = kow, W = x, — x4+ V(t, — ;) —10/ko.
The spherical Bessel functions of different orders have the
following derivative relationship

Qc?s) (€75(€) = (~1)"€ " jpra(§).  (18)

From the derivative property of spherical Bessel function
(18), combined with correlation function formula (10), it can
be inferred that

o) (O~ 26 a(6) + )Ty
320 + 26 12(6) — G5(€)E(m)EE
4 (20 + o) (Onk & +E-0,E),
(19)

where 8,, = 9/0&(m), ¢ = |¢| and € = £/€. Moreover,
Om€ = € (& — (£(m))€) and &, denotes the unit vector
which the only “1” is located at the m-th component. By
combining (16) and (17), we can obtain the real-variable
derivative which is expressed as

d
k avézin) = 2R [tr (gf(frf)(gg'* —~ Kgl))] Q@

K, represents the channel correlation matrix constructed
by the STEM method. Through gradient-based methods such
as gradient ascent, these results can be used to obtain better
w according to the ML criterion.

Remark 3: Kernel methods provide a powerful frame-
work for capturing the spatio-temporal correlation of wireless
channels [49]. The proposed spatio-temporal electromagnetic
kernel is designed to encode physical insights from electro-
magnetic information theory into the channel’s correlation
function, enabling precise modeling of channel responses.
Through kernel learning, these parameters are tuned to opti-
mize the kernel, enhancing the accuracy of channel predictions
via Gaussian process regression.

D. Proposed Grid-Based Electromagnetic Mixed Kernel

The gradient-based hyperparameter optimization method
may get stuck in local optima. Fortunately, the grid-based elec-
tromagnetic mixed kernel (GEM) proposed in this subsection
can achieve more global learning results.

Firstly, we analyze the objective function [(w]|y), which
can be intuitively represented as a function of the kernel K.
However, [(w]|y) is neither a convex nor a concave function
of Ky. Therefore, gradient-based optimization methods are
difficult to find the maximum value of I(w|y). Moreover, the
kernel K, can be expressed as a function of the hyperparame-
ter w. Unfortunately, the components §, v of w are not linearly
related to K, making it difficult to directly characterize the
relationship between w and I(w|y).

To avoid the inconvenience caused by the non-
convexity/concavity of functions, the grid-based method
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[53] can be used in the parameter learning of the STEM
kernel. We define Kgrym as a combination of sub-kernels,
and each of the sub-kernels corresponds to a grid point in
the parameter space. In particular, several fixed values of
6 and v are taken as the selection values for the grid. By
introducing the idea of the mixed kernel, we define kggn to
be a combination of multiple sub-STEM kernels. We assume
that there are N, sub-correlation kernels and each of them
has a weight of ¢,, € Ry, n =1,2,..., Nj. Specifically, the
GEM kernel function is designed as

kGEM(Xgn tp; Xq> tq‘w)

Ny,
=u; (ZcnKSTEM(xmtp;xq,tqlwn)) u, (22)

n=1

where the value of each kgmm(Xp,tp;Xq, tqlwn) is on the
grid (8,,,vy,). The pre-selected hyperparameters satisfy 8,, €
A and v, € V, where A C R3 represents the set of
concentration parameters on the grid points and V C R3
represents the set of velocity parameters on the grid points.
w, € {5n,Van}2[il C  is the collection of all the
hyperparameters w,, € €. The unit vector u € R3*!
denotes antenna polarization direction. Correspondingly, the
components of the mixed correlation kernel matrix can be
represented as

(KLL,Mix)p,q = kGEM (l'p, tp; Lg, tq |L4J) (23)

The weight ¢, is linearly related to the kernel
ksteM (Xp, tp; Xq, t4|wn) in the objective function I(w]y), so
optimizing the weights {cn}gil corresponding to different
d, and v, is sufficient to obtain the nearly optimal hyper-
parameters on the grid. We combine these weights into vector
c = (c1,69,..5¢n,) € C C RMx, where C denotes the set
of Nj-dimensional non-negative vectors with the sum of ele-
ments equal to 1. The channel correlation matrix considering
noise is represented as

2
Ky mix = Ko mix +oploy

= Zgilcangm, + 021, . (24)

The mixed and grid-based kernel can improve the fitting
ability of Gaussian random fields defined by STEM functions
to channel observation data. Theoretically, a mixed kernel
composed of a finite number of sub-correlation functions
can represent the angular power spectrum of any incident
electromagnetic field. The ML problem is simplified as

