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Reconfigurable metamaterial processing
units that solve arbitrary linear calculus
equations

Pengyu Fu 1, Zimeng Xu 1, Tiankuang Zhou 1,2,3, Hao Li1, Jiamin Wu 2,3 ,
Qionghai Dai 2,3 & Yue Li 1,2

Calculus equations serve as fundamental frameworks in mathematics,
enabling describing an extensive range of natural phenomena and scientific
principles, such as thermodynamics and electromagnetics. Analog computing
with electromagnetic waves presents an intriguing opportunity to solve cal-
culus equations with unparalleled speed, while facing an inevitable tradeoff in
computing density and equation reconfigurability. Here, we propose a
reconfigurablemetamaterial processing unit (MPU) that solves arbitrary linear
calculus equations at a very fast speed. Subwavelength kernels based on
inverse-designed pixel metamaterials are used to perform calculus operations
on time-domain signals. In addition, feedbackmechanisms and reconfigurable
components are used to formulate and solve calculus equations with different
orders and coefficients. A prototype of this MPUwith a compact planar size of
0.93λ0×0.93λ0 (λ0 is the free-space wavelength) is constructed and evaluated
inmicrowave frequencies. Experimental results demonstrate theMPU’s ability
to successfully solve arbitrary linear calculus equations. With the merits of
compactness, easy integration, reconfigurability, and reusability, the pro-
posed MPU provides a potential route for integrated analog computing with
high speed of signal processing.

A calculus equation is a mathematical expression that establishes a
relationship between one or more unknown functions and their cal-
culus, and is widely used to describe systems in economics1,
astronomy2, geography3, and many other disciplines4,5. Solving calcu-
lus equations can depict or forecast the behavior of a system. Due to
the inherent complexity of most calculus equations, analytical solu-
tions are often unattainable, making approximation through mathe-
matical analysis the primary approach for their resolution6–8. Presently,
these computing processes primarily rely on operational processors
based on digital circuits. However, limited by transistor size, proces-
sing technology, and integration, electronic processors have difficulty
achieving exponential scalability of computing density and ultra-high
speed9.

Analog computing uses electromagnetic waves as information
carriers, presenting a promising avenue for performing various
operations at ultra-high speed10–13. One of the traditional analog com-
puting architectures is to obtain the Fourier transform with a lens and
then perform various linear time-invariant operations14. However,
these systems necessitate a spatial extent of at least four times the
focal length of the lens, posing integration challenges. To address this
problem, metamaterials, as artificially designed special structures, are
used to realize compact analog computing units15. A thin planar
metamaterial block is proposed to enablemathematical operations for
the first time16. Graphene is employed in the construction of compact
metalines, facilitating differentiation and integration17. Additionally,
epsilon-near-zero metamaterials are utilized to demonstrate a
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subwavelength calculus unit and an image processing system18.
Moreover, metastructures based on topological photonics are
experimentally validated for a two-dimensional differentiation19. Apart
from the basic mathematical operations, complex functions and tasks
can be executed on large-scale systematic computing platforms, such
as optical neural networks. Diverse optical neural network archi-
tectures such as diffractive deep neural networks20–23, interference
neural networks24,25, and recurrent neural networks26,27, have been
proposed and applied to applications such as machine vision28,29,
image classification30,31, achieving remarkable accuracy and speed.
These computing platforms demonstrate computing capabilities that
far exceed those of electronic devices for certain tasks, highlighting
the high-speed advantages of analog computing. In addition, the
extensive research on programmable and adjustable materials in var-
ious frequency bands has paved the way for the reconfigurability and
multi-functionality of analog computing32–36. A reprogrammable plas-
monic topological insulator is demonstrated for nanosecond-level
state switching, which can integrate many photonic topological
functionalities34.

