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Maximum likelihood (ML) learning for energy-based models (EBMs) is challenging,

partly due to nonconvergence of Markov chain Monte Carlo. Several variations of

ML learning have been proposed, but existing methods all fail to achieve both post-

training image generation and proper density estimation. We propose to introduce

diffusion data and learn a joint EBM, called diffusion-assisted EBMs, through persis-

tent training (i.e. using persistent contrastive divergence) with an enhanced sampling

algorithm to properly sample from complex, multimodal distributions. We present

results from a 2D illustrative experiment and image experiments and demonstrate

that for the first time for image data, persistently trained EBMs can simultaneously

achieve long-run stability, post-training image generation and superior out-

of-distribution detection.
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1 | INTRODUCTION

Energy-based models (EBMs) parameterise an unnormalised data density or equivalently an energy function, defined as the negative log density

up to an additive constant. There has been persistent and ongoing interest in developing effective modeling and training techniques for learning

EBMs from complex data such as natural images. A partial list of examples include LeCun et al. (2006), Xie et al. (2016), Du and Mordatch (2019),

Nijkamp et al. (2019) and Grathwohl et al. (2020). Apart from maximum likelihood (ML) learning, various other training principles are available,

including score matching (Hyvärinen, 2005; Saremi et al., 2018), noise-contrastive estimation (Gutmann & Hyvärinen, 2012) and f-divergence

minimisation (Yu et al., 2020). See Table 1 in Grathwohl et al. (2021) for a comparison.

We aim to advance ML learning for EBMs. Several variations of ML learning have been proposed, and impressive performances have been

reported (Du & Mordatch, 2019; Gao et al., 2021). See Section 2 for a discussion of initialisation schemes for Markov chain Monte Carlo (MCMC)

during training, including persistent, data, noise and hybrid initialisations. However, training EBMs remains challenging and complicated by con-

flicting ideas. As shown in Table 1, existing training methods all fail to achieve at least one of the desired learning properties, defined as follows.

• Long-run stability (long-run): Long-run MCMC samples generated (after training) using the learned energy starting from real images remain

realistic.

• Post-training sampling (post): MCMC samples generated (after training) using the learned energy starting from random noises are realistic.

• Global energy estimation: The learned energy function is globally aligned between different modes separated by low-density regions. A learned

energy may lead to long-run stability but only be locally meaningful (i.e. accurate near local modes). See Figure 1.

For the noise initialisation method, the learned short-run MCMC can be used to generate realistic images from random noises similarly in

GAN (Goodfellow et al., 2014) or Glow (Kingma & Dhariwal, 2018), but the learned energy functions seem to be invalid due to the lack of
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long-run stability (Nijkamp et al., 2020). Persistent training can be implemented using certain training strategies to produce stable long-run sam-

ples from real data (Nijkamp et al., 2020), but this approach has not been successful in generating new realistic images from random noises after

training.

Current applications of EBMs to out-of-distribution (OOD) detection (Du & Mordatch, 2019; Grathwohl et al., 2020) leave much room for

improvement due to the OOD reversal phenomenon, where higher likelihoods are assigned to OOD observations than in-distribution (InD) obser-

vations. Such phenomena are observed in both flow-based deep generative modeling (Choi et al., 2019; Nalisnick et al., 2019) and usual and joint

EBMs (Grathwohl et al., 2020). A possible explanation and remedy were proposed in Nalisnick et al. (2019), using the concept of typicality

(Cover & Thomas, 2006). An alternative hypothesis underlying our work is that the OOD reversal may occur because the estimated energies

(or log-likelihoods) are locally meaningful but not globally aligned, so that higher likelihoods may be assigned to OOD data points near one mode

than InD data points near another mode. See the 1D example in Section 3.1.

In this work, we make three main contributions. First, we identify and explain, for the first time, the phenomenon that for complex, multi-

modal data distributions, persistent training using an MCMC sampler which suffers local mixing may only learn local energy functions, which are

locally meaningful but globally misaligned. Second, motivated by this understanding and inspired by recent success of score-based diffusion

modeling, we propose to introduce diffusion data through a forward diffusion process and learn a joint EBM, called diffusion-assisted EBMs

(DA-EBMs), from both the original training data and diffusion data at different time steps. We pursue persistent training while incorporating an

enhanced sampling algorithm to overcome local mixing (Tan, 2017). See Section 4 for a comparison of our method with score-based diffusion

modeling (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021) and diffusion recovery likelihood (DRL) (Gao et al.,

2021). Third, we present results from a 2D illustrative experiment and image experiments on MNIST-type data and demonstrate that, for the first

time for image data, persistently trained EBMs can simultaneously achieve long-run stability, post-training image generation and superior OOD

TABLE 1 Comparison of training methods for EBMs.

Long-run Post Global energy

EBM Pers. ✓ O O

EBM CD O O O

EBM Noise O ✓ O

EBM Hybrid O ✓ O

Dif. Rec. Lik. (DRL) ✓/Oa ✓ O

DA-EBM (ours) ✓ ✓ ✓

Abbreviations: DRL, diffusion recovery likelihood; EBM, energy-based model.
aMixed results are obtained in our experiments.
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F IGURE 1 Results from 1D example trained by persistent-initialised energy-based model (EBM).
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detection, indicating that the learned energy is globally more meaningful than previously obtained. Our code is available online (https://github.

com/xinweizhang/daebm).

2 | BACKGROUND: EBMS

An EBM is defined in the form

pθðxÞ¼
expð�UθðxÞÞ

ZðθÞ , ð1Þ

where UθðxÞ is an energy (or potential) function, for example, specified as a neural network with parameter θ and ZðθÞ¼ Ð
expð�UθðxÞÞdx is the

normalising constant. Traditionally, EBMs are used for unsupervised image modeling, where x denotes an image configuration (Du &

Mordatch, 2019; LeCun et al., 2006; Nijkamp et al., 2019; Xie et al., 2016). Recently, EBMs are also considered in supervised or semisupervised

settings, where x is a pair of an image configuration and a class label (Grathwohl et al., 2020; Song & Ou, 2018). Such models are called

joint EBMs.

Statistically, EBMs can be trained by ML. Given training data D¼fzigni¼1, the gradient of the log-likelihood lðθÞ¼ 1
n

Pn
i¼1logpθðziÞ is

∂

∂θ
lðθÞ¼�Ep̂

∂

∂θ
UθðxÞ

� �
þEpθ

∂

∂θ
UθðxÞ

� �
, ð2Þ

where p̂ denotes the empirical distribution on D and Eqð�Þ denotes the expectation with respect to q. The ML estimator of θ is obtained as a solu-

tion to ∂
∂θ lðθÞ¼0.

However, a challenge is that the expectation Epθ
∂
∂θUθðxÞ

� �
in (2) is usually difficult to evaluate. This issue can be addressed through stochastic

approximation (SA), which provides a principled and flexible approach for numerically solving intractable equations (Benveniste et al., 1990;

Robbins & Monro, 1951).

Given current value θ0 and replay-buffer B (which stores current synthetic data), an SA iteration for ML estimation (ML-SA) performs the fol-

lowing operations.

• Sampling: Draw x1 from D, ~x0 from B and ~x1 from a Markov transition kernel Kθ0 ð~x0, �Þ, where Kθð�, �Þ is assumed to leave pθ invariant (among

other technical conditions); reset ~x0 to ~x1 in B.
• Updating: Update θ by gradient ascent as

θ1 ¼ θ0þ γ � ∂

∂θ
Uθðx1Þþ ∂

∂θ
Uθ ~x1ð Þ

� �
jθ¼θ0

, ð3Þ

where γ is a learning rate.