¢y = argmax In p(y|c). (25)
ceC
The log likelihood function is
N, N
l({cn}ni1 a<2|Y) = Inp(y| {Cn}niﬂ
= — IndetKy mix — yHK;jvﬁxy
+ const, (26)

where l({&n,vn,cn}gil,gﬂy) is the objective function.
It is the fuction of Ky mix. Let l,«({cn}gil,Cﬂy) =

In detKy wix + yHK;}vﬁxy, we transform ML problems into
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finding the minimum value of the objective function to elim-
inate negative signs.

eML = arirgin(ln detKy mix + yHK;jVHXy), 27
where yHK;jvﬁXy is a convex function of Ky nix and

IndetKy amix is a concave function of K,y k. The
majorization-minimization (MM) algorithm [54] can be used
to solve the optimal hyperparameters with non-convex and
non-concave objective functions through an iterative scheme.
Each iteration must minimize the designed surrogate function.

In the majorization step, we use the first-order Taylor expan-
sion to design the surrogate function, which approximates the
upper bound of the concave part of the function. Linearization
of IndetKy wix at Ky nix = K\ i€ € = ¢™), yields
the following inequality:

L (Ky i) < YPKG Ly + looy (K i)

+tr (VZCCV(K(y%iX)T(Ky,Mix - K(yﬁ)mx)) :
(28)
where lCCV(KSEJIiX) = lndetKS"f\zﬁx and (VZ(K))M =

0l/0K,;. The Wirtinger derivative of lccy w.rt. Ky wix 18
given by the following formula

Odlcav (KoL)

= v, Mix

—_— = 29
0Ky Mix 29)

where g = K;jvﬁxy. The real-variable derivative of [ccy with

respect to ¢, is expressed as

Olaev
dcy,

Using formulas (28) and (30), the surrogate function /s of
the MM algorithm is written as

= 2R tr(K,C,C,n(wn)(K;j\/ﬁx))} ’ (30)

y +1n detK ™)

ZS(C|c(m)) = yHK_l y,Mix

y,Mix

a3 o (K0 ™) Ky — KU
(3D
Proof: The proof is provided in Appendix B. |

Due to the high computational complexity of formula (31),
which requires matrix inversion and determinant calculation,
we perform the Cholesky decomposition on matrix KSELV)HX
and Ky wix. The resulting lower triangular matrix can be used
for matrix inversion and determinant calculation, which can
significantly reduce computational complexity.

Then, in the minimization step, the weight {cn}gi | is
updated through

&™) — argmin(ly(clc™)), G2

ceC

the minimization step can be solved by finding the minimum
value point of the convex function I,(c|c(™)), which requires
the real-variable derivative of the surrogate function to ¢,

Ol
Ocy,

—om {tr (Kwn(wn)((K%}ix)fl - ggH)ﬂ . (33)
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These can be used for iteratively solving the optimal weight
{c”}ﬁfil in the MM algorithm. The sequence (l,.(c(m)))
is non-increasing since

meN

lT(C(m—‘rl)) < ls(c(m+1)|c(m)) < ls(c(m)lc(m)) — l,-(C(m)).
(34)
By iteratively executing the maximization and minimization
steps, the MM algorithm ensures monotonic improvement
of the objective function while avoiding non-convex opti-
mization that leads to obtaining local optimal solutions. This
approach transforms a non-convex optimization into a convex
weight learning problem, ensuring stability while preserving
EM physics. The intuition is similar to approximating a
complex signal with a dictionary of basis functions—each sub-
kernel acts as a “basis” for spatio-temporal correlations, and
GEM-KL learns their optimal mixture. Therefore, GEM-KL
performs better than STEM-KL.

Algorithm 1 Proposed GEM Kernel Parameter Learning Algo-
rithm
Input: Number of sub-kernels Nj; grid hyperparameters
{081,02,...,0n, } and {v1,Vva,...,vN,}; Received pilots
{y1,v2, ..., YLy }; Noise variance o} ; Maximum iteration
number Miqe,.
Output: Hyperparameters learning results {4, vy, ¢}
2
1: Initialization: {C(O) }n=1’ learning rates of Armijo-
Goldstein’s optimizer.
2: Set m «+ 0.
3 Let y €
{y1, 92, YLy b
4: for m=1,2,..., Mjjer do
5: Construct the GEM kernel Ky iy from hyperparame-
ters {éilm‘l),vﬁ”‘”, cn<m*1>}Nk1 by (22), (23) and

Ny .
n=1>

CE~*1 containing received pilots from

Compute g%; from (33).

