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A P P L I E D  P H Y S I C S

Performing calculus with 
epsilon-near-zero metamaterials
Hao Li1†, Pengyu Fu1†, Ziheng Zhou1, Wangyu Sun1, Yue Li1,2*, Jiamin Wu2,3*, Qionghai Dai2,3*

Calculus is a fundamental subject in mathematics and extensively used in physics and astronomy. Performing 
calculus operations by analog computing has received much recent research interest because of its high speed 
and large data throughput; however, current analog calculus frameworks suffer from bulky sizes and relatively 
low integration densities. In this work, we introduce the concept of an epsilon-near-zero (ENZ) metamaterial 
processing unit (MPU) that performs differentiation and integration on analog signals to achieve extreme minia-
turization at the subwavelength scale by generating desired dispersions of the ENZ metamaterials with photonic 
doping. To show the feasibility of this proposal, we further build an experimental analog image edge extraction 
system with a differentiating ENZ-MPU as its compute core. With a computing density theoretically analyzed to be 
several tera-operations per second and square micrometer, the proposed ENZ-MPU is scalable and configurable 
for more complex computations, providing an effective solution for analog calculus operators with extreme computing 
density and data throughput.

INTRODUCTION
Calculus, usually referred to as differentiation and integration, is a 
fundamental part of mathematics applied in a variety of fields 
including geophysics (1), astronomy (2), biotechnology (3), and 
statistics (4), to name a few. Computing the differentiation and 
integration of a signal is a critical task in various engineering appli-
cations exemplified by proportional-integral-derivative (PID) con-
trol in automatic control systems (5) and images’ edge extraction in 
computer vision (6). In the PID controlling, we calculate the time 
derivatives, integrals, and proportions of the output signal and 
input them to the system as the feedback to increase the accuracy 
and stability of system controlling (7). Apart from PID controlling, 
differentiating operation is also exerted to two-dimensional (2D) 
signals such as images to portray the edge of an input image, which is 
demanded by image identification applications as either an important 
functionality or a critical preprocessing approach (8). These practical 
allocations demand the calculus operations to be real-time performed 
to signals with a compact space and low energy consumption.

Such computing processes are mostly conducted by the digital 
signal processors (DSPs) of electronic computers in current infor-
mation technologies; however, physical limitations, including 
parasitic capacitance, tunneling effects, and cross-talk, prevent elec-
tronic DSPs from achieving exponential scaling of their computing 
density (9, 10) and ultrahigh speed. In recent years, a surge in 
demand for high-speed computing has motivated numerous re-
searchers to investigate the possibility of performing mathematical 
operations with photons instead of electrons, i.e., the concept of 
analog optical computing, to find an alternative path to overcome 
the speed and efficiency bottlenecks suffered by digital computers 
(11–13). Among these studies, some researchers aim at designing 
all-optical neuromorphic computing platforms by using the deep 

diffractive neural network (D2NN) frame (14–18), the Mach-Zehnder 
interferometer (MZI) array for chip-scale artificial neural networks 
(19, 20), and memristors (21). Several photonic processors have 
achieved competitive performance with state-of-the-art electronic 
devices by harnessing phase-change-material memory arrays (22) 
or fiber dispersion (23), demonstrating the superiority of optical 
computing in speed and efficiency.

Apart from such systematic optical computing works with com-
plex functionalities, to simply perform calculus operations to input 
signals in an analog manner within a single device has also been 
investigated by plenty of researches. A traditional architecture for 
optically performing signal-processing tasks is the 4-f system, which 
is composed of two lensing systems and a filter (24). This system is 
capable of applying linear time-invariant transformations of any 
form, including all calculus operations, on the impinging electro-
magnetic field at the expense of a bulky structure and difficulties in 
chip-scale integration. Metamaterials (25), as artificially designed 
resonant structures for unconventional electromagnetic wave con-
trol, are useful for reducing the longitudinal size of photonic com-
puting elements. The concept of computational metamaterials was 
introduced in (26) in the context of applying linear convolutions to 
spatial optical fields using layered materials much thinner than the 
traditional 4-f system. Metamaterials in 2D form, i.e., metasurfaces, 
are investigated by researchers to be compatible for analog signal 
processing within subwavelength thicknesses using methods includ-
ing space-time modulations (27–29). Furthermore, they have also 
been studied to perform spatial differentiation operations (30–33). 
The reflection spectrum of a metasurface is also feasible to be con-
trolled, and a temporal differentiator is proposed in (34). Moreover, 
subwavelength metastructures can be used to solve integral equations 
(35). However, although the longitudinal thicknesses are reduced to 
the subwavelength scale, performing spatial mathematical operations 
intrinsically yields a large transverse dimension.