The two operations are also called synthesis and analysis (Xie et al., 2016). The Markov transition from ~x0 to ~x1 can be defined by multiple

(more elementary) sampling steps such as (4) below. Moreover, multiple observations can be allowed in each iteration by drawing a mini-batch of

real observations from D and running multiple parallel chains to draw new synthetic observations and returning them to B.
There are two important aspects of the sampling operation, where different choices may lead to variations related to but distinct from the

ML-SA algorithm. One is the choice of the Markov transition Kθð�, �Þ, represented by a MCMC algorithm.

A popular MCMC algorithm is Langevin sampling. Given current observation ~x0, a new observation is proposed as

~x1=2 ¼ ~x0� σ2=2
� �rxUθ0 ð~x0Þþσε, ð4Þ

where ε�Nð0, IÞ is a Gaussian noise and σ is a step size. The next observation ~x1 may directly be the proposal ~x1=2, in which case the Markov tran-

sition from ~x0 to ~x1 does not strictly leave pθ0 invariant, but the sampling bias may usually be small for σ ≈0. To allow large σ, a correction can be

achieved by accepting or rejecting the proposal ~x1=2, that is, setting ~x1 ¼ ~x1=2 or ~x0, with the Metropolis–Hastings probability. Langevin sampling

with rejection is known as the Metropolis-Adjusted Langevin Algorithm (MALA) (Besag, 1994; Roberts & Tweedie, 1996).
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The other choice in the sampling operation is the initialisation scheme, that is, the choice ~x0 used in Kθ0 ð~x0, �Þ above. We summarise existing

initialisation schemes below. Note that the initialisation here refers to how the starting value is chosen for the Markov transition during training,

not how the starting value is chosen in long-run MCMC sampling after training or in post-training image generation.

• Persistent initialisation: Markov chains are started from past synthetic observations in the previous training iteration. This is the rule prescribed

in the ML-SA algorithm and also known as persistent contrastive divergence (PCD) (Tieleman, 2008). Nijkamp et al. (2020) discussed various

tuning choices such as the Langevin step size σ and learning rate γ to obtain stable long-run samples for persistent training.

• Data initialisation: Hinton (2002) proposed contrastive divergence (CD), where Markov chains are initialised by real training data and run for

several steps to obtain synthetic data. Gao et al. (2021) used Markov chains initialised by noise-added real data to train EBMs through recovery

likelihood.

• Noise initialisation: Nijkamp et al. (2019, 2020) studied training EBMs with short-run MCMC, where Markov chains are always started from

random noises and run for a fixed number of Langevin steps (4).

• Hybrid initialisation: Several works employed a hybrid of persistent initialisation and noise initialisation, that is, initialising Markov chains either

by past synthetic observations at a certain rate (e.g. 95%) or in the remaining time by random noises (Du & Mordatch, 2019; Grathwohl et al.,

2020).

• Ancillary generator: Because MCMC sampling may be computationally costly and inefficient, several works proposed training an ancillary gen-

erator to initialise Markov chains to reduce MCMC steps needed or even directly generate synthetic samples to avoid MCMC (Dai et al., 2019;

Grathwohl et al., 2021; Kim & Bengio, 2016; Song & Ou, 2018; Xie et al., 2018).

We point out that from our experiment results (Sections 5 and 6), hybrid initialisation (although previously treated as a close variation of

PCD) behaves similarly to noise initialisation rather than to persistent initialisation.

3 | PROPOSED METHOD

In spite of recent progress, learning EBMs for complex data like natural images remains challenging with various dilemmas (see Table 1). There are

two aims in our investigation: (i) to further study the behaviour of persistent training and (ii) to develop a new method by leveraging diffusion data

for persistent training to achieve satisfactory learning outcomes in several aspects simultaneously, including long-run stability, post-training image

generation and OOD detection.

3.1 | Diagnosis: Local mixing and local energy

We present a simple but informative 1D example. The training data consist of 750 observations from Nð�2, :12Þ and 250 observations from

Nð2, :12Þ. The EBM is specified by UθðxÞ¼ ðx=10Þ2þθThðxÞ, where hðxÞ consists of ReLU basis functions centred at the equi-spaced knots by 0.1

from �4 to 4. Figure 1 presents the results from persistent training using MALA (see Appendix V.1 for more details). We observe the following

patterns. (i) The replay-buffer data resemble the training data, including 3:1 proportions near the two modes �2 and 2. (ii) The long-run sample

(MALA starting from real data) also resemble the training data. (iii) The post-training sample (MALA starting from standard Gaussian noises) shows

two local modes at �2 and 2 but with proportions different from 3:1 as in the training data. (iv) The learned energy function exhibits two local

modes about �2 and 2 but is globally misaligned. The estimated energy at the local mode �2 is substantially higher than at the other mode 2 and

hence is also higher than (e.g. at x¼1, an OOD point near no real data). More troubling is that the estimated energies near �2 and 2 may reverse

the direction of relative magnitudes from different training runs, as shown in Appendix V.1. These results not only confirm the previous findings

about long-run stability for persistent training (Nijkamp et al., 2020) but also reveal a new phenomenon that the learned energies from persistent

training appear to be locally meaningful but globally misaligned. Hence, application of such learned energies to OOD detection is problematic.

Motivated by the 1D example, we provide some new theoretical understanding of persistent training of EBMs with MCMC sampling which

enables only local mixing for multimodal distributions with modes separated by low-density (i.e. high-energy) barriers. Our discussion is heuristic

but highlights the main ideas which can be exploited to develop formal analysis. In the limit of the persistent training process (assumed to exist),

let θ̂ be a limit value of the network parameter θ and q̂ be a limit distribution for the synthetic data (which can be represented by the empirical dis-

tribution of the replay-buffer). Then we expect that ðθ̂, q̂Þ satisfy the following stationarity conditions:

• Sampling stationarity: q̂ is invariant under the Markov transition Kθ̂ð�, �Þ, that is,
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ð
Kθ̂ðx, �Þq̂ðxÞdx¼ q̂ð�Þ: ð5Þ

• Parameter stationarity: θ̂ is a stationary point of the expected gradient, that is,

0¼�Ep̂
∂

∂θ
Uθ̂ðxÞ

� �
þEq̂

∂

∂θ
Uθ̂ðxÞ

� �
: ð6Þ

Conversely, if the training process is initialised by any network parameter θ̂ and replay-buffer distribution q̂ satisfying (5) and (6), then the net-

work parameter and replay-buffer distribution are expected to stay as θ̂ and q̂, respectively, during persistent training. Therefore, any pair ðθ̂, q̂Þ
satisfying (5) and (6) can potentially be the limit values from the training process, unless additional constraints are introduced.

From our numerical experiments (Sections 5 and 6) as well as the 1D example, we postulate that persistent training involves the following

mechanisms through (5) and (6)

• Equation (5) dictates the network parameter θ̂ such that the transition kernel Kθ̂ (depending on the energy function Uθ̂) leaves the replay-buffer

distribution q̂ invariant.

• Equation (6) induces moment matching between p̂ and q̂ such that the replay-buffer distribution q̂ resembles the real data distribution p̂.

Note that if an MCMC sampler suffers local mixing for a target distribution with separated modes by low-density barriers, then there is no

unique invariant distribution. In this setting, the relative weights between the modes may be arbitrary for samples from Langevin dynamics as dis-

cussed in Song and Ermon (2019), Section 3.2.2. See Appendix II for further discussion. To see how this sampling deficiency affects energy esti-

mation, our interpretation of (5) and (6) proceeds as follows. The network parameter θ̂ is learned such that the transition kernel Kθ̂ leaves

invariant the replay-buffer distribution q̂ (which resembles the data distribution p̂). Given sufficient data and model capacity, it can be assumed

that q̂≈ p ∗ , where p ∗ is the population version of p̂. Then θ̂ can be any parameter value such that the global invariance holds approximately:

ð
Kθ̂ðx, �Þp ∗ ðxÞdx≈ p ∗ ð�Þ: ð7Þ

In Appendix I, we show that if the transition kernel Kθ̂ enables only local mixing with low-density barriers in p ∗ , then (7) can be satisfied

nonuniquely, provided Uθ̂ is a local energy function which matches the (global) energy function for p ∗ locally in separate regions up to possibly dif-

ferent additive constants. Nonuniqueness of invariant distributions for sampling can be translated into nonuniqueness of energy functions

learned. An example of such local energy functions is the learned energy in Figure 1. See Appendix I for a formal discussion of local energy func-

tions and Song and Ermon (2019), Section 3.2.1, for a related discussion about inaccurate score estimation in low-density regions.