10: Update cgm) from (31). by Armijo-Goldstein’s opti-
mizer.

11: Update {c(m)}gil from ™,

12: Update Ky wrix from {c(m)}gil.

13: end for

14: end for

2 L

150 ¢ = 20,2 lwel* /(L - (1 + 01))

16: return Hyperparameter learning results {8, vy, ¢, }
and 2.

N
n=1’

The first term in the objective function (26) represents
model complexity, while the second term represents data
fitness. Kernel learning needs to balance these two factors.
The process of maximizing the objective function [ is capable
of automatically balancing model complexity and data fitness.
The GEM kernel parameter learning algorithm is summarized
in Algorithm 1, and in the next subsection, we will summarize
the overall GEM channel prediction algorithm.
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It has been established in [55] that any continuous
probability density function defined on the m-dimensional
hypersphere S™ can be £°°—approximated by finite mixtures
of m—dimensional von Mises-Fisher (vMF) distributions, with
approximation accuracy arbitrarily constrained to € > 0.
Therefore, for any EM incident density v(S), the density
can be approximated by a finite number of STEM-CFs to
achieve any specified accuracy e. This finite approximation
corresponds to the mixed kernel method. Therefore, the design
of the grid-based electromagnetic mixed (GEM) kernel can
achieve any small approximation error.

Remark 4: In the GEM kernel learning, the acquisition of
hyperparameters is mapped to the optimization of weights.
The mapping utilizes the physical interpretability of the grid
points w, which encode EM propagation characteristics such
as user mobility and the concentration direction of EM waves.
Each weight ¢, quantifies the relevance of the n-th sub-
kernel to the observed data, effectively acting as a probabilistic
measure of how closely w,, = (v, d,) aligns with the true
hyperparameters. The mixed kernel kggy thus aggregates
contributions from all sub-kernels, weighted by their relevance
to the observed data.

Algorithm 2 Channels Correlation Matrix Design

Input: GEM hyperparameters w = {d,,, vy, én}gi 1>

indices p € P, g € Q, Pmins Pmax> gmins Gmax-
Output: The correlation matrix between the channels in set
‘P and the channels in set Q: Kpo.

channel

1: Let K’PQ € C|P|X|Q|’ P = Pmin> ¢ = Qmin-

2: for P = Pmin; Pmin + ]-7 -+ -y Pmax do

3: for g = Qmin, gmin + la -+ -y @max do

4: Calculate the GEM function: K, —
W Kaem (Xp, tp; X, tglw)ug  according  to  (9)
and (22).

5: end for

6: end for

7: return The correlation matrix Kpo.

E. Proposed GEM-KL Channel Prediction Algorithm

We set the number of base station antennas to Ngg, assum-
ing that these antennas are located at {xn}gi C R3. We
consider the spacetime correlation tensor between the m-th
polarization of antenna a at time ¢; and the n-th polarization
of antenna b at time ¢;. Let p = (a,m, i) and ¢ = (b, n, j),
the correlation tensor can be expressed as

Ky = u) [Kaem (Xp, tp; Xg, 1) g, (35)

where u,, represents the unit vector of antenna polariza-
tion direction. Based on formula (35), the correlation matrix
between several channels in different time and space can be
calculated, and the specific scheme is given by Algorithm 2.
The proposed EIT-based GPR channel prediction method is
summarized in Algorithm 3. Specifically, the BS receives
noisy observations at any spatio-temporal coordinate at past
times and predicts the channel at future times. In this algo-
rithm, the unknown channels in the future or past time are
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modeled as a Gaussian random field. We need to first use
GEM-KL method to STEM-CEF to calculate the autocorrelation
matrix Ky = K¢z + 021y of the channels at past times.
And then calculate the correlation matrix between the past
and future channels. Finally, we use (37) to obtain the future
channels. For the convenience of understanding, the flowchart
of the proposed channel prediction scheme is provided in
Fig. 4.

Algorithm 3 Proposed EIT-GEM Channel Predictor

Input: Past channel indices [ € L; future channel indices
f € F; Received pilots y;,! € £; GEM hyperparameters
w; Noise variance o2.

Output: Channel prediction result h F.

1: Obtain GEM hyperparameters {d,,, v, én}gi , according
to Algorithm 1.

2: Compute the correlation matrix of past channels K, and
the correlation matrix between the past channels and the
future channels K r, according to Algorithm 2.

3 Ky mix = Koo mix + 0211

4. g K;j\/lixy'

5: Reconstruct the predicted futrue channels hr « K Frg
according to (37).