Solving equations based on analog computing has been widely
studied as well. Over a century ago, a mechanical structure-based
system for solving differential equations was proposed37–39. The con-
focal feedback system utilizing coherent optics provides a solution for
solving partial calculus equations40,41. In order to achieve higher inte-
gration, the equation-solving systemdesigned by opticalfiber network
and silicon-based technology has also been widely studied42–44. In
addition, different types of operation units, such as memristors or
topological structures, are also applied to equation solving45,46. In
recent years, a paradigm for solving equations with inverse-designed
metamaterials has been proposed. A metamaterial platform has been
proposed to solve the general Fredholm integral equation of the sec-
ond kind47. Dielectric metamaterials with different structures are used

to solve differential equations in electromagnetic48 and acoustic
fields49. Then, an ultrathin silicon analog computing metasurface has
been demonstrated to solve integral equations in free-space50. What is
more, reconfigurablemetastructures with tunable elements have been
reported to solve calculus equations51. However, these proposals still
face challenges of large sizes, reconfigurability, and compatibility,
which hinder the practical application and integration of analog
computing solvers with electromagnetic waves.

In this work, to overcome these limitations, we propose a recon-
figurable metamaterial processing unit (MPU) for solving arbitrary
calculus equations at an ultrafast speed. As shown in Fig. 1a, the MPU
mainly consists of a feedback mechanism and metamaterial kernels
that perform calculus operations. Distinguished fromprevious work in
the spatial domain, we realize calculus equation solver in the time
domain, which, on the one hand, allows the MPU to process con-
tinuous signals without sampling and, on the other hand, allows a
significant reduction in the number of feedbackmechanisms to reduce
the size of the overall processing unit. Besides, the inverse-designed
pixel metamaterial is used to quickly prototype kernels with calculus
functions. It’s worth mentioning that the metamaterial-based calculus
kernels have subwavelength sizes and planar structures, thus offering
the potential for integration and cascading. With reconfigurable
components that consist of amplitude modulators and phase mod-
ulators, multiple differential kernels of different orders can be flexibly
combined, enabling the entire system to solve arbitrary linear calculus
equations.We construct a reconfigurableMPUoperating inmicrowave
frequency and experimentally verify its capability of solving linear
calculus equations with arbitrary coefficients and arbitrary order. The
proposed equation solvers have the advantages of compact size,
integration, and reconfigurability, providing possible routes for the
development of chip-based analog computers and computing
elements.

Integrated

Calculus Kernels
d/dt

d2/dt2

dn/dtn

Reconfigurable  Components

Phase Shifter Amplifier

j n
n nA a e

g(t) x(t)
g(t) = x(t) + Kg(t)

d/dt

d2/dt2

dn/dtn

Power
Divider

Power
Divider

A1

A2

An

Kg(t)g(t)

K = A1d/dt + A2d2/dt2 Andn/dtn

Calculus
Kernels

Reconfigurable
Components

(a)

(b) (c)

Fig. 1 | Solving calculus equations with a reconfigurable MPU. a Schematic
representation of a reconfigurable MPU, featuring multiple processing kernels,
reconfigurable elements for adjusting the amplitude and phase of each kernel,
power dividers for signal composition, and a coupling element for signal excitation
and probing. The arrow indicates the direction of signal propagation. b The

different processing kernels are constructed by inverse-designed pixel metama-
terials with subwavelength planar structure, and can be easily integrated into a
multilayer design. c The reconfigurable components encompass phase shifters and
amplifiers, enabling the generation of different coefficients An.
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Results
Solving time-domain calculus equations in feedback systems
A conceptual diagram of the proposed MPU equation solver is shown
in Fig. 1a. The key to building an equation solver is feedback
mechanisms and analog computing kernels. Here, we consider a time-
varying signal, denoted as g(t), which is carried by electromagnetic
waves. An inverse-designed pixel metamaterial kernel serves as a cal-
culus operator K on time domain signal g(t) and the feedback
mechanism directly returns the output signal from the kernel back to
the input. As a result, the signals before and after operation K are
forced tobe equal, i.e., g(t) =Kg(t). Then, the input signal x(t) is injected
into the system through a coupler, such that the equation g(t) =
Kg(t) + x(t) is satisfied. This equation represents a general linear cal-
culus equation and has a wide range of applications in thermo-
dynamics and electromagnetism4,5. With the architecture depicted in
Fig. 1a, we can implement arbitrary linear calculus operations. To be
specific, the time-domain signal is distributed to different calculus
kernels by a power divider, and the weights of each kernel can be
adjusted with reconfigurable components shown in Fig. 1c, and then
synthesized with a power mixer. Different types of reconfigurable
components can be integrated into the system based on different
operating frequencies, such as digital circuits32, ferroelectric
materials36, or TiN microheaters44. Each individual calculus kernel is
designed to realize calculus operations with different orders by
inverse-designed pixel metamaterials, as illustrated in Fig. 1b. With a
flat structure, pixel metamaterials can be easily integrated with the
feedback mechanism and can be arranged into a multilayer cascading
design.