In summary, we provide both numerical evidence and theoretical explanation for the phenomenon that in the presence of separated modes

by low-density barriers, persistent training using an MCMC sampler which suffers local mixing may only learn local energy functions, which are

locally meaningful but globally misaligned. Stable long-run MCMC samples from real data using such learned energy functions may be obtained,

but this alone does not imply the (global) validity of the learned energies.

3.2 | Diffusion-assisted EBMs

From Section 3.1, we see that proper learning of energy functions for multimodal data requires strategies to overcome local mixing in MCMC

sampling from multimodal model distributions. Better global sampling will likely make the learned energy function more globally aligned. A direct

approach is to tackle this problem only within the sampling operation by exploiting enhanced sampling techniques such as serial tempering

(Geyer & Thompson, 1995; Marinari & Parisi, 1992) and parallel tempering (Geyer, 1991; Swendsen & Wang, 1986) with tempered distributions

(see Appendix III).

However, a drawback of this approach is that samples from the tempered distributions do not contribute to updating network parameters

(because no empirical data are modeled by the tempered distributions).

Alternatively, we realise that diffusion data created with multiple noise levels can also be used as auxiliary distributions to bridge different

modes in multimodal data or ‘fill low-density regions’, as noted in Song and Ermon (2019) for score estimation. We propose diffusion-assisted

EBMs and develop an effective algorithm for ML learning. Instead of using tempered distributions, our approach exploits diffusion data and their

model distributions for both sampling and parameter learning in an interdependent manner. The diffusion data are used together with the original

ZHANG ET AL. 5 of 14
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data to learn EBMs at multiple noise levels, and the learned densities of diffusion data are then used, similarly as tempered distributions, to facili-

tate enhanced sampling.

First, we construct diffused real data as in Ho et al. (2020). For an observation z in the training set D and t¼1,…,T, let

zðtÞ ¼ ffiffiffiffiffi
αt

p
zðt�1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffi

1�αt
p

εðtÞ, where zð0Þ ¼ z, εðtÞ �Nð0, IÞ independently over t, and α1,…,αT � ð0,1Þ are prespecified noise variances such that zðTÞ is

approximately distributed as Nð0, IÞ. Equivalently, zðtÞ can be directly generated from z as

zðtÞ �N
ffiffiffiffiffi
αt

p
z,ð1�αtÞI

� �
, ð8Þ

where αt ¼
Qt

j¼1αj for t≥1 and α0 ¼1. We say that zðtÞ is a diffusion observation at time t given z, and the (marginal) distribution of zðtÞ is the diffu-

sion data distribution at time t if z is randomly drawn from D.

We propose to model the original data and diffusion data simultaneously through a joint EBM:

pθðx,tÞ¼
expð�Uθðx,tÞÞ

ZðθÞ , ð9Þ

where Uθðx,tÞ is an energy function in ðx,tÞ jointly and ZðθÞ¼ ÐPT
t¼0 expð�Uθðx,tÞÞdx. The pair ðx,tÞ encodes that x is treated as a diffusion obser-

vation at time t. For any fixed t, the diffusion data at time t are modeled by the conditional distribution of x given t under (9), which is an EBM

with energy function Uθðx,tÞ in x only:

pθðxjtÞ¼
expð�Uθðx,tÞÞ

ZtðθÞ , ð10Þ

where ZtðθÞ¼
Ð
expð�Uθðx,tÞÞdx. In particular, pθðxj0Þ at time-0 represents an EBM for the original data, whereas pθðxjTÞ at time-T represents an

EBM for a data distribution close to a Gaussian noise. Hence, model (9) combines individual EBMs for original and diffusion data at different time

steps into a compact, joint model.

We pursue persistent training for the joint EBM (9). Training Algorithm 1 essentially follows ML-SA in Section 2. Lines 3–6 are the sampling

operation, and line 7 is the parameter updating operation. However, we incorporate an enhanced sampling algorithm, called MALA within Gibbs

mixture sampling (MGMS), to achieve joint sampling from the model distribution pθðx,tÞ in an efficient manner (Algorithm 2). In Algorithm 2,

lines 2–6 perform sampling from the conditional distribution pθðxj~t0Þ given the current time label ~t0 using MALA, starting from the current config-

uration ~x0. Line 7 performs exact sampling from the conditional distribution pθðtj~x1Þ given the new configuration ~x1. The same MGMS can also be

used to implement post-training sampling, as shown in Algorithm 3.

The MGMS algorithm can be derived as an instance of labeled mixture sampling in Tan (2017). The two operations are called, respectively,

Markov move and global jump, which draws ~t1 given ~x1 independently of ~t0.

These two operations illustrate how MGMS may achieve proper sampling from a multimodal distribution: moving through auxiliary distribu-

tions and jumping to different modes in the original distribution. Moreover, our learning Algorithm 1 can be seen to extend self-adjusted mixture

sampling in Tan (2017) for handling nonintercept parameters in learning EBMs. See Appendix III for further discussion.

We comment on some additional features of Algorithm 2. The Langevin step size σt is allowed to depend on the time label t to accommodate

different variations in the diffusion data distributions. We employ MALA instead of Langevin dynamics without rejection, to ensure sampling con-

vergence for relatively large σt. Moreover, the acceptance rates from the Metropolis–Hastings step can be used to adjust step sizes dynamically

to automate tuning. See Appendix V.3.
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The joint EBM (9) has the same form as in Grathwohl et al. (2020), although a time step t is involved instead of a class label y. The two models

are formulated for apparently different purposes. The training algorithms are also different in the initialisation scheme, persistent initialisation

here versus hybrid initialisation in Grathwohl et al. (2020) and in how MCMC sampling is handled. Grathwohl et al. (2020) factorised the joint

EBM density as pθðx,yÞ¼ pθðyjxÞpθðxÞ and apply Langevin sampling (with a constant step size) to the marginal density pθðxÞ. This method is

unsuitable in our setting, because the diffusion data exhibit different variations at different time steps. See a related discussion of mixture impor-

tance sampling in Appendix III.

4 | RELATED WORK

There is a vast and growing literature on EBMs and related topics. In addition to earlier discussions in Sections 1–3, we discuss here how our

approach is compared with score-based diffusion modeling, mainly the representative works (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song &

Ermon, 2019; Song et al., 2021), and with the DRL for EBM learning (Gao et al., 2021).

Our approach and the score-based approach differ in how to use these diffusion data for learning from the original data. Denote as p ∗
t the

population density of the diffusion data distribution at time t. The score-based approach postulates a score-based model sθðx,tÞ for the score

rxlogp ∗
t ðxÞ and then employs denoising score matching and extensions to implement training (Hyvärinen, 2005; Vincent, 2011). The log-density

(or log-likelihood) logp ∗
0 ðxÞ for the original data is not directly parameterised but can be approximated by solving the probability flow ODE based

on the learned score (Song et al., 2021). From our experience, this method for likelihood calculation is computationally costly (see Appendix III).

More importantly, the calculated likelihoods from the score-based approach are observed to suffer the OOD reversal in our experiments on

MNIST-type images.

By comparison, our approach involves EBM modeling and ML learning. Hence, the energy function (or the negative log-likelihood up to a con-

stant) is analytically available for the learned EBMs. The learned energy functions are globally more meaningful than those obtained by previous

methods, as shown by the superior performance for OOD detection in our experiments. The MGMS algorithm from our training algorithm can

also be used to generate new images from noises based on the learned EBMs (Algorithm 3).