6: return The prediction result of vectorized future channels
hr.

While the proposed method is formulated for a single-
antenna user equipment in a single-user scenario, it remains
applicable to multi-antenna users and multi-user systems
through straightforward extensions. In the case of multi-
antenna users, forming a multiple-input multiple-output setup,
the channel matrix can be reshaped into a vector, enabling the
same Gaussian process regression framework with the spatio-
temporal electromagnetic kernel to be used without altering
its fundamental electromagnetic principles. For multi-user
systems, if users employ orthogonal pilots, the method allows
for independent channel predictions per user. In scenarios
with prominent interference from non-orthogonal access, the
approach can jointly model channel correlation across users,
capturing the correlations based on shared environmental fac-
tors like positions and velocities.

Furthermore, we provide a brief explanation of channel
prediction in variable speed scenarios. we can handle vari-
able speeds via periodic pilot updates. Both schemes support
variable speed scenarios by employing a time-windowed pre-
diction approach. Within each time window, the user’s velocity
is modeled as approximately constant, since abrupt velocity
changes are infrequent in typical wireless communication
scenarios, such as vehicular networks. At the end of each
prediction window, the transmitter sends a new set of pilot
signals, enabling the receiver to update the velocity parameter
v in STEM-KL or adjust the sub-kernel weights ¢ in GEM-
KL, as described in Section IV-C and IV-D, respectively.
This periodic pilot-based update mechanism ensures robust
tracking of time-varying channels while balancing prediction
accuracy and pilot overhead. By utilizing sparse pilot insertion,
the proposed framework maintains accuracy and efficiency,
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Fig. 4. The flowchart of the proposed GEM-KL channel prediction scheme.

TABLE I
COMPUTATIONAL COMPLEXITY

Algorithm Complexity

AR O(NpsL?F)

PVEC O(NgS(L —1)%)
STEM-KL O(MsierNigs L?)
GEM-KL O(Mgier Nk Ngs L)
GPR channel prediction | O(NZgLF)

making it well-suited for dynamic environments with varying
user velocities.

Remark 5: While the proposed method is applicable to
various MIMO configurations, it is particularly suitable for
XL-MIMO systems. The large number of antennas increases
the complexity of channel prediction due to the expansive
spatial domain and rapid channel evolution under user mobil-
ity. Our proposed STEM and GEM kernel learning, using
spatio-temporal correlations parameterized by velocity and
concentration, offers a physics-informed solution to accurately
predict the channel.

F. Computational Complexity Analysis

We analyze the computational complexity of the proposed
STEM-KL, GEM-KL, and GPR-based channel prediction
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methods. The complexities are summarized in Table I, where
Nps denotes the number of antennas at the base station,
Mygie; represents the number of iterations for the STEM-KL
algorithm, Mg, denotes the number of iterations for the
GEM-KL algorithm. N}, represents the number of sub-kernels
or basis functions, L is the number of past time slots used
for training, and F' is the number of future time slots for
prediction. The explanation of the complexity formulas of the
proposed methods is provided in Appendix B. As for the
impact caused by parameters, STEM-KL and GEM-KL can
converge with very few iterations, so there is no need for
large Msiter and Mgiwer. The proposed methods only require
a small number of historical channels, so L has little impact
on complexity.

To further reduce the computational complexity of the
proposed kernel learning-based channel prediction method,
particularly the matrix inversion operations in kernel learning,
several optimization strategies can be utilized:

e For channel correlation matrices, since it is positive semi-
definite, Cholesky decomposition can be used to compute
matrix inverses more efficiently. This method factorizes
the matrix as K = LL", where L is lower triangular.
The resulting lower triangular matrix L can be used for
matrix inversion and determinant calculation, which can
significantly reduce computational complexity.

e The matrix inversion and multiplication processes can be
parallelized using algorithms such as divide-and-conquer
[56] or block-based methods. Additionally, using graphics
processing units (GPUs) can accelerate these operations
through massive parallelism [57]. It is hopeful to accel-
erate the computation of large-scale matrices in practical
applications.

e To approximate or avoid direct cubic-complexity inver-
sions, iterative techniques can be adopted, including the
Neumann series expansion and Newton iteration for refin-
ing approximations. Furthermore, diagonal band Newton
iteration (DBNI) [58] can reduce the complexity from
cubic to square by utilizing the diagonal dominance
observed in Ky wix.