For the practical implementation of MPU, considering the influ-
ence brought by the coupler, we can concretely and theoretically
derive the transfer function T for the whole system. We assume that
the transmission coefficient and coupling coefficients of the coupler
are s1 and s2, respectively, and that each element is reflection-free. The
transfer function of the system can be defined by the following equa-
tion:

TðωÞ= s1 +
s2

2K
1� s1K

ð1Þ

For a conventional 3 dB hybrid coupler, the transmission coeffi-
cient is equal to the coupling coefficient with a phase delay ofπ/2, that
is, s1 = js2. Then the above expression can be simplified to:

TðωÞ= s1 � 2s1
2K

1� s1K
ð2Þ

In this case, the output signal y(t) is a superposition of the signal in
the loop g(t) and the input signal x(t), and satisfies the following cal-
culus equation:

yðtÞ � s1KyðtÞ= s1xðtÞ � 2s1
2KxðtÞ ð3Þ

We use g(t) = y(t) - s1x(t) to replace the term in the calculus equa-
tion, which gives us the following expression:

gðtÞ= s1KgðtÞ � s1
2KxðtÞ ð4Þ

Furthermore, considering h(t) = y(t) − 2s1x(t), the equation can be
written as:

hðtÞ= s1KhðtÞ � s1xðtÞ ð5Þ

Based on our proposedMPU, with different calculus kernels K and
different input signals x(t), the solutions of arbitrary linear calculus
equations can be generated.

Inverse-designed pixel metamaterial for different calculus
kernels
Processing of time-domain signals often corresponds to special dis-
persion properties in the frequency domain. For example, an nth-order
differentiating operation requires a processing kernel with the fol-
lowing transmit function: T(ω) = [j(ω -ω0)]

n. We use the proposed
metamaterials to achieve the optimization of the desired arbitrary
computational kernels. Figure 2a illustrates the structure of the pixel
metamaterial, which is composed of pixel-like patches and connecting
structures. The pixel-shaped structure on the front is a metal layer,
which transmits quasi-TEM (transverse electromagnetic) waves toge-
ther with the bottom of the metal on the back of the dielectric plate.
The main part of pixel metamaterial is composed of massive square
patches with identical side length wp, arranged at intervals of d. Two
feeding lines with width wf are situated on both sides of pixel meta-
material to transmit signals. Short strips with a widthwg are employed
to connect adjacent patches. These strips are switched to either theON
or OFF state, where in the OFF state, the center of the line is separated
by a slit with a gap of g, representing no connection between patches.
By manipulating the states of these strips, different dispersion coeffi-
cients of the pixel metamaterials can be generated from the two
feeding ports. A genetic algorithm is used in the discrete optimization
process52. Moreover, in order to reduce the number of full-wave
simulations and expedite inverse design process, we use moment
method to further simplify the model of pixel metamaterials. Specifi-
cally, as shown in Fig. 2a, the ON/OFF state can be modeled as an
equivalent port connected to an impedance equal to 0 or ∞. And then,
the impedance matrix Z0 of the whole system can be derived by a
single-time simulation together with analytical calculations. Z0 com-
prises the impedance matrix of two feeding ports Zf, the impedance
matrix ofN equivalent ports Ze, and the impedance relationshipZe,f, Zf,e.

Z0 =
Zf Zf ,e

Ze,f Ze

" #
ð6Þ

When the ON/OFF states of the strips are determined, the impe-
dances loaded to the N equivalent ports ZL are also determined, and
then the relationship between the other two freeing ports can be
directly derived from the following equation:

Zp =Zf � Zf ,eðZe +ZLÞ�1Ze,f ð7Þ

In this way, we can use simple matrix operations to calculate
transmission parameters with different strip states. Compared with
simulation-only methods, the optimization speed is greatly
accelerated.