Such analog computing devices more easily achieve smaller sizes 
when they are implemented in time domain by transferring the 
envelope of input signals to their derivatives when the light is propa-
gating through the device. Fibers are the most preferable transmission 
waveguides in optics, and consequently, all-fiber differentiators and 
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integrators have been first proposed by researchers using coupled 
fibers (36), long-period fiber gratings (37, 38), and fiber Bragg 
gratings (39–41). These components are promising for fiber-based 
all-optical computing systems. Furthermore, to reduce the bulky 
size of fibers, mathematical operational devices using on-chip 
silicon waveguides are also proposed (42–44). In (42), a photonic 
differentiator is designed and experimentally evaluated using a 
waveguide together with a microring resonator made by silicon. 
This configuration is also extended to realizing integrators (43) and 
reconfigurable calculus operators (44). The utilization of planar 
light circuit components results in compact geometries and conve-
nience in being packaged into chip scale. However, each processing 
unit of such an integrated optical computing architecture still has a 
relatively large size on the order of dozens of wavelengths, facing 
the same fundamental diffraction limit. This barrier prevents exist-
ing optical computing devices from achieving an extremely high 
computing density, which is defined as the computing speed per 
area or volume.

To break through this bottleneck, we here propose the concept 
of an epsilon-near-zero metamaterial processing unit (ENZ-MPU), 
which is capable of performing calculus operations at the speed of 
light on the subwavelength scale. Rather than focusing on the 
spatial modulation of a complex light field with multiple spatial modes 
for interference, we exploit the spectral modulation of a single-mode 
light field to process a sequential data stream encoded in the tempo-
ral domain. ENZ metamaterials (45–47) generate a specific disper-
sion with either a transmission zero or transmission pole instead of 
ordinary waveguide-based optical circuit elements, thus allowing 
the size of the structure to be further reduced to the subwavelength 
level. The dispersion properties of ENZ metamaterials can be 
tailored by adding either periodic (48) or nonperiodic (49) nano
particles, and the latter approach has inspired a new technique with 
the name of photonic doping (50, 51), which enables control of the 
permeability of a whole bulky ENZ medium at a single point. To 
demonstrate the feasibility of our proposal, we manipulated the 
dispersion properties of an ENZ medium using the technique pro-
posed in (51) to perform differentiation and integration. Furthermore, 

we experimentally verified the method by means of a proof-of-concept 
image processing system for edge extraction, which was imple-
mented in the microwave frequency band for convenience because 
of the relatively long wavelengths and correspondingly large fabri-
cation tolerances. Multiple ENZ-MPUs can also be cascaded to 
perform more complicated operations. With a computing density 
that is theoretically analyzed to be several tera-operations per 
second (TOPS) per square micrometer, which is orders of magni-
tude higher than that of state-of-the-art electronic or photonic pro-
cessors, the proposed ENZ-MPU provides a promising pathway for 
next-generation optical integrated circuits with extreme computing 
density and data throughput.

RESULTS
Theory and configuration of the ENZ-MPU
The general concept of the proposed ENZ-MPU is depicted in 
Fig.  1. By inserting different dopants into an ENZ host, one can 
design a different kind of transmission function and perform corre-
sponding mathematical operations on impinging signals in the 
form of either waveforms or images. Specifically, we demonstrate 
how to perform differentiation and integration operations as two 
examples. For differentiation, the ENZ-MPU should have a trans-
mission function of the form T() = −i( − 0), while for integra-
tion, this function should be written as T() = i/( − 0) (52). Here, 
0 is the angular frequency of the carrier wave. We first focus on 
how to achieve the transmission function T for differentiation within 
a waveguide structure. A critical feature of this function is that 
T(0) = 0 at the carrier wave frequency, where a transmission zero 
exists. We adopt the metastructures introduced in (51), where a 
photonically doped ENZ medium is studied to achieve total reflec-
tion of the impinging wave when the dopant’s geometry is suitably 
engineered. To start with, we consider a 2D waveguide structure as 
configured in Fig. 2A under a y-polarized transverse electromagnet-
ic (TEM) wave’s illumination. The device consists of a doped ENZ 
core with a dielectric block inserted and exhibits a transmission null 
at 0. To improve the differentiation performance, we add an 