For diffusion data as in Ho et al. (2020), the approach of Gao et al. (2021) postulates marginal EBMs in the form (10), rewritten as

pθðxðtÞÞ¼ expð�UθðxðtÞ,tÞÞ=ZtðθÞ, and then derives conditional EBMs pθðxðt�1ÞjxðtÞÞ, where xðtÞ denotes a diffusion observation at time t. The train-

ing algorithm of Gao et al. (2021) proceeds similarly as training marginal EBMs pθðxðt�1ÞÞ but in each iteration applies a fixed number of Langevin

sampling steps for pθðxðt�1ÞjxðtÞÞ, initialised by the diffusion observation xðtÞ (being conditioned on). This is an instance of data initialisation (or a
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variation of CD) as discussed in Section 3.1. For post-training image generation, the same number of Langevin sampling steps are applied to sam-

ple from pθðxðt�1ÞjxðtÞÞ with the initial value set to the final observation drawn at time t, iteratively from t¼ T to 1. At time T, the initial value is a

random noise. This is reminiscent of image generation using learned short-run MCMC (Nijkamp et al., 2019), although in a sequential manner as in

backward diffusion.

The learned energy functions in the recovery likelihood approach appear to be globally misaligned and suffer the OOD reversal in our

experiments.

In the Appendix IV, we show that the recovery likelihood approach can be equivalently formulated as training via CD ‘bivariate’ EBMs for the

pairs of observations ðxðt�1Þ,xðtÞÞ, although it is originally presented in terms of training conditional EBMs pθðxðt�1ÞjxðtÞÞ. Hence, our approach dif-

fers from Gao et al. (2021) in maintaining persistent training while combining marginal (univariate) EBMs into a joint EBM and incorporating

enhanced MCMC sampling. These choices help to improve the global alignment of the learned energy functions as seen in our experiments.

5 | ILLUSTRATIVE EXPERIMENT

We provide a 2D example of four rings, where the data distribution exhibits multimodality and singularity. Similar examples are reported in

Nijkamp et al. (2019) and Gao et al. (2021). We compare EBMs trained with different initialisation schemes (Section 2) and DRL (Gao et al., 2021)

and our method (DA-EBM). See Appendix V.2 for further details of the experiment.

TABLE 2 Results from four-ring example.

Train. data info.
method Energy Long-run Post

EBM CD

EBM Pers.

EBM Noise

EBM Hybrid (5% noise)

DRL Data Init.

DA-EBM Pers. Init.

Abbreviation: EBM, energy-based model.
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In Table 2, we plot learned energy functions (along the line x1 ¼0 and, for comparison, anchored to have a minimum 0), long-run samples and

post-training samples. An energy function is negative log-density up to a constant.

For DRL and DA-EBM, we plot learned energy functions at time 0 in Table 2 and at other times in Appendix Table S1.

Table 2 confirms the properties of EBM methods in Table 1. (i) Among the first four rows for usual EBMs, only persistent training gives long-

run stable samples. For persistent training, the learned energy has local modes at the four rings but is globally misaligned. For example, the learned

energy at x2 ¼�2 (where data are present) is incorrectly higher than that at x2 ¼�3:5 (where data are absent). Post-training sampling (from stan-

dard Gaussian noises) can barely reach the outmost ring. (ii) The noise initialisation (short-run MCMC) and hybrid initialisation give similar results.

The learned energy functions have local modes at the rings, but the modes are almost invisible due to the large ranges of energy values, which

makes the gradient rxUθðxÞ strong to drive Langevin dynamics for data generation. Post-training sampling can generate realistic samples, but

long-run sampling is unstable. (iii) Compared with noise and hybrid initialisations, DRL also learns an energy function which has a large range and

is globally misaligned. The energy landscape has deeper local modes at the rings, and hence, long-run sampling can be stable. (iv) Among all

methods, our method gives an energy function which best approximates the truth. The energy values are properly aligned across the local modes

at the four rings. Long-run sampling is stable. The post-training sampling result shows that our enhanced MCMC sampling can move across

modes, with help from exploring all diffusion data distributions.

TABLE 3 MNIST and FashionMNIST results.

MNIST FashionMNIST

Train. data
(long-run

starting points)

method Long-run Post Long-run Post

EBM Pers.

EBM Noise

EBM Hybrid

(5% noise)

DRL Data Init.

DA-EBM Pers.

Init.

Abbreviations: DRL, diffusion recovery likelihood; EBM, energy-based model.
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6 | IMAGE EXPERIMENTS

We study the performances of several existing methods and ours on the two grayscale image datasets, MNIST and FashionMNIST. In addition to

EBM training methods as in Section 5, we also include Glow (Kingma & Dhariwal, 2018) and continuous-time DDPM (cDDPM) (Song et al., 2021)

when investigating OOD detection. We do not report inception scores, because differences in the sampling results are visually clear between dif-

ferent methods. See Appendix V.3 for further details of the experiment.

6.1 | Long-run stability and image generation

Table 3 presents the results of long-run sampling and image generation on MNIST and FashionMNIST, with supplemental plots provided in

Appendix V.3. The exact starting points of long-run sampling are shown in the first row.

F IGURE 2 Examples of post-training image generation through MALA within Gibbs mixture sampling (MGMS) (Algorithm 2).

10 of 14 ZHANG ET AL.
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As explained below, the qualitative results in Table 3 substantiate the effectiveness of our proposed method. Popular metrics such as the

inception score or Frechet inception distance (FID) may not be entirely suitable to MNIST-type grayscale data. To compensate, we provide quanti-

tative results about OOD detection in Table 5.

From Table 3, the long-run samples from hybrid-initialised EBM collapse into mostly digit 1 when starting with images other than 1. This is

similar to the collapse of long-run samples to the outmost ring in Table 2. The long-run samples from persistent-initialised EBM and DRL are sta-

ble, but the former exhibit significant distortions whereas those from DRL have some arbitrary sprinkles added. In contrast, the long-run samples

from DA-EBM remain close to the starting images.

For image generation, EBM with hybrid initialisation seems to generate samples of good quality. Persistently trained EBM fail to yield satisfac-

tory images. The samples from DRL are distorted and deviate from realistic digits. The samples from DA-EBM, despite being persistently trained,

are close to realistic digits. Hence, DA-EBM is the only method which performs satisfactorily in both long-run stability (from real images) and

image generation (from random noises).

In Figure 2, we illustrate the image generation process using a collection of 20 images. Each column shows an individual sampling process

where MGMS (Algorithm 2) starts from Gaussian noise with the time label (or noise level) t¼51. For visualisation, the sampling process is cap-

tured at 12 predetermined sampling iterations, with images and their associated time labels depicted in rows. Moreover, we include histograms of

time labels between two consecutive sampling rows, indicating the distribution of time labels obtained between the two sampling iterations.

Interestingly, there is a noticeable trend in the image label distributions, from approximately t¼50 decreasing towards t¼0, as the number

of MGMS sampling iterations increases. Meanwhile, each image gradually transmutes from noise to recognizable digits. Once an image crystallises

into a digit-like image, the shape appears resistent to significant changes.

In theory, the design of DA-EBM would yield a nearly uniform time label distribution spanning from 0 to 51 during the post-training sampling.

However, the results in Figure 2 appear to deviate from this theoretical expectation. This discrepancy may be mainly due to the ‘cold’ nature of

the real image distribution: We observe that a substantial gap exists in energy functions between the distributions of clear images and diffused

images. This gap causes the time label to predominantly stay near 0 in the global jump phase of the MGMS algorithm, because a large energy

TABLE 4 OOD results.

Method MNIST EMNIST KMNIST

EBM Pers.