Remark 6: It is worth noting that although kernel learning
requires cubic complexity, it does not need to be performed
frequently, meaning that not every channel prediction opera-
tion requires kernel learning. As a result, the complexity of the
proposed method can be reduced in the average time sense.

V. SIMULATION RESULTS

The simulation results of STEM-KL and GEM-KL channel
predictors are provided in this section. We evaluate the statis-
tical learning performance of the proposed GEM covariance
predictor by comparing it to the traditional methods.

A. Simulation Setup

In the following channel prediction simulation, to ensure
the realism of the channel, we evaluated the performance of
various prediction algorithms using the standard 3GPP TR
38.901 CDL model and the ray tracing channel model [59],
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respectively. For the CDL channel model, the standard CDL-A
delay profile is adopted.

The system parameter settings are as follows: The 256-
element array is considered in simulations. The center of
the antenna array is located at (0,0,0), the array is located
on the x-axis, and the user moves in the xoz plane. The
carrier frequency is set to f. = 3.5 GHz. The array is half-
wavelength space. We set the period of transmitting pilot
signals to 0.625 ms. The unit vector of antenna polarization
direction is u = (0,1,0)T.

All channel prediction algorithms are evaluated using nor-
malized mean square error (NMSE) performance, which is
defined in (36).

NMSE = E (36)

b, — htlﬂ
e = bel}7
b |

We also evaluated the achievable sum-rate performance of
the proposed channel prediction method and baseline algo-
rithm. The calculation of the achievable sum-rate is as follows

( IIV“VHhHQ)
R=log, [1+—5 |,

37
7 P o7
where W = h/||h|| represents the combiner.

Initialization for STEM-KL. In the STEM-KL algorithm,
the concentration parameter § is set to (0,0,0), represent-
ing an isotropic angular power spectrum with no directional
preference. This choice avoids imposing prior assumptions on
scattering geometry. The velocity parameter v is initialized as
(0,0,0). While simplistic, this initialization ensures reliable
learning of velocity from observed Doppler shifts in the
channel time series.

Initialization for GEM-KL. The GEM-KL algorithm
employs a grid-based strategy with 15 sub-kernels, where
hyperparameters are predefined to cover reasonable propa-
gation scenarios. For concentration grids §,,, five directions
uniformly spanning angles between —/3 and 7/3 relative to
the z-axis (user movement plane), each with a fixed magnitude
[|6,]] = 10. This design ensures coverage of concentra-
tion grids aligned with typical scattering environments. The
velocity directions are set as +x, —z, +z, —z. The appropriate
direction is selected by calculating the likelihood function,
and the speeds are selected as 54km/h, 27km/h, and Okm/h.
Therefore, there are a total of three velocity grid points. By
optimizing the sub-kernel weights, the weighted summation of
sub-kernels corresponding to different velocity parameters can
obtain a covariance function containing appropriate velocity
information. To ensure fairness, the initial values of all sub-
kernel weights are the same, i.e., ¢, = 1/15.

Baseline algorithms. The no-prediction NMSE is obtained
by comparing the current channel with the future channel.
The AR predictor is given by the autoregressive modeling
[21]. The PVEC predictor is reproduced from the prony vector
prediction method proposed in [15]. We also compared the
performance of deep learning predictors and the proposed
channel predictors, including the LSTM-based method [32]
and the transformer-based method [11] in Fig. 7. The training
and validation data samples are generated using the CDL
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Fig. 5. Comparison of the NMSE performance versus SNR between the
proposed EM kernel learning channel prediction method and traditional
channel prediction schemes in CDL channel scenarios at the maximum
Doppler velocity of 36 km/h.

channel model from 3GPP. To enhance generalization, user
speeds v are randomly set between 72km/h and 108 km/h,
producing 30,000 training samples, where SNR is randomly
set between 0dB and 10dB.

B. Simulation Results on Multipath CDL Channel

In this subsection, we compare the performance of
traditional channel prediction schemes with the proposed
STEM-based and GEM-based channel prediction schemes
using the CDL-A channel model generated by Matlab 5G
Toolbox.

First, we compare the NMSE performance of different
methods for using the channels of the past two frames to
predict the channel of the next frame, i.e., L = 2 and
F = 1. The NMSE is plotted in Fig. 5 and Fig. 6 as a
function of SNR. We set the maximum Doppler speeds to
36km /h in Fig. 5 and 72km /h in Fig. 6 (i.e. Doppler shifts of
approximately 117 Hz and 233 Hz). From simulation results, it
can be seen that the channel prediction method based on kernel
learning proposed in this article is significantly better than
traditional methods across an SNR range of —10 ~ 15 dB,
especially in low signal-to-noise ratio situations. The grid-
based electromagnetic (GEM) kernel learning method can
achieve the lowest NMSE among them. For example, when
SNR = 2.5dB, compared with the AR channel prediction
method, the GEM kernel learning channel prediction scheme
can achieve NMSE performance gains of 5dB and 4.5 dB for
the next channel prediction at v = 36 km/h and v = 72km/h,
where scalar v = ||v|| is the user’s moving speed.