Fig. 1. General concept of the time-domain ENZ-MPU realizing differentiation and integration. A conceptual sketch of tailoring the dispersion and transmittance 
properties of an ENZ medium using photonic doping techniques to form an ENZ-MPU that applies differentiation operations to input waveforms within an area at the 
subwavelength scale. By modulating the input waveform to carry images, it is also feasible to apply this concept for image processing by performing differentiation 
operations on images. Photograph credit: Pengyu Fu, Tsinghua University.
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epsilon-negative (ENG) slab, and a quarter-wavelength waveguide 
is inserted between the ENG slab and the doped ENZ core. The per-
mittivities at 0 of all materials used in the configuration are also 
provided. The top and bottom walls are assumed to be perfect elec-
tric conductors (PECs) for simplicity of analysis, and both the ENZ 
and ENG materials used here have dispersions described by Drude 
models, the plasma frequencies of which are 0 and 20, respectively. 
Detailed dimensions are provided in fig. S1. To illustrate the opera-
tion mechanism of the proposed device, we start from the disper-
sion performance of the ENZ material doped with a rectangular 
dielectric inclusion. According to (51), it is reasonable to model this 
material as a homogeneous ENZ medium with an effective relative 
permeability of

​​​ r,eff​​ = 1 + ​  ∑ 
m=1,n=1

​ 
+∞

 ​​ ​  4 ​l​ d​​ ​h​ d​​ ​(​(− 1)​​ m​ − 1)​​ 2​ ​(​(− 1)​​ n​ − 1)​​ 2​   ──────────────────  A ​​​ 4​ ​m​​ 2​ ​n​​ 2​ ​

 ​   ​​k​ d​​​​ 2​  ───────────────  ​(m / ​l​ d​​)​​ 2​ + ​(n / 2 ​h​ d​​)​​ 2​ − ​​k​ d​​​​ 2   ​ ​​	 (1)

In this equation, ld and hd represent the length and height of the 
dielectric dopant, respectively. kd, which is calculated as kd = k0​​√ 

_
 ​​ d​​ ​​, 

denotes the wave number within the dopant, while A is the total 
cross section of the ENZ medium. We assume that this device operates 
only near the carrier frequency 0 and ignore both material and 
structural dispersions. In this case, the total transmission function 
of the whole device is derived to be

	​ T( ) = i ​  2 ​Z​ 0​​  ─────────────────   2 ​Z​ 0​​ − i ​​ r,eff​​ ​​ 0​​ A / h − i ​​Z​ 0​​​​ 2​ ​​ s​​ ​l​ s​​
 ​​	 (2)

Here, Z0 is the wave impedance within the waveguide and is 
equal to ​​√ 

_
 ​​ g​​ / ​​ g​​ ​​. Detailed mathematical derivations are provided in 

note S1. From Eq. 1, one can observe that when the condition 
(/ld)2 + (/2hd)2 = kd

2 is satisfied, the dopant resonates with its 

TM11 mode at 0, causing the effective permeability to tend toward 
infinity. In this case, Eq. 2 can be written in the following form

	​ T( ) = i ​  2 ​Z​ 0​​   ──────────────────────────────     
2 ​Z​ 0​​ − i ​​ 1​​ A / h − i ​​Z​ 0​​​​ 2​ ​​ s​​ ​l​ s​​ − 16i ​​​ 3​ ​​ 0​​ ​l​ d​​ ​h​ d​​ / ​​​ 4​ h(​​​ 2​ − ​​​ 0​​​​ 2​)

 ​​	 (3)

where 1 is equal to

​​​ 1​​ = ​ ​ 0​​ ​  ∑ 
m=1,n=1,mn>1

​ 
+∞

 ​​ ​  4 ​l​ d​​ ​h​ d​​ ​(​(− 1)​​ m​ − 1)​​ 2​ ​(​(− 1)​​ n​ − 1)​​ 2​   ──────────────────  A ​​​ 4​ ​m​​ 2​ ​n​​ 2