EBM Hybrid (5% noise)

DRL

DA-EBM

GLOW

cDDPM

Abbreviations: DA-EBM, diffusion-assisted EBM; DRL, diffusion recovery likelihood; EBM, energy-based model; OOD, out-of-distribution.
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difference (in hundreds or more) invariably leads to classifying an image to a time label close to 0 once it becomes a realistic digit. Implications of

this phenomenon and potential improvement can be investigated in future work.

6.2 | OOD detection

For OOD detection, we use FashionMNIST as the in-distribution (InD) dataset and consider MNIST, EMNIST (Letters) and KMNIST (Japanese

characters) as OOD datasets. All methods are trained on the training split of FashionMNIST, and OOD metrics are evaluated on the test split of

each dataset. All methods use estimated log-densities (i.e. log-likelihoods) as the scores to predict InD and OOD data. Table 4 presents the histo-

grams of log-likelihoods, and Table 5 gives the AUROC (area under ROC) results. Additional results can be found in Appendix V.3.

Glow, cDDPM and DRL all exhibit the OOD reversal. The learned models assign higher (or similar) likelihoods to the OOD data than to InD

data. For the hybrid-initialised EBM, the log-likelihoods of OOD data cover several modes of those of InD data. This pattern was also seen in

Table 2 of Grathwohl et al. (2020). In addition, the ranges of these log-likelihoods are of 106 magnitude, reminiscent of the unreasonable ranges

of energy values in Table 2.

Persistently trained EBM and DA-EBM are the only two methods which assign likelihoods in a proper direction (InD vs. OOD). But our

learned likelihoods achieve better separation between InD and OOD data. The AUROC values from DA-EBM not only improve upon the usual

EBMs by margins at least 10%, 1% and 5% for the three OOD datasets but also are much higher than those from Glow and cDDPM. From the

AUC-PR Table S7 in Appendix, DA-EBM also outperforms (with over 10% margins) the best in Table 1 of Elflein et al. (2021) among EBM and

other methods.

7 | CONCLUSION

We propose diffusion-assisted EBMs and develop a persistent training algorithm. The diffusion data are exploited for two benefits. First, the diffu-

sion data help to bridge different modes in the original data such that the density estimates between different modes can be appropriately

aligned. Second, the diffusion data also help to connect images and random noises to make post-training sampling through MCMC possible. Our

work opens the possibility of simultaneously achieving proper density estimation and post-training sampling. See Appendix VI for a discussion

about the current limitations of our method. It is desirable to further develop our method and conduct experiments on more complex image

datasets and diverse tasks.
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TABLE 5 OOD AUROC results.

Method Mnist EMnist KMnist

EBM PERS. 0.83 0.92 0.93

EBM HYBRID 0.37 0.45 0.68

DRL 0.09 0.35 0.52

DA-EBM 0.93 0.93 0.98

GLOW 0.35 0.60 0.09

cDDPM 0.27 0.52 0.63

Abbreviations: AUROC, area under ROC; DA-EBM, diffusion-assisted EBM; EBM, energy-based model; OOD, out-of-distribution.
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I LOCAL ENERGIES

To formalize the discussion in Section 3.1, we introduce the following concepts. For a (normalized) probability density p(·), say that U(·) is a (global)
energy function for p(·) if

p(x) =
exp(−U(x))∫

exp(−U(x′)) dx′
.

Hence an energy function usually defined is a global energy function. Suppose that the support of p(·), {x : p(x) > 0}, is arbitrarily partitioned
into 2 regions B1 and B2. Say that Ũ(·) is a local energy function for p(·) with respect to (B1, B2) if

p(x) =

2∑
j=1

p(Bj)
exp(−Ũ(x))∫

Bj
exp(−Ũ(x′)) dx′

1Bj (x), (S1)
where p(Bj) =

∫
Bj

p(x) dx and 1Bj is the indicator function for Bj . Informally, a local energy function can be locally normalized and then
properly combined into a given probability distribution. This definition suffices in the following discussion of multimodal distributions with modes
separated by zero-density barriers. For nonzero- but low-density barriers, our discussion can be extended with more technical complexity, for
example, allowing equality (S1) to hold approximately, as measured by some distance between the two sides of (S1).

Let p0 be a mixture of two disjoint densities,
p0(x) = πp01(x) + (1− π)p02(x), (S2)

where p01 and p02 are two disjoint (normalized) densities with supportsB1 andB2 respectively (B1 ∩B2 = ∅) and π ∈ (0, 1) is the relative weight
for p01. Then there exist an infinite collection of local energy functions with respect to (B1, B2), such that none of them is a global energy function
for p0(·). These local energy functions can be defined as (− log p01 + c01)1B1

+ (− log p02 + c02)1B2
+∞1(B1∪B2)c for arbitrary constants

(c01, c02).
For a multimodal distribution with strictly separated modes, a local energy function (not necessarily a global energy function) can be used to

achieve global invariance (S5) below, with an MCMC sampler such as random walk Metropolis sampling or Langevin sampling, which only enables
local moves near individual modes. Let Ũ(·) be a local energy function for p0(·) as above, and let KŨ (·, ·) be the transition kernel of an MCMC
sampler, depending on Ũ(·), such that (see Appendix II)

KŨ (x, x′) = 0 for x ∈ B1, x
′ ∈ B2 or x ∈ B2, x

′ ∈ B1, (S3)∫
Bj

KŨ (x, x′)p0j(x) dx = p0j(x
′) for x′ ∈ Bj , j = 1, 2. (S4)

Informally, the sampler only moves points within B1 or B2, and leaves p01 or p02 (locally) invariant on B1 or B2. Then the global invariance holds
(see the proof later): ∫

KŨ (x, x′)p0(x) dx = p0(x′), x′ ∈ B1 ∪B2, (S5)
that is, the sampler leaves the mixture distribution p0 invariant on B1 ∪ B2. Note that property (S5) does not imply that the Markov chain with
kernelKŨ and any initial point converges to the target distribution p0; the chain is restricted toBj if the initial point is fromBj . But a key message
here is that in the presence of separated modes, global invariance (S5) can be non-uniquely achieved by using any local energy function U with an
MCMC sampler which enables only local mixing.

We give a direct proof of Eq. (S5). For x′ ∈ B1, the left-hand side of (S5) can be calculated as∫
KŨ (x, x′)p0(x) dx =

∫
B1

KŨ (x, x′)p0(x) dx = π

∫
B1

KŨ (x, x′)p01(x) dx = πp01(x′),



2 Diffusion-assisted Energy-based Models

where the first equality is from (S3), the second from (S2) and B1 ∩ B2 = ∅, and the third from (S4). Similarly, for x′ ∈ B2, the left-hand side of
(S5) can be shown to be (1− π)p02(x′). Combining the two cases gives the desired equality (S5), due to (S2) and B1 ∩B2 = ∅.

II LOCAL MIXING

We discuss the local mixing behavior of Langevin sampling in the presence of separated modes. For simplicity, we focus on the situation where two
modes are strictly separated as two disjoint components of a mixture as in Appendix I. The main point can also be extended to separated modes
by nonzero- but low-density barriers.

Consider a mixture of two disjoint densities as defined in (S2). Let U0(x) = − log p0(x) + c0 and U0j(x) = − log p0j(x) + c0j for j = 1, 2,
where c0, c01, c02 are three arbitrary (unknown) constants. Then the gradient of the energy function U0 is

∇xU0(x) =

∇xU01(x), x ∈ B1,

∇xU02(x), x ∈ B2.
(S6)

From this relationship, if an initial point is from the support of p01, then Langevin sampling treats p01 as the target (invariant) distribution. In this
case, the Langevin chain only travels within the support of p01. Similarly, if an initial point is from the support of p02, then the Langevin chain only
travels within the support of p02. Therefore, cross-mode traveling is impossible (or almost impossible with low-density barriers), and the Langevin
chain is always trapped in the region where the initial point is located. From another perspective, the Langevin chain using the energy function U0

may admit a mixture of p01 and p02 with any relative weight, not just p0, as an invariant distribution. The relative weight information is lost for
Langevin sampling. See Song and Ermon (2019), Section 3.2.2., for a related discussion.