Asmentioned above, in order to perform an nth-order differential
kernel, the pixel metamaterials need to be optimized to fit the fol-
lowing transmit function: T(ω) = [j(ω -ω0)]

n. By inverting the desired
transmission parameters as an optimization objective, the calculus
kernels of different orders canbe obtained. Three examples of inverse-
designed pixel metamaterials with first and second-order differential
functions are demonstrated. Figure 2b shows the simulated results of
an inverse-designed first-order differential kernel, with n = 1. It can be
seen that at center frequency ω0, the differential kernel achieves a
transmission zeropointwith a phasemutation ofπ.Within a frequency
range of ~0.1ω0, the amplitude of the transmission coefficient is
directly proportional to the deviation from the central frequency,
which meets the ideal requirements. In addition, the transmission
phase changes linearly with frequency, which only brings delay to the
signal without distortion. Figure 2c depicts the time-averaged surface
electric-field intensity at some selected frequencies marked as squares
in Fig. 2b. The energy intensity distribution at the output port also
confirms that the inverse-designed kernel satisfies the transfer
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parameters required for first-order differentiation. Similarly, Fig. 2d–g
show the simulated results of an inverse-designed second-order and
third-order differential kernel, respectively, with n = 2, 3. The trans-
mission coefficient is close to zero at the center frequency, with
quadratic growth on both sides for the second-order kernel, and cubic
growth for the third-order kernel. Differently, the phase of the second-
order kernel shows a phase mutation of 2π at the center frequency,
while the third-order kernel shows a phasemutation of π. To verify the
differentiation function for time-domain signals, we directly process
time-domain signals using the three differentiators based on inverse-
designed pixel metamaterials, as shown in Fig. S2. In addition to the
differential kernels implemented above, as an inverse-designed
structure, pixel metamaterials hold the potential to optimize the
implementation of other operation kernels, to achieve extensions of
solving different types of equations.

Experiments setup and results
Without loss of generality, we choose 1.4 GHz as the central frequency
for convenient fabrication and measurements. The structural para-
meters used are as follows: d = 2.4mm, g =0.6mm, wf = 1.024mm,
wp = 3mm,wg =0.6mm.The structure is printedon aRogersRO4350B
substrate (relative dielectric constant εr = 3.66, loss tangent tanδ =
0.002) with a thickness of 0.508mm. The overall size of the structure
is 130 × 50mm2, which is 0.61λ0 × 0.23λ0 (λ0 is the free-space wave-
length at the center frequency) with subwavelength footprints. By
soldering sub-miniature version A (SMA) connectors at both ends of
the calculus kernel, wemeasure the transmittanceof the device using a
vector network analyzer. The measurement results are in good
agreement with the simulation results, as shown in Fig. S4. All these
results reveal that our inverse-designed pixel metamaterial can realize
arbitrary linear calculus operations within subwavelength sizes.
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Fig. 2 | Various differential processing kernels based on inverse design. a Pixel
metamaterial construction. The function ofmetamaterial is adjustedby controlling
the ON/OFF state between patches. By using the moment method with equivalent
ports, the time of the inverse design process can be significantly reduced.
b Simulated results of the first-order differential kernel by inverse design. The blue
line represents the amplitude of the transmission coefficient, and the orange line
represents the phase of the transmission coefficient. The results accord well with

the theoretical requirements offirst-order differential kernel.cSurfaceelectricfield
distribution of first-order differential kernel at different frequencies from full-wave
simulation. The distribution at the output port aligns with the predicted behavior.
d Simulated results of second-order differential kernel. e Surface electric field
distribution of second-order differential kernel. f Simulated results of third-order
differential kernel. g Surface electric field distribution of third-order differential
kernel.

Article https://doi.org/10.1038/s41467-024-50483-x

Nature Communications |         (2024) 15:6258 4



Based on the principle in Fig.1a, we construct a prototype of MPU
to verify the feasibility of solving calculus equations with different
calculus kernels. The photo of the experimental MPU system is shown
in Fig. 3a, without DC bias and control circuits. The overall size of the
experimental structure is 200 × 200mm2, which is ~0.93λ0 × 0.93λ0
with a subwavelength scale. Three different pixel metamaterial kernels
are designed with first-order, second-order, and third-order differ-
ential functions, respectively. As we discussed above, the differential
kernel is connected to a feedbackmechanism to generate the function
of solving equations. However, in the feedback loop, additional inte-
grated components are also incorporated. The integrated isolators are
included to absorb reflected signals caused by the mismatch in the
feedback loop. Several compact digitally reconfigurable phase shifter
chips are connected to the differential kernels, adjusting the phase
delay in the loop to integer multiples of π, representing the positive
and negative signs in the calculus equations. Then, compact digitally
reconfigurable amplifiers with an adjustment range from −10 dB to
10 dB are used to adjust the coefficients in the calculus equations, and
to ensure no self-oscillation in the MPU system. Using power dividers,
the input signal x(t) is assigned to different reconfigurable calculus
kernels. After synthesis as input to the feedback loop, the solution of
arbitrary linear differential equations g(t) can be achieved throughout
the MPU. The transmission parameters of the entire system are mea-
sured with a vector network analyzer.