​ ​ ​   ​​ d​​ ​​​ 0​​​​ 2​  ─────────────────   ​c​​ 2​ [ ​(m / ​l​ d​​)​​ 2​ + ​(n / 2 ​h​ d​​)​​ 2​ ] − ​​ d​​ ​​​ 0​​​​ 2​ ​​             (4)

which is a finite value near 0. When the condition Z0
2sls = 0A is 

satisfied, within a narrow frequency range near 0, T() is approxi-
mately a linear function of the frequency difference (  − 0) be-
cause it is equal to

	​ T( ) = − ​  ​​​ 4​ ​Z​ 0​​ h ─ 2 ​​ 0​​ ​l​ d​​ ​h​ d​​ ​​​ 0​​​​ 2​ ​( − ​​ 0​​ ) + o ​( − ​​ 0​​)​​ 2​​	 (5)

Thus, we can create a linear response function with a zero spot in 
the spectral domain, which can be viewed as an ideal differentiator 
with the zero spot located at the center frequency of the carrier 
wave. Furthermore, by introducing an ENG slab that acts as a shunt 
lumped inductor (53), the linearity is enhanced compared with using 
a doped ENZ medium only. When the condition Z0

2sls = 0A is 
satisfied, both the linearity and the differentiating bandwidth reach 
their optima. A detailed parametric study is presented in note S2 
and figs. S2 and S3, in which it is demonstrated that by choosing 
s = −3, we can obtain a symmetric and highly linear T() near 0. 
In this way, the ENZ-MPU is devised as a first-order differentiator.

To validate the analytical derivation above, we performed a 
numerical simulation using CST Microwave Studio 2016. The mag-
nitude and phase of the transmission function of the differentiator 
depicted in Fig. 2A are shown in Fig. 2 (B and C, respectively), from 
which one can observe that the magnitude of T() is proportional 

Fig. 2. Results of a time-domain analog differentiator and integrator. (A) The configuration of the proposed analog differentiator, (B and C) the magnitude and phase 
of the differentiator’s transmission function with respect to frequency, (D) the temporal response with input consisting of a Gaussian pulse, and (E to H) the configuration, 
transmission function, and temporal response of the analog integrator. a.u., arbitrary units. D
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to the absolute difference between the frequency and the carrier 
frequency, | − 0|, within a frequency range from approximately 
0.950 to 1.050. The phase of the differentiator is shown in 
Fig. 2C. A phase inverse of 180° is observed exactly at 0 and consist
ent with the ideal differentiating response. In addition, the transmis-
sion phase varies linearly over frequency, and this effect introduces 
only the time delay without any distortions to the output differenti-
ated signal, as depicted in Fig. 2D. These results in the frequency 
domain reveal that the ENZ differentiator is capable of calculating 
the first-order derivative of an input signal as long as its bandwidth 
is smaller than 0.10, setting a bound on the computing speed. To 
further verify the device’s performance, we applied an impinging 
Gaussian impulse to it, and both the input and output signal 
envelopes are depicted in Fig. 2D. The input Gaussian impulse is 
characterized by

	​ x(t ) = sin(​​ 0​​ t ) ​e​​ −​​(t−62.5​T​ 0​​)​​ 2​ _ 50​​T​ 0​​​​ 2​ ​ ​​	 (6)

where T0 = /0. In this case, the device’s operating bandwidth is 
wide enough to differentiate this signal. As seen in Fig. 2D, the out-
put signal is indeed the derivative of x(t), thus providing a verifica-
tion of the proposed design. Moreover, this first-order differentiator 
can be easily extended to higher-order differentiators by cascading 
several identical devices. To build such an n-order differentiator, n 
first-order differentiators and (n − 1) nonreciprocal or lossy inter-
connect components are required. Detailed results and analysis for 
the case of n = 2 are presented in fig. S4 with high precision.

In addition to such a differentiating system, similar structures 
can be used for other operations, such as finite-time integration, 
with only parametric changes. In Fig. 2E, we show another example 
of an ENZ-MPU with the function of integration based on similar 
doped ENZ metastructures obtained by adjusting only two param-
eters during the doping process, namely, the ENZ medium’s cross 
section A and the resonant frequency of the dopant. Enlarging A leads 
to an enhanced quality factor and a transmission pole at 0, i.e., the 
transmittance has a nonzero value only within an ultranarrow frequency 
range around 0, where eff ≈ 0. Simulations of this device were 
also performed, and the simulated transmission function results are 
shown in Fig. 2  (F and G), where both the magnitude and phase 
distributions resemble the ideal response well. The temporal re-
sponse was also tested using the same Gaussian impulse used for the 
differentiator. As shown in Fig. 2H, the integrator is able to generate 
an output of y(t) = ∫ x(t)dt, despite the existence of a slight decay.