As discussed in Appendix I, a local energy function for p0 can be defined as Ũ(x) = U01(x) if x ∈ B1 or U02(x) if x ∈ B2 or∞ otherwise. From
the gradient expression (S6), Langevin sampling using Ũ as the energy function is indistinguishable from Langevin sampling using the (global) energy
function U0. This also explains why the global invariance (S5) is satisfied for Langevin sampling using any local energy function in the presence of
separated modes.

III ENHANCED SAMPLING

To overcome local mixing for multimodal distributions, various enhanced sampling algorithms can be used while introducing auxiliary distributions
as mentioned in Section 3.2. For a distribution with energy function U , a popular scheme in practice as well as theoretical studies (Chen, Chen,
Dong, Peng, & Wang 2019; Ge, Lee, & Risteski 2018) is to introduce tempered distributions with energies {βjU : j = 1, . . . , J} for a decreasing
sequence of inverse temperatures 1 = β1 > · · · > βJ ≈ 0. The Markov chains at higher temperatures (smaller βj ) may travel more easily between
modes, which then provide “bridges" for theMarkov chains at lower temperatures to explore those modes (even separated by low-density barriers).
More generally, a heuristic guideline is that those auxiliary distributions should be easy to sample from and connected (or overlapped) with the
original distribution, so as to help the sampling algorithm to explore the original distribution.

Return to the mixture distribution of two disjoint densities, as defined in (S2). In this case, introducing tempered distributions does not work
because each tempered distribution remains a mixture of two disjoint densities. Alternatively, we may introduce another auxiliary distribution to
fill the low-density regions in p0. Let p1(x) be an “umbrella” unimodal density such that its support {x : p1(x) > 0} contains B1 ∪ B2, and let
U1(x) = − log p1(x) + c1, where c1 is an arbitrary (unknown) constant. The difference of log-normalizing constants (or free energy difference)
between U0 and U1 is δ = c1 − c0. To see advantages of our sampling Algorithm 2 and a connection to our learning Algorithm 1, we compare
several sampling algorithms in the special case of only one auxiliary distribution.
Simple importance sampling (SIS). The first is SIS with the design density taken to be p1. By unimodality of p1, we assume that Langevin sampling
from p1 achieves global (fast) mixing.

(i) Draw a sample {x̃i}ni=1 from p1 using MALA from an initial value x̃0.
(ii) Draw a sample of some size k, {i1, . . . , ik}, with replacement from {1, 2, . . . , n} with the probability of selecting i equal to

wi =
(p0/p1)(x̃i)∑n
l=1(p0/p1)(x̃l)

=
e−U0(x̃i)+U1(x̃i)∑n
l=1 e−U0(x̃l)+U1(x̃l)

.

Then {x̃i1 , . . . , x̃ik} is a valid sample from p0, in the sense that sample averages are consistent for the corresponding expectations under p0 as
n → ∞. The weights wi can be calculated without knowing δ, but the sample is only approximately unbiased for large n. The algorithm is non-
iterative because increasing n requires redrawing indices from {1, . . . , n}. For SIS to perform properly, the ratio p0(x)/p1(x) ∝ e−U0(x)+U1(x)

need to have a finite variance under p1, which can be difficult to assess in practice.
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Mixture importance sampling (MIS). The second isMISwith the design density defined by (for example) the energy functionU•(x) = − log(e−U0 +

e−U1 ). The associated density function is a mixture of p0 and p1,
p•(x) ∝ p0(x) + e−δp1(x),

where the relative weight for p0 is 1/(1 + e−δ) depending on δ. The mixture density p• may be multimodal, but the two regions B1 and B2 are
“connected” under p• through probability mass from p1 instead of completely separated in p0, so that Langevin sampling from p• may achieve
global mixing. Given an initial value x̃0, the MIS algorithm iterates for i = 1, . . . , n as follows.

[Alternatively, the design density can be defined as p•(x) = 1
2
p0(x) + 1

2
p1(x), which has (equal) relative weights independent of δ. But the

associated energy function U•(x) = − log(e−U0 +e−U1+δ) depends on δ. An MIS algorithm similar as below can be derived, but both steps (i)–(ii)
requiring the value of δ.]

(i) Draw x̃i using MALA transition for target distribution p• (with energy U•) from initial value x̃i−1.
(ii) Draw s̃i = 1 or 2 with probability v(x̃i) or 1− v(x̃i) respectively, where

v(x) =

1
1+e−δ

p0(x)

p•(x)
=

e−U0(x)

e−U0(x) + e−U1(x)
,

which is independent of δ.
Then {x̃i : s̃i = 1, i = 1, . . . , n} is a valid sample from p0. Compared with SIS, the weight v(x) automatically has a finite variance under p•, because∫ {

p0(x)

p•(x)

}2

p•(x) dx = (1 + e−δ)

∫
p20(x)

p0(x) + e−δp1(x)
dx ≤ 1 + e−δ.

Hence MIS can be more stable than SIS. On the other hand, the effectiveness of MALA sampling from the mixture p• may be limited because p0
and p1 are spatially of different scales and hence different Langevin step sizes are desired for traversing the regions of p0 and p1.
Metropolis within Gibbs mixture sampling (MGMS). The third is MGMS or, more specifically, MALA within Gibbs mixture sampling, which
constitutes a special case of our sampling Algorithm 2 with only one auxiliary distribution. Consider the joint distribution

p(x, s) =


1

1+e−δ
p0(x), s = 1,

1
1+eδ

p1(x), s = 2,

which is called a labeled mixture (Tan 2017) because each point x is paired with a label s. The marginal density of x under p(x, s) is p•(x). As an
energy function of p(x, s), let

U(x, s) =

U0(x), s = 1,

U1(x), s = 2.

Given initial values (x̃0, s̃0), the MGMS algorithm iterates for i = 1, . . . , n as follows.
(i) If s̃i−1 = 1, draw x̃i using MALA transition for target distribution p0 (with energy U0) from initial value x̃i−1. If s̃i−1 = 2, draw x̃i using

MALA transition for target distribution p1 (with energy U1) from initial value x̃i−1.
(ii) Draw s̃i ∈ {1, 2} as in step (ii) of MIS.

Then {x̃i : s̃i = 1, i = 1, . . . , n} is a valid sample from p0. The two steps of MGMS perform sampling from the conditional distribution p(x|s =

s̃i−1) using MALA and then sampling exactly from p(s|x = x̃i), both under the joint distribution p(x, s). These two steps are called Markov move
and global jump, which draws s̃i independently of s̃i−1 (Tan 2017). [Alternatively, a local-jump scheme can be used for drawing s̃i by Metropolis–
Hastings sampling from p(s|x = x̃i) with initial value s̃i−1; this is known as serial tempering (Geyer & Thompson 1995; Marinari & Parisi 1992).]
Compared with MIS, the algorithm allows MALA sampling of x with different step sizes from p0 and p1 in a principled manner.

The performance of MGMS (as well as MIS) depends on the (unknown) value of δ or equivalently the relative weight for p0, i.e., p(s = 1) =

1/(1 + e−δ). If δ is too negative (tending to −∞), then the relative weight for p0 is too large (making p• close to p0 and Langevin sampling suffer
local mixing). If δ is too positive (tending to∞), then the relative weight for p0 is too small (making the realized sample size for p0 small even for a
large n).
Self-adjusted mixture sampling (SAMS). To address the preceding issue in MGMS, an adaptive approach is to iteratively shift the energy functions
U0 andU1 toU0+ζ0 andU1+ζ1 for some additive constants ζ0 and ζ1 (while fixing initialU0 andU1), such that δ = 0 or p(s = 1) = p(s = 2) = 1/2

based on the new energy functions. An SA algorithm using MGMS in the sampling step leads to SAMS (Tan 2017). [Alternatively, a local-jump
instead of global-jump scheme can be used in the sampling step (Liang, Liu, & Carroll 2007).] Given initial values (x̃0, s̃0) and ζ(0)0 = ζ

(0)
1 = 0, the

SAMS algorithm iterates for i = 1, . . . , n as follows.
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(i) If s̃i−1 = 1, draw x̃i using MALA with energyU0 +ζ
(i−1)
0 from initial value x̃i−1. If s̃i−1 = 2, draw x̃i using MALA with energyU1 +ζ

(i−1)
1from initial value x̃i−1.