The field programmable gate array (FPGA) chips are used to
control all the digital phase shifters and amplifiers,withwhich theMPU
can be switched to different states for solving different calculus
equations.Without loss of generality, a triangularwave signal is used as
the input signal. In thefirst example, we adjusted the coefficients of the
three differential kernels to −0.1, 1, and −0.3. To verify the accuracy of
the solution, we provide the left and right sides of the equation
g(t) = s1Kg(t) - s12Kx(t), respectively, as shown in Fig. 3b. The two curves
match very well, indicating that the system indeed provides a solution
to the calculus equation. In addition, we obtained the same con-
sistency by setting the coefficients of the equation to [−0.4, −0.5, −0.4]
and [−0.2, 1.4, −0.5] in Fig. 3c, d, respectively. Furthermore, since both
input and output signals are periodic, they are discretely distributed in
the frequency domain. Figure 3e shows the normalized spectra of the
left and right sides of the differential equation under three different
calculus kernels according to Fig. 3b–d, which are also in good
agreement. Constrained by the limitations inherent in the bandwidth
of the differentiators, isolators, amplifiers, and phase shifters, along-
side the presence of nonlinearities within the system, it becomes evi-
dent that the solution’s outcomes will inevitably exhibit a degree of
error, as illustrated in Fig. 3b–d. Notably, Fig.3e underscores that the
majority of this error is primarily concentrated within the high-
frequency range. These errors are mainly caused by the nonlinear
effects of tunable devices and the dispersion of the system. Delving
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Fig. 3 | Experimentaldemonstrationof reconfigurableMPU that solves calculus
equations. a A photograph of the constructed reconfigurable equation solver
system without DC and control circuits. This system includes a coupler, power
dividers, isolators, differential kernels with different orders, as well as phase
reconfigurable components controlled by FPGA. b–d Three different processing

kernels are selected and demonstrated. Normalized amplitude of g(t) and s1Kg(t) -
s12Kx(t) with an input signal as a sawtooth wave show good consistency, respec-
tively. e Spectrum comparison of G(ω) and s1KG(ω) - s1

2KX(ω) for different pro-
cessing kernels 1, 2, and 3. The left and right sides of the equation show a good
agreement.
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deeper into our investigation of the error-rate versus frequency rela-
tionship, the findings presented in Fig. S7 affirm that, given the pre-
vailing experimental setup, commendable solution accuracy can be
achieved when utilizing triangular waves with frequencies of up to
80MHz. The above experiments indicate that the proposed reconfi-
gurable architecture can solve arbitrary linear calculus equations.

At last, as shown in Table 1, a comparison is presented between
our work and other existing methods for solving calculus equations. A
tunable structure based on a microring resonator (MRR) is utilized to
solve ordinary differential equations44. However, because of the large

size of MRR, the size of the entire solver is greater than 30 λ0. Besides,
it is also difficult for MRR-based solvers to expand to higher orders.
Accurately designed acoustic metasurfaces have been proposed for
solving higher order differential equations with more integrated
dimensions, but are difficult to be integrated with reconfigurable or
programmable devices49. In addition, the idea of inverse-designed
metastructures is proposed to reduce the size to a wavelength com-
parable level47, about 8 λ0. Considering a basic 3 × 3 units in a meta-
gratings solving equations in free space50, the size of the equation
solver is 3.5λ0 × 1.7λ0. In contrast, as shown in Fig. 3a, due to our
implementation of subwavelength differential kernels through inverse
design, combined of integrated radio frequency circuits, we have
achieved anMPU calculus equation solver within subwavelength scale.
Meanwhile, benefiting from the integrated size, the cycles at which the
input signal establishes a steady state in the MPU is significantly
reduced, which means a reduction in processing time. To the best of
our knowledge, this is the smallest reconfigurable solving structure for
calculus equations within an ultrafast processing speed.