Regarding the baseline algorithms, the PVEC algorithm
does not have an advantage in computational complexity.
The prediction accuracy of PVEC is relatively low with an
NMSE of approximately —5.2 when SNR = 2.5dB and
v = 36 km/h. Therefore, the proposed algorithms outperform
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Fig. 6. Comparison of the NMSE performance versus SNR between the
proposed EM kernel learning channel prediction method and traditional
channel prediction schemes in CDL channel scenario at the maximum Doppler
velocity of 72km/h.

LSTM
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K —— STEM kernel learning
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Fig. 7. The NMSE performance versus time in CDL channel scenario at the
maximum Doppler velocity of 72 km/h.

the PVEC algorithm in terms of complexity and prediction
accuracy. The AR algorithm has relatively low complexity
because it does not involve spatial correlation of channels,
but its prediction accuracy is also low, basically close to no
prediction method. Such low prediction accuracy is generally
unacceptable in wireless communication systems. Therefore,
considering the trade-off between prediction accuracy and
computational complexity, our proposed algorithm is more
suitable for channel prediction problems compared to baseline
algorithms.

Compared to other channel prediction algorithms, the reason
why the electromagnetic kernel-based scheme performs better
is mainly because the electromagnetic prior information is
successfully embedded in the STEM-CF covariance model
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used, so the prior information provided by the electromagnetic
kernel is more accurate, thus enabling more accurate channel
prediction. The performance of EM channel prediction meth-
ods with kernel learning is superior to all baseline methods.
Because kernel learning-based channel prediction methods
can obtain more accurate model hyperparameters through
learning, allowing EM kernels to better fit the direct covariance
function of the channel and provide more accurate prior
information. The GEM kernel learning scheme outperforms
all rivals mainly because it solves the problem of EM kernel
learning methods falling into local optima during hyperparam-
eter learning. It transforms the optimization of concentration &
and user speed v into the optimization of weights for kernels
composed of different § and v. The mixed kernel approach
can better adapt to multipath channels and has a strong ability
to match electromagnetic correlation patterns in received pilots
in the past. Therefore, the prior information of GEM is more
accurate, resulting in more stable and precise performance.

To investigate the performance changes of the algorithm
over time, we use the channels of the past two frames to
predict the channels of the next five frames, that is, L = 2
and F© = 5. We observe the NMSE performance of the
channels predicted by different schemes at different frames
through simulation. When SNR = 5dB and v = 72km/h, the
corresponding performance comparison simulation results are
shown in Fig. 7. The different simulation points represent the
NMSE of channel prediction for different future frames. From
the simulation results, we can observe that when predicting
several future channels using a small number of past time
channels, the NMSE performance of the EM kernel-based
channel prediction algorithm is far superior to the AR and
PVEC algorithms. Although the transformer-based method
exceeds the STEM-KL method, GEM-KL’s most accurate
channel prediction result compensates for this. Among them,
the proposed GEM kernel learning method performs the best.
Taking the prediction of the channel in the second future frame
as an example, the GEM-KL scheme proposed in this paper
improves the NMSE performance by 3.4 dB respectively com-
pared to the AR channel prediction method. Furthermore, the
GEM-KL scheme outperforms the transformer-based method
by 0.74dB.

We also simulate the achievable sum-rate performance of
the channel predictor over time to evaluate the effectiveness
of the channel prediction algorithm. The upper bound of
achievable sum-rate performance refers to the assumption that
the accurate channel state information is known, which is the
perfect CSI in the figures. When SNR = 5dB and maximum
Doppler speed is set to 72km/h, as shown in Fig. 8, at all
times, the achievable sum-rate of the STEM-KL and GEM-KL
channel prediction schemes is higher than that of other channel
prediction algorithms, which indicates the effectiveness of the
proposed channel prediction schemes.