(ii) Draw s̃i = 1 or 2 with probability v(x̃i) or 1− v(x̃i) respectively, where
v(x) =

e−U0(x)−ζ
(i−1)
0

e−U0(x)−ζ
(i−1)
0 + e−U1(x)−ζ

(i−1)
1

,

(iii) Update
ζ
(i)
0 = ζ

(i−1)
0 + γ(−

1

2
+ 1{s̃i = 1}),

ζ
(i)
1 = ζ

(i−1)
1 + γ(−

1

2
+ 1{s̃i = 2}),

where γ is a learning rate.
Remarkably, it can be verified that the SAMS algorithm is equivalent to our learning Algorithm 1 in the special case of learning the “intercept"
parameter ζ = (ζ0, ζ1), where the model energy function is parameterized as

Uζ(x, s) =

U0(x) + ζ0, s = 1,

U1(x) + ζ1, s = 2,

with fixed initial energies (U0, U1), and the real-data distribution of (x, s) is assumed such that the marginal probabilities of s = 1 and 2 are both
1
2
. In this sense, the proposed Algorithm 1 can be seen to extend SAMS for learning non-intercept parameters in EBMs.

IV REFORMULATION OF DIFFUSION RECOVERY LIKELIHOOD

We provide a reformulation of the recovery likelihood approach of Gao et al. (2021), as mentioned in Section 4. For simplicity, we consider only a
single pair of observation (x(t−1), x(t)), satisfying x(t) =

√
αtx(t−1) +

√
1− αtε(t), where ε(t) ∼ N(0, I). Assume that x(t−1) satisfies an EBM

with energy function Uθ(x(t−1), t− 1), i.e.,
pθ(x(t−1)) ∝ exp(−Uθ(x(t−1), t− 1)).

Then x(t−1) given x(t) satisfies a conditional EBM, with the conditional density
pθ(x(t−1)|x(t)) ∝ exp

{
−Uθ(x(t−1), t− 1)−

‖x(t) −√αtx(t−1)‖22
2(1− αt)

}
,

up to a multiplicative constant, free of x(t−1) but depending on x(t). The gradient of log pθ(x(t−1)|x(t)) can be shown to be
∂

∂θ
log pθ(x(t−1)|x(t)) = −

∂

∂θ
Uθ(x(t−1), t− 1) + Epθ(z(t−1)|x(t))

{
∂

∂θ
Uθ(z(t−1), t− 1)

}
, (S7)

where Epθ(z(t−1)|x(t))(·) denotes the (conditional) expectation over z(t−1) with respect to pθ(z(t−1)|x(t)). Note that x(t−1) is the data point
observed together with x(t), and z(t−1) is a general point. In the recovery likelihood approach, the gradient (S7) is approximated by

−
∂

∂θ
Uθ(x(t−1), t− 1) +

∂

∂θ
Uθ(x̃(t−1), t− 1), (S8)

where x̃(t−1) is drawn by running (for example) L Langevin sampling steps targeting the conditional density pθ(z(t−1)|x(t)), with the initial value
set to x(t).

For the reformulation, we note that the pair (x(t−1), x(t)) satisfies a “bivariate" EBM, with the joint density
pθ(x(t−1), x(t)) ∝ exp

{
−Uθ(x(t−1), t− 1)−

‖x(t) −√αtx(t−1)‖22
2(1− αt)

}
,

up to a multiplicative constant, free of (x(t−1), x(t)). The “bivariate" EBM pθ(x(t−1), x(t)) is more fundamental than the conditional EBM
pθ(x(t−1)|x(t)), because the latter is derived from the former, but not conversely. The gradient of log pθ(x(t−1), x(t)) can be shown to be

∂

∂θ
log pθ(x(t−1), x(t)) = −

∂

∂θ
Uθ(x(t−1), t− 1) + Epθ(z(t−1),z(t))

{
∂

∂θ
Uθ(z(t−1), t− 1)

}
, (S9)

where Epθ(z(t−1),z(t))(·) denotes the expectation with respect to pθ(z(t−1), z(t)). Note that (x(t−1), x(t)) is the observed pair, and (z(t−1), z(t))

is a general pair of points. Consider training the bivariate EBM by CD (contrastive divergence). The expectation term in (S9) can be approximated by
−
∂

∂θ
Uθ(x(t−1), t− 1) +

∂

∂θ
Uθ(x̃(t−1), t− 1), (S10)



Diffusion-assisted Energy-based Models 5

where (x̃(t−1), x̃(t)) is drawn from an Markov transition kernel targeting pθ(z(t−1), z(t)), with the initial value set to the observed data point
(x(t−1), x(t)). Suppose that (x̃(t−1), x̃(t)) is drawn as follows, given the initial value (x(t−1), x(t)):

• Draw x̃(t−1) by running L Langevin sampling steps targeting the conditional density pθ(z(t−1)|x(t)), with the initial value set to x(t).
• Draw x̃(t) from N(

√
αtx̃(t−1), (1− αt)I).

The two operations constitute one step of Metropolis within Gibbs sampling (or MCMC within Gibbs sampling): sample x̃(t−1) given x(t) using
Langevin sampling, and then sample x̃(t) given x̃(t−1). In fact, drawing x̃(t) given x̃(t−1) can be skipped, because the expectation term in (S9)
involves only z(t−1), but not z(t). From the preceding discussion, the approximate gradient (S10) is the same as the approximate gradient (S8):
not only the two expressions are of the same form, but also x̃(t−1) is generated in the same way given x(t). In this sense, the recovery likelihood
approach of Gao et al. (2021) is equivalent to training the “bivariate" EBM pθ(x(t−1), x(t)) via CD.

V EXPERIMENT DETAILS AND ADDITIONAL RESULTS

V.1 Gaussian mixture 1D example

We train the EBM with persistent initialization and MALA sampling in the 1D Gaussian mixture example. The energy function is parameterized as
Uθ(x) = (x/10)2 + θThθ(x), where the ReLU basis function hθ(x) is

hθ(x) = ((x− ξ1)+, . . . , (x− ξK)+)T,

where ξj ’s are the knots and a+ = a if a ≥ 0 or 0 if a < 0. Equi-spaced knots from−4 to 4 by .1 are used, as mentioned in the main text. The prior
quadratic term (x/10)2 is needed to guarantee the energy function is well-defined, i.e., the corresponding density function is integrable. We train
the model for 1,200 iterations with a starting learning rate γ = 0.2. Learning rate decays by a factor of 0.2 at the 600, 800, and 1,000 iteration
milestones to ensure convergence. The Langevin step size σ is set to 0.1, and the number of Langevin steps L is set to 10 per training iteration.
The replay buffer size is set to 1,000 (same as the training dataset).