Discussion
Solving calculus equations has significant applications in mechanics,
electromagnetics, and other fields. Here, we present two examples of
solving practical calculus equations with the proposed MPU. The first
one is about earthquake-induced structural vibrations. As shown in
Fig. 4a, structural vibrations occur in buildings when subjected to
external forces such as earthquakes. Considering or predicting this
structural vibration is an important aspect of building design. To

Table 1 | Comparison of dimension among variousmethods of
calculus equation solver

Ref. Methods Dimension
(λ02)

PT
(cycles)

Reconfigurable Order
extensible

44 MRR 38.70 × 77.40 NG Yes No

49 AMS 17.0 × 7.14 NG No Yes

48 DMM 12.0 × 16.0 NG No No

47 MS 8.63 × 4.32 50 No No

50 MG 3.50 × 1.70 60 No No

Prop. PMM 0.93 × 0.93 30 Yes Yes

Ref. reference, Prop. proposed scheme,NG not given,MRRmicroring resonators, AMS acoustic
metasurfaces, DMM dielectric metamaterials,MSmetastructures, MGmetagratings, PMM pixel
metamaterials, λ0 free-space wavelength at operating frequency, PT processing time.
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Fig. 4 | Diagrams of practical examples for solving calculus equations. a A
schematic diagram of the vibration of a building during an earthquake, where the
motion trajectory of the building is affected by external forces and damping.
b Simplify the motion of the building to one dimension. c It can be modeled by a
forced damped vibration model, where the applied external force F(t) and the
trajectory x(t) of the object satisfy the following equation:mx”(t) + μx’(t) + kx = F(t).
d Assume that the external force varies as a function of time as F(t) = cos(2πt/T) +
0.3*sin(3πt/T), where T = 200/9 ns. e It is presumed to have m = 2, μ =0.2, and

k = −1.414. The blue line is the result of numerical simulation,while the orange line is
the result ofMPU, which has good consistency. f In the RLC series circuit, a voltage
u(t) is applied over time, and the charge q(t) at the terminals of the capacitor
satisfies the equation: Lq”(t) +Rq’(t) + q(t)/C = u(t). g Assume that the voltage varies
as a function of time as u(t) = cos(2πt/T) + 0.5*sin(3πt/T) + sin(6πt/T), where
T = 200/9 ns. h It is presumed to have L =0.2, R = 2, and C =0.707. The blue line is
the result of numerical simulation, while the orange line is the result ofMPU, which
has good consistency.
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simplify the problem, the structural vibration is modeled as a one-
dimensional damped-forced vibration, as shown in Fig. 4b, c. Based on
the principle of mechanics, the trajectory of the object x(t) and the
external force F(t) are subjected to the following linear differential
equation:

m
d2xðtÞ
dt2

+μ
dxðtÞ
dt

+ kxðtÞ= FðtÞ ð8Þ

The parameters of the equation are assumed as m = 2, μ = 0.2,
k = −1.41, and the external force varies with time satisfying the follow-
ing equation: F(t) = cos(2πt/T) + 0.3*sin(3πt/T), in which T = 200/9 ns,
as shown in Fig. 4d. Comparing the numerical analysis solution (blue
line) and the solution obtainedusing theMPU (orange line) in Fig. 4e, it
canbeobserved that there is good agreement between the two results,
validating the effectiveness of the MPU in solving the differential
equation. The second example relates to a simple RLC series circuit, as
illustrated in Fig. 4f. For a simple RLC series circuit with a time-varying
voltage u(t), the charge q(t) between the capacitor satisfies the fol-
lowing equation:

L
d2qðtÞ
dt2

+R
dqðtÞ
dt

+
1
C
qðtÞ=uðtÞ ð9Þ

Similarly, we assume that we have the following parameters:
L =0.2, R = 2, C =0.71, and u(t) = cos(2πt/T) + 0.5*sin(3πt/T) +
sin(6πt/T), where T = 200/9ns, as shown in Fig. 4g. Again, a compar-
ison between the numerical simulation results and the results obtained
using the MPU is depicted in Fig. 4h, demonstrating a high degree of
consistency between the two. The above two examples demonstrate
the practical value of our MPU for solving differential equations.