In addition, we evaluate the performance of the proposed
channel prediction scheme at different user movement speeds.
The user speed ranges from 20m/s (72km/h) to 100m/s
(360 km/h). When SNR = 5dB, we select different channel
prediction schemes to predict the channel of the next frame
using the channels of the past two frames. The simulation
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Fig. 8. The achievable sum-rate performance versus time in CDL channel
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Fig. 9. The NMSE performance versus speed in CDL channel scenario.

results are shown in Fig. 9. It is easy to observe that the pro-
posed STEM-KL and GEM-KL channel prediction schemes
have significant NMSE performance advantages compared to
the baseline algorithms. Among them, the GEM-KL channel
prediction scheme has the lowest NMSE in all speed scenarios.
Taking the scenario in which the user speed is 216 km/h as
an example, the proposed GEM-KL channel prediction method
has a 2.1dB NMSE performance advantage compared to the
AR channel prediction algorithm.

It is worth noting that when predicting multiple future time
channels, as time increases, the NMSE growth of the STEM
kernel-based methods is slower compared to the baseline
method, indicating more stable performance. This is because
the channel prediction methods based on the STEM kernel can
achieve parallel prediction of channels at multiple time points,
avoiding the propagation of prediction errors.

By summarizing the simulation results of Fig. 5~9, it can
be concluded that the proposed GEM kernel learning method
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Fig. 10. Comparison of the NMSE performance versus SNR between the
proposed EM kernel learning channel prediction method and traditional chan-
nel prediction schemes in the ray tracing channel scenario at the maximum
Doppler velocity of 72km/h.

can achieve higher accuracy in predicting future channels. In
addition, this scheme can effectively alleviate the negative
impact of user mobility on wireless communication.

C. Simulation Results on the Ray Tracing Channel

In order to evaluate the performance of the proposed channel
prediction scheme in more practical scenarios, we choose the
ray tracing channel [59] for simulation. Both the base station
and the users are located in Hong Kong. The path between
the base station and the users adopts the ray tracing scheme.

The trends of NMSE versus SNR for different channel pre-
diction schemes are plotted in Fig. 10. Let L = 2 and F' = 1.
From the simulation results, it can be observed that several
STEM-based channel prediction schemes perform better than
no prediction scheme, AR scheme, and PVEC scheme in ray
tracing channel scenarios with maximum Doppler velocities
of 72km/h (i.e. Doppler shifts of approximately 233 Hz),
respectively. It can be seen that the GEM-KL method can
achieve the best performance.

For example, at SNR = 2.5dB, compared to the AR
scheme, the GEM kernel learning scheme can achieve NMSE
performance gains of approximately 4.4dB at 72km/h,
respectively.

In addition, we demonstrate the temporal variation of NMSE
performance corresponding to different channel prediction
schemes in Fig. 11. When SNR = 5dB and the duration
of one frame is 0.75 ms, the channels from the previous two
frames are used to predict the channels for the next five frames.
We can observe that the proposed parallel channel prediction
scheme based on GEM kernel learning also has the best NMSE
performance in predicting the channels of subsequent time
frames. Taking the prediction of the channel for the second
future frames as an example, compared with the AR channel
prediction scheme, the proposed GEM-KL method improves
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NMSE performance by 4.2dB in the scenario of maximum
Doppler velocity 72 km/h.

The achievable sum-rate performance of the channel predic-
tor over time is simulated in Fig. 12. When SNR = 5dB, the
duration of one frame is 0.75 ms and maximum Doppler speed
is set to 72km/h, For the next five frames, the achievable
sum-rate of the STEM-KL and GEM-KL channel predic-
tion schemes is higher than that of other channel prediction
algorithms, which indicates the effectiveness of the proposed
channel prediction schemes.

Moreover, the performance of the proposed channel predic-
tion scheme at different user movement speeds is evaluated.
The user speed also ranges from 72 km/h to 360 km/h. We set
SNR = 5dB, different channel prediction schemes are used
to predict the channel of the next frame using the channels of
the past two frames. As plotted in Fig. 13, the simulation
result shows that the proposed STEM-KL and GEM-KL
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channel prediction schemes have significant NMSE perfor-
mance advantages compared to baseline algorithms. Among
them, the GEM-KL channel prediction scheme has the lowest
NMSE in all speed scenarios. Taking the scenario where the
user speed is 60 m/s (216 km/h) as an example, the proposed
GEM-KL channel prediction method has a 2.7dB NMSE
performance advantage compared to the AR channel prediction
algorithm.