Implementation of the ENZ-MPU
In the above analysis, we have fully investigated the basic principle 
of performing temporal differentiations and integrations using 
lossless metastructures with artificially defined permittivities. To 
further validate the engineering potential of the proposed design, 
we also tested the performance when using naturally occurring ma-
terials instead of ideal ones with arbitrary r. As illustrated in Fig. 2, 
materials with both near-zero and negative permittivities can be 
used to construct the device. However, naturally existing ENG and 
ENZ materials, i.e., plasmonic materials, suffer from severe losses 
when operating near or below the plasma frequency (54). To address 
this problem, we make use of rectangular waveguides to emulate 
ENZ and ENG materials because this method has been validated in 
(55), which proposed a hollow rectangular waveguide coated with 
silver and demonstrated the equivalence between this structure and 

ENZ metamaterials at mid-infrared (IR) frequencies. Similar to the 
configuration in (55), we use waveguides filled with air, SiO2, and Si 
to emulate ENG, ENZ, and epsilon-positive (EPS) materials and 
construct a differentiator based on these equivalent metamaterials. 
It should be noted that because of the limitations of the available 
materials in this frequency range, adding a single ENG slab on one 
side of the doped ENZ core is not sufficient to achieve the optimal 
differentiating performance. Therefore, we slightly modify the struc-
ture by duplicating the ENG slab and quarter-wavelength waveguide 
on the other side of the ENZ core. In addition, the dopant within 
the ENZ medium is elevated from the silver ground to decrease the 
loss of the device. It is necessary to mention that because the dopant 
is elevated from the silver boundary, the permeability is calculated 
in a different manner as

​​​ r,eff​​ = 1 + ​  ∑ 
m=1,n=1

​ 
+∞

 ​​ ​  2 ​l​ d​​ ​h​ d​​ ​(​(− 1)​​ m​ − 1)​​ 2​ ​(​(− 1)​​ n​ − 1)​​ 2​   ──────────────────  A ​​​ 4​ ​m​​ 2​ ​n​​ 2

​ ​ ​    ​​k​ d​​​​ 2 ​  ──────────────  ​(m / ​l​ d​​)​​ 2​ + ​(n / ​h​ d​​)​​ 2​ − ​​k​ d​​​​ 2​ ​​	 (7)

The detailed configuration and dimensions together with the 
simulated results are provided in fig. S5, which shows that this de-
sign shares similar performance to the ideal one. The footprint of 
this differentiator devised to operate in the mid-IR band is 1 m by 
1.05 m, which is equal to 0.35 × 0.37 0

2, where 0 is the free-space 
wavelength (2.83 m here) at the carrier frequency.

Here, we theoretically examine the computing speed of the pro-
posed device by comparing it to a DSP, which is able to perform the 
same mathematical operations on equivalent input digital sequences. 
A digital differentiator performs fs mathematical operations per 
second when calculating the derivative of a discrete signal with a 
sampling rate of fs because it calculates y(n) = x(n + 1) − x(n) for 
each sample. According to the Nyquist theorem, such an input digi-
tal signal contains the full information of a baseband analog signal 
with a bandwidth of f = fs/2. For our proposed device, an operation 
bandwidth of 2f is required to process such an analog input, which 
is modulated to have a spectrum ranging from (f0 − f) to (f0 + f). 
Consequently, the maximum computing speed of the proposed 
differentiator is quantitatively expressed as fs, max = BWmax opera-
tions per second, which represents the maximum operating band-
width. As shown in fig. S5, we numerically tested the bandwidth by 
observing the error rate for a Gaussian impulse input with a spec-
trum of X(F) = exp[−(f − f0)2/2f