As a conclusion, we propose a reconfigurable MPU for solving
arbitrary linear calculus equations in time domain with the sub-
wavelength scale. Firstly, based on subwavelength inverse-designed
pixel metamaterials, multiple kernels with different differentiation
responses are designed. Then, with the FPGA, reconfigurable ampli-
fiers, phase shifters, and power dividers are integrated with kernels to
achieve arbitrary calculus operations. An experiment in themicrowave
banddemonstrates that the equation solver can provide solutionswith
tiny errors for different input signals and different calculus kernels,
and can be applied to practical problems in fields such as mechanics
and electromagnetism. Since the calculus kernels, feedback mechan-
isms, and circuits that constitute the equation solver are all planar
structures, the architecture has the potential for integrated multilayer
design and parallel computing. Furthermore, it also holds the promise
for integrated design alongside electromagnetic sensors and radio
frequency devices, thereby enabling the development of specialized
chips dedicated to solving calculus equations. By solving arbitrary
linear calculus equations at a subwavelength scale, the proposed
reconfigurable MPU offers a promising solution for next-generation
analog computing systems with the merits of reconfigurability and
dense integration.

Methods
Numerical full-wave simulations
The numerical simulations on the 3D structure of inverse-designed
metamaterials have been carried out with the ANSYS HFSS 18. The
copper in the model is set to the perfect electric conductor (PEC)
boundary condition. Two 50-ohm lumped ports are used to excite
the SMA ports in the model. As shown in Fig. 2a, we set the para-
meters as follows: d = 2.4mm, g = 0.6mm,wf = 1.024mm,wp = 3mm,
wg = 0.6mm. All relative permittivity parameters taken are from the
material library in the software.

Optimization methods
The optimization of the inverse-designed metamaterials is with
genetic algorithm (GA) as shown in Fig. S3. We use optimization
toolbox in MATLAB 2017a in this process. The parameters of GA are:
Generations = 500, PopulationSize = 500, MigrationFraction = 0.3,
FitnessLimit = 0, StallGenLimit = 100. And the loss function is defined
as the distance from the ideal value. The GA process runs on a per-
sonal computer equipped with an Intel (R) Core (TM) i7-10700 CPU
@ 2.90GHz and random-access memory of 64.0 GB.

Fabrication and measurement setup
The calculus kernels are fabricated using a printed circuit board (PCB)
process, with 0.508-mm thickness Rogers RO4350B dielectric with a
relative dielectric constant of 3.66 and a loss tangent of 0.002. The
amplifiers, phase shifters, and isolators are all commercially available
integrated chips and devices. The phase shifter adopts the PE44820
chip, which is controlled by an 8-bit program and provides a 360°
phasemodulation function in steps of 1.4 deg near 1.4 GHz. In addition,
the insertion loss of the phase shifter is about 7 dB. The amplifier
adopts the QPA9126 chip, which can provide a gain of 16 dB at 1 GHz,
while the PE43702 chip, which can provide attenuation of 0.25 dB to
31.75 dB by a 7-bit program in steps of 0.25 dB. Considering all the
above factors, a gain adjustment range of 12.75 dB to −18.75 dB can be
achieved. The isolator adopts a surface-mounted device of model
UIYS125A1150T1650, providing a reverse isolation degree of 15 dB. The
FPGA control circuit uses a commercial Arduino® Mega 2560 Rev3
microcontroller, integrated with an ATmega2560 processor. The vec-
tor network analyzer (KEYSIGHT FieldFoxMicrowave Analyzer N9951B
44GHz) is used to measure the S-parameters of the system.

Time-domain signals
Based on the S-parameters measured with a vector network analyzer,
we use MATLAB for time-domain analysis. We conduct a discrete
Fourier transform (DFT) on the input signal, then multiply it by the
measured transmission parameters to obtain the frequency spectrum
of the output signal, and subsequently carry out an inverse DFT to
obtain the output time-domain signal. The signal we used in the
experiment is a sawtooth wave with a rise time constituting 20% and
modulated on a 1.4 GHz carrier.

Data availability
The authors declare that all data needed to evaluate the conclu-
sions in the paper are present in the paper and/or the Supple-
mentary Materials. Additional data and codes related to this paper
have been deposited in the Zenodo repository database53 under
accession code https://doi.org/10.5281/zenodo.12565807.
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