The above simulation results have demonstrated that, on the
ray tracing channel, the channel prediction schemes based on
STEM-KL can achieve better NMSE performance. It has two
advantages over traditional channel prediction algorithms. On
the one hand, compared to other representations of channel
correlation, the EM kernel can better describe the spatio-
temporal correlation of the channel. On the other hand, the
STEM-KL channel prediction method can predict multiple
future channels in parallel, avoiding the accumulation of errors
caused by sequential prediction. The advantage of STEM
with kernel learning is that it can find better hyperparameters
concentration § and user motion velocity v for the EM kernel,
which makes the STEM kernel more accurate in reflecting
the spatio-temporal correlation of the channel, and therefore
performs better than baseline methods. However, using gradi-
ent descent-based learning methods to obtain hyperparameters
relies heavily on initial values. If the initial values are not
good, the learning results may be locally optimal hyperpa-
rameters. Fortunately, the proposed GEM-KL scheme solves
this problem by combining the kernels of different § and v
grid points according to the learned optimal weights, which
can avoid the problem of hyperparameter local optima and
make channel prediction performance more stable. Therefore,
the GEM kernel learning GPR channel predictor performs best
among all compared schemes.

VI. CONCLUSION

In this paper, we designed a high-accuracy channel pre-
dictor by STEM kernel learning for XL-MIMIO scenarios.
The STEM correlation function can capture the fundamental
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propagation characteristics of the wireless channel, making it
suitable as a kernel function that incorporates prior informa-
tion. We designed the hyperparameters of the STEM kernel,
including user velocity and concentration, to fit time-varying
channels. The hyperparameters are obtained through kernel
learning. Then, the future channels are predicted through GPR.
To further improve the stability of channel prediction, we
proposed a GEM-KL channel predictor. The STEM kernel is
approximated by a grid-based EM mixed (GEM) kernel, which
is composed of STEM sub-kernels. Moreover, multi-kernel
schemes are more suitable for multipath channel prediction.
Finally, we conducted numerical tests on the proposed schemes
using the CDL channel model and the ray tracing channel
model. The STEM-KL methods achieve improved perfor-
mance over other baseline methods, and the GEM-KL method
outperforms all compared methods.

In future research, we will use the GEM-KL scheme to
investigate other, more complex channel prediction problems,
such as frequency-domain wideband channel prediction.

APPENDIX A
PROOF OF THE SURROGATE FUNCTION FOR MM
ALGORITHM

The upper bound for the concave In det Ky wix(c) is:

In det Ky nix(c) < Indet K

Ny,
+ Z(C” —cmy.

n=1

B(In det Ky,Mix)
8Cn c(m)7
(38)

using the gradient from (30), the upper bound can be expressed
as

In det Ky prix(c) < Indet K™

y,Mix

Ny
+2R | (en — M)t (K[;[;’n(K;‘fll\}ﬁx)‘l) 39)

n=1
Since nyil(cn - C»Elm))K££7n = Ky mix — Kg:'f\zhx this

simplifies to
Indet Ky mix(c) < Indet K;lel\zlix

2 [t (K0 ™ Ky — KN )| @0)

Substituting the upper bound into /., we can get the surrogate
function (31). This completes the proof.

APPENDIX B
EXPLANATION OF THE COMPLEXITY FORMULAS

The STEM-KL algorithm involves iterative gradient-based
optimization of velocity parameter v and concentration param-
eter . For Npg antennas and L historical time frames, in
the process of calculating the likelihood function as shown
below, we need to perform inverse operation on the matrix

Ky 6 (CNBSLXNBSL
I(v,dly) =Inp(y|v,d)

= —IndetK, — yHK;}y + const, 41)
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each iteration requires a likelihood function calculation, and
the complexity of other calculations is not higher than that
of the inverse operation. The number of iterations is Mgjer,
so the total computational complexity is O(M, SiterN§SL3)-

GEM-KL does not require alternating iterations to optimize
speed and concentration parameters. However, it requires
iterative optimization of the weights of N sub-kernels. Each
iteration requires computing surrogate functions (31) Ny
times, with the computational complexity mainly derived from
the cubic complexity caused by matrix inversion. Compared to
it, other computational complexities can be ignored. Therefore,
the overall complexity calculation is O(Mgiter Nk Nis L?).

After obtaining the channel correlation matrix through
STEM-KL or GEM-KL, we use the Gaussian posterior for-
mula flf = KrcKy ly to infer the future channels. The
operation K 'y has completed during the process of kernel
learning. Since Kz, € CNest*Nosk and g = Ky €
CNesLx1 Therefore, the complexity of channel prediction
based on GPR is the complexity of multiplication calculation
K]:gg, i.e., O(NgSLF)
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