2], where the bandwidth is defined 
as 2f (see Materials and Methods). For an error rate lower than 5%, 
this device exhibits a differentiating bandwidth of 12.0 THz when 
the carrier frequency is 106 THz, corresponding to a computing 
speed of 12.0 TOPS. Furthermore, the computing density was also 
calculated by dividing the computing speed by the footprint, yielding 
a result of 11,400,000 TOPS/mm2 according to the simulations. In 
Table 1, a theoretical comparison is presented between our work and 
other state-of-the-art methods to perform differentiation operations. 
The D2NN (17) is designed for handling general tasks and is also 
feasible to differentiate an input signal. Optical differentiators 
(36, 42, 44) are specifically designed for calculating the derivatives 
of the input light, and the computing speeds of these differentiators 
are characterized by their bandwidths. The differentiator proposed 
in (34) operates in microwave frequencies based on programmable 
metasurfaces, while the computing density in its recent form is rela-
tively low. The DSPs (56, 57) are also listed in the table as references. 
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Although the proposed differentiator cannot handle tasks as com-
plex as the D2NN (17) and DSPs (56, 57) do, it can achieve a high 
computing speed in a specific task of differentiation within a sub-
wavelength scale, demonstrating an unprecedented computing density 
corresponding to an improvement of multiple orders of magnitude 
than previously reported designs.

In addition to the mid-IR frequency differentiator discussed 
above, this concept is also valid for microwave frequencies, for 
which both fabrication and measurement are more convenient than 
for optical frequencies. Similar to the optical case, we choose to 
devise a differentiator based on a substrate-integrated waveguide 
structure (58) and waveguides emulating metamaterials. Specifically, 
the configuration of the microwave differentiator is depicted in 
Fig. 3, where RO4003, Teflon, and air serve as equivalent EPS, ENZ, 
and ENG materials with relative permittivities of r = 1.4, r = 0, and 
r  =  −2.1. The detailed dimensions are provided in fig. S6. For 

experimental validation, we fabricated a prototype of the differenti-
ating MPU by first fabricating the U-shaped Teflon brick, ceramic 
block, and printed circuit board (PCB) separately and then assembling 
them together. Photographs of the three individual components 
and the assembled device are shown in Fig. 3 (C and D, respectively). 
The detailed geometries, fabrication methods, and photographs of 
the fabricated prototype are shown in fig. S6 and the “Fabrication 
methods” section in Materials and Methods. After the assembly 
process, we measured the transmittance of the device using a vector 
network analyzer, and both the simulated and measured results are 
plotted in Fig. 3 (E and F). In general, the measured and simulated 
results match well with each other and exhibit high linearity near 
f0 = 3.5 GHz, demonstrating a good-quality differentiation response. 
The differentiating bandwidth is 250 MHz (3375 to 3625 MHz) 
where the S21 is a linear function of frequency, and this result is 
much wider than that of the microwave differentiator reported in 

Table 1. Comparison of theoretical computing performance among various methods of differentiation. TPU, tensor processing unit, GPU, graphic 
processing unit.  

Reference Methods Footprint (mm2) Computing speed (TOPS) Computing density (TOPS/mm2)

(17) D2NN 26.54 240.1 9.04

(34) Metasurface 1.56 × 106 0.015 9.62 × 10−9

(36) Coupled fiber 0.036 25.0 694

(42) Silicon microring resonator 0.00502 0.01 1.99

(44) MZI array 3.0 0.055 18.3

(56) Google TPU 331 92 0.28

(57) Nvidia GPU 470 47 0.10

Proposed Doped-ENZ 1.05 × 10−6 12.0 11,400,000

Fig. 3. Fabricated prototype and the measured results of the proposed differentiator in the microwave band. (A) Exploded view of the configuration of the differ-
entiator. (B) Zoomed-in view of the U-shaped Teflon and the ceramic dopant. (C) Photograph of the fabricated PCB, ceramic dopant, and U-shaped Teflon block placed 
separately. (D) Photograph of the assembled prototype. (E and F) Simulated and measured transmittance magnitudes and phases as functions of frequency.
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(34) but within a much smaller dimension. Some nonideal factors, 
including fabrication errors, lead to a higher T(0) at the center fre-
quency of the differentiator, which is measured to be nearly −30 dB, 
larger than the simulated value. In the following section, we will 
demonstrate that the transmission null must be improved when 
constructing a whole computing system. Moreover, different ENZ-
MPUs can be cascaded to fit higher-order complex responses in the 
frequency domain. To verify this concept, we further tested a 
second-order differentiator constructed by cascading two first-order 
differentiators with an isolator, as shown in fig. S7; the measured 
experimental response is shown in fig. S8. All these results reveal 
that our ENZ-MPU architecture can perform high-speed differen-
tial and integral operations with extremely small footprints.

ENZ-MPU image processing system and  
experimental validation
To experimentally validate the ENZ-based analog computing archi-
tecture, we built a proof-of-concept integrated data processing 
platform using a differentiator as the computing core. In this system, 
the signal flows along the black arrows, as depicted in Fig. 4A; it first 
impinges on the system in a digital form, then is converted into an 
analog signal by being modulated onto a carrier wave using amplitude 
modulation (AM), is subsequently processed by the differentiator, 

and is lastly demodulated to obtain a digital output. As mentioned 
above, because of fabrication error and leakage, the transmittance at 
f0 = 3.5 GHz is not exactly zero as simulated but might have a small 
finite value. To address this problem, we design a bypass filter using 
an attenuator and phase shifter to achieve attenuation with the 
same magnitude as T(0) but the inverse phase, which can eliminate 
the small direct transmission of the input signal at 0. The input 
analog signal is divided into these two branches by a power divider 
(PD), and the total output is formed by combining the outputs of 
the two branches using a PD. The assembled system is shown in 
Fig. 4B; in this system, modulation and demodulation are realized 
by means of a universal software radio peripheral (USRP) device.

To examine the data processing capabilities of this system, we 
tested whether it is able to extract the edges in input images. Edge 
extraction is a common procedure for extracting object features in 
machine vision, image processing, and computer vision (6). How-
ever, with the exponential increase in the number of sensor pixels 
necessary for high-resolution wide-field imaging, even such a 
simple operation requires extensive computing resources in practical 
applications (59). Here, we demonstrate that our proposed differen-
tiator and data processing system are able to handle this task. Because 
the differentiation operation is performed in the temporal domain, 
only data sequences are appropriate inputs. The general concept of 

Fig. 4. Experimental validation of the proposed ENZ-MPU at microwave frequencies. (A) Schematic architecture of the RF module of the image processing system, 
(B) photograph of the whole image processing system with an ENZ differentiator as the compute core, (C) a schematic graph of the image processing platform, (D) snapshots 
of five images taken from a 240-frame video provided as input to the system, (E) experimental output images corresponding to the images in (D), and (F) ground-truth 
derivatives for the images in (D). The original video is available in (60).
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the image processing platform is illustrated in Fig.  4C. We first 
transform an image into a data stream by cascading each line of the 
image into an input sequence. After this, the input sequence is 
modulated onto the carrier wave 0 and transmitted to the differen-
tiator. Last, the output signal is demodulated, and an output image 
is generated by reorganizing the output sequence into a 2D matrix. 
This process can be applied to both analog inputs and digital ones. 
For analog inputs, we present a possible schematic for connecting 
the imaging system to this differentiating unit in fig. S9. For simple 
implementations with digital inputs, the inputs are first converted 
into bit streams and then modulated into analog signals, which can 
be processed by the proposed device. We performed numerical 
simulations of the whole processing pipeline. Here, we chose 
various digital images and investigated the output responses based 
on the architecture proposed above. For the three input images 
depicted in fig. S10 (A to C), the simulated outputs are shown in 
fig. S10 (D to F) and are seen to agree well with the ground truth.

Then, we further performed experimental verifications based on 
the device and system discussed above by experimentally testing the 
entire system for the function of edge detection in streaming media. 
Although the analog computing module is capable of handling real-
time data, both digital processing on a PC and digital-to-analog 
conversion are time consuming. The detailed time delays of the PC 
and USRP are provided in Materials and Methods. In Fig. 4D, 
we present five frames of a video (60) as specific examples, together 
with their corresponding experimental outputs in Fig. 4E. By com-
parison with the ground truth shown in Fig. 4F, one can see that the 
output images effectively capture the profiles of the input images 
despite some loss in resolution.

DISCUSSION
Here, we analytically, numerically, and experimentally demonstrate 
performing calculus operations at the speed of light within sub-
wavelength-scale ENZ metamaterials. By tailoring the ENZ-based 
dispersion, either differentiation or integration can be performed in 
the temporal domain when a single-mode light field passes through 
the ENZ metamaterials. The MPU is first analytically investigated 
in theory to predict its performance and then numerically validated 
using both ideal and naturally occurring materials. Last, it is experi-
mentally verified in the microwave band, exhibiting a theoretical 
maximum computing density of up to 11.4 TOPS/m2. In addition, 
the proposed ENZ differentiator is scalable to configurations imple-
menting higher-order complex computations. We have developed 
an image processing system using the ENZ differentiator as the 
compute core to experimentally demonstrate its performance in 
edge detection. By enabling optical computing at the subwavelength 
scale, the proposed ENZ-MPU offers a promising solution for next-
generation optical integrated circuits with the merits of ultra-
miniaturization and dense integration.

MATERIALS AND METHODS
Numerical full-wave simulations
The numerical simulations on the 3D structure have been carried 
out with the frequency domain solver of CST Microwave Studio 
2016. For ideal configurations, we assign PEC boundaries on the 
ymin and ymax planes while assigning perfect magnetic conductor 
(PMC) boundaries on the zmin and zmax planes, thus allowing the 

propagation of TEM waves within the waveguide. For excitation, we 
use wave ports at the end of the input and output waveguides. For 
simulations on both the mid-IR differentiator and the fabricated 
microwave differentiator, we use open boundary instead of PEC 
and PMC. The materials’ optical properties in mid-IR are according 
to the standard material library of CST Microwave Studio.

Simulation of time-domain data processing
The simulated results of waveforms are numerically calculated by 
MATLAB R2016a. We numerically perform a discrete Fourier 
transformation (DFT) to the input signal, then multiply it with the 
simulated transmission function to generate an output spectrum, 
and lastly calculate the output waveform by performing inverse 
DFT. The simulations on image edge detection are also completed 
by MATLAB R2016a where we set the data rate of input signal to 
be 400 Mbps.

Error analysis
To describe the error performance of the proposed differentiator, 
we mainly use simulations by MATLAB R2016a. To be specific, we 
impinge a Gaussian impulse with different variations to represent 
the input signal with different bandwidths. The error rate is calcu-
lated by ERR = ∫[y(t) − y0(t)]2dt/∫y0

2(t)dt, where y(t) is the output 
signal and y0(t) is the ground truth. In terms of bandwidth, we 
consider that the bandwidth of Gaussian impulse input with a spec-
trum of X(f) = exp[−(f − f0)2/2f

2] is 2f because more than 95% of 
the total power lies in the frequency range [f0 − 2f, f0 + 2f].

Fabrication methods
The prototype is fabricated using standard PCB technology. A 
U-shaped Teflon block is fabricated, inside which a dielectric block 
composed by JJD37-6 microwave ceramic with a relative permittivity 
of 37.0 and a loss tangent of 0.001 is assembled. Three metal wires 
are printed on the top of the ceramic block for suppressing 
degenerated resonant modes. Two subminiaturized A coaxial con-
nectors are soldered to the input and output microstrip lines. When 
assembling the prototype, we first insert the ceramic block into the 
U-shaped Teflon to form “doped” Teflon, then insert this doped 
Teflon to the rectangular hole in the PCB, and lastly coated them 
with copper foils. The ENG slabs are made by covering the hollow 
region in RO4003 substrate with copper foils. To further prevent 
the leakage from fabrication tolerances, we screwed an aluminum 
cover for shielding.

Operating mechanism of the USRP
The radio frequency (RF) system is constructed by PDs, tunable 
phase shifters and attenuators, and the fabricated prototype. The 
whole edge detection system contains the RF system mentioned 
above and a USRP, which offers AM of input digital signals and 
demodulation for output RF signals with a maximum data rate of 
125 kbps. The detailed modulation process is launched by first 
converting the input bit stream to a baseband analog signal and 
then mixing this signal with the RF carrier wave, and the reverse 
process is for the demodulating.

Time delay analysis of the experimental system
The input and output digital signals are processed by a PC, on 
which runs a MATLAB program encoding and decoding the data 
stream. Using the timing program in MATLAB, the time delays of 
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the MATLAB encoding and decoding program and USRP are mea-
sured to be 663.3 and 146.1 ms on average, respectively, which are 
much longer than that of the device itself.

Power consumption
In this experiment, the USRP device is powered by a DC voltage 
of 5 V and a DC current of 1 A through a universal serial bus so 
that the total power consumption of the whole system is 5 W. The 
major part of the input power is used for signal processing and 
communication with the PC, while a small amount is converted 
into RF power. In particular, the power of the RF signal generated 
by USRP and impinged to the MPU is 10 mW. Consequently, we 
consider the power consumption of the MPU to be 10 mW in our 
experimental setup.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq6198
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