We plot the estimated energy functions of five more independent runs in Figure S1. The estimated energies near −2 and 2 exhibit varying
directions of relative magnitudes in different training runs. This shows the difficulty in learning a global energy function using persistent training
of EBM in the presence of separated modes by low-density barriers.
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Figure S1 Learned energy functions from five independent runs by persistently training EBMs in 1D example

V.2 Four-ring example

Training data. For a 2D vector x = (x1, x2), suppose that the radius r =
√
x21 + x22 of a ring follows a one-sided truncated normal distribution to

(0,∞), and the angle θ = arctan(x1/x2) follows a uniform distribution over [0, 2π]. The means of the radii of the four rings are 1, 2, 3, 4, and the
standard deviations are 0.01. We draw a total of 50,000 points from the four rings with equal probability as the training set.
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Network.We choose a four-layer MLP, which has 128 equal hidden neurons in each of the middle layers. EBMs trained with different initialization
use ReLU as the activation function, while DA-EBM and DRL use the Softplus activation function.We use sinusoidal time embedding and set T = 6

for DA-EBM and DRL. Both methods use the same cumulative-sum diffusion scheduling described in Section V.3 with δ1 = 0.01 and δT = 0.3.
Training and sampling.We train all methods with a multi-step learning rate decay schedule. DRL are trained with 500 epochs, and all other methods
are trained with 200 epochs. The decay milestones are at 7/10, 8/10, and 9/10 of the total training epoch, and the decay factor is 0.1. The initial
learning rate is set to 5 × 10−4. The DRL training is strictly based on Algorithms 1 and 2 in Gao et al. (2021), without the additional variations in
the image experiments (see Section V.3),

All EBM methods except our proposed DA-EBM use Langevin sampling without acceptance-rejection by implementation conventions in the
literature. For EBM training, we consider two different Langevin step sizes, σ = 0.005 and σ = 0.01, and pick up the best result for illustration. For
the DRL method, we set the step size σt = b

√
1− α2

t+1 for t = 0, . . . , T − 1 with two possible choices b = 0.02 and b = 0.01, and present the
best result. The step size of DA-EBM is dynamically adjusted depending on the average acceptance rate for each time label over each epoch. The
adjustment method is described in Section V.3. The initial values are set to σt = b

√
1− α2

t for t = 1, . . . , T and σ0 = b
√

1− α2
1 with b = 0.1.

During training per iteration, the number of Langevin steps L is set to L = 200 for hybrid initialization and L = 4000 for noise initialization due to
training instability. For all other methods, L is set to L = 40.

Table S1 Additional results in the four-ring example

Diffusion
Data Info.

Method Performance

DRL

DA-EBM

Long-run sampling and post-training sampling. After training, long-run samples are obtained after 100k Langevin steps, in parallel, starting from
an independent draw of 10,000 points from the four-ring distribution, while post-training samples are obtained starting from 10,000 standard
Gaussian noises. For post-training sampling, EBMs trained with noise and hybrid initialization use L and 20L Langevian steps. EBMs trained with
data initialization and persistent initialization use 10,000 Langevian steps. DRL uses 6L Langevian steps in the sequential conditional sampling for
post-training sampling. Our DA-EBM runs 10,000 parallel chains for a total of 250 MGMS sampling transitions (Algorithm 2), and time 0 samples
are identified as post-training samples.
Additional results. We demonstrate the learned energy functions for all different time steps in Table S1. For DRL, the energy function at time 6,
Uθ(x, 6), is assumed to be that of standard Gaussian. As can be seen, our DA-EBM learns the energy functions Uθ(x, t) that reasonably match
with the true negative log densities (up to an additive constant) of diffusion data across all time steps t = 0, . . . , 6, while DRL fails to do that.
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Table S2Model architecture for the experiments on the image data
(a) Network

3x3 Conv2D, 128
1 ResBlock, 128
Downsample 2×2

1 ResBlock, 256
Downsample 2×2

1 ResBlock, 256
Downsample 2×2

1 ResBlock, 256
SiLU, global sum

+ Dense(SiLU(temb))
SUM

(b) ResBlock

SiLU, 3×3 Conv2D
+ Dense(SiLU(temb))
SiLU, 3×3 Conv2D
+ Conv2D(input)

(c) Time embedding (temb)

Sinusoidal Embedding
Dense, SiLU

Dense

Table S3Main differences in training implementations of different methods
β1 in Adam lr γ Normalization Image Preprossessing T Number of Param.

EBM Pers. 0.0 2× 10−5 - Gaussian (std=0.03) - 4.7M
EBM Hybrid 0.0 2× 10−5 - Gaussian (std=0.03) - 4.7M
EBM Noise 0.0 5× 10−6 - Gaussian (std=0.03) - 4.7M

DRL 0.9 2× 10−4 Spectral None 50 4.7M
DA-EBM 0.0 1× 10−5 - Uniform 50 4.7M
Glow 0.9 1 5× 10−4 Actnorm Gaussian (std=0.01) - 29.5M
DDPM 0.0 2× 10−4 Group Uniform [0, 999] 20.1M

V.3 Image experiments

Model architecture.Weadopt a similar network architecture as inGao et al. (2021), which is a variation of theWideResNet (Zagoruyko&Komodakis
2016) and agrees with the bottom-up part of the U-Net architecture used in Ho et al. (2020). We use uses the Sigmoid Linear Unit (SiLU) as the
activation function. Time label t is encoded by Transformer sinusoidal positional embedding (Vaswani et al. 2017). We list the network structure
in Table S2.
Training basics.We train all EBMmethods with Adam optimizer (Kingma & Ba 2015) for 120k iterations, with a mini-batch size of 200. The first 6k
iterations are set as the warm-up stage, during which the learning rate linearly increases from 0 to the desired learning rate. The last 48k iterations
are set as the annealing stage, during which the learning rate linearly decreases to a small factor of its original level. The linear decay factor is set
to 10−5. We currently use Kaiming initialization (He, Zhang, Ren, & Sun 2015). Image is rescaled to range [−1, 1], and additional Gaussian noise or
uniform dequantization is added to stabilize training for different methods, as detailed in Table S3.

We find out that, empirically, persistent training does not work with normalization (e.g., batch/spectral normalization). Currently, we remove
all normalizations in the network for EBM training methods, except that we keep the spectral normalization for the DRL method. Otherwise, the
training fails to learn meaningful models or diverges easily.
DRL, Glow, cDDPM.DRL training is based on the released code2 of the T6 setting in Gao et al. (2021). Note that the code involves some additional
variations from themethod described in Section 3.5 of the paper. First, in the code, the energy function of the second last diffusion timeUθ(x, T−1)

is trained in the same way as using ML with noise initialization instead of using recovery likelihood for x(T−1) given x(T ). Second, the Langevin

1Adamax is used instead of Adam.2https://github.com/ruiqigao/recovery_likelihood

https://github.com/ruiqigao/recovery_likelihood
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update for drawing from pθ(x(t−1)|x(t)) is modified as follows with the energy Uθ(x, t− 1) scaled by σ2
t−1:

x̃
(t−1)
l = x̃

(t−1)
l−1 −

σ2
t−1

2

∇xUθ(x̃
(t−1)
l−1 , t− 1)

σ2
t−1

+
x(t) −√αtx̃(t−1)

l−1

1− αt

+ σt−1ε, (S11)

for l = 1, . . . , L, with the initial value x̃(t−1)
0 = x(t) and the Langevin step size σt = bct

√
1− α2

t+1 for an additional factor ct. This is not proper
Langevin dynamics for the conditional EBM pθ(xt−1)|x(t)) in Eq. (16) of Gao et al. (2021). Finally, a time-dependent weight factor is added to
the gradient in updating the parameter. The effects of these additional variations are unclear, but we keep them in our training implementation;
otherwise training tends to break down. The parameter b is set to 0.02 and other parameters remain as the default in the DRL code. For DRL, we
keep the improper Langevin update as (S11) in sequential conditional sampling for post-training image generation, whereas we use the (proper)
Langevin update for the learned energy Uθ(x, 0) without rescaling to investigate long-run sampling.

The Glow model used in the OOD experiments is trained using the GitHub repository, Glow-PyTorch3. We set the mini-batch size to 100 and
use the additive coupling layer. Other parameters remain as the default training options in the repository. We also need to add Gaussian noise
to the image for preprocessing. Otherwise, log-likelihoods evaluated on the test set get infinity or NaN values. The cDDPM (continuous-time
DDPM) model is trained mainly based on the released code of Song et al. (2021), score_sde_pytorch 4. We train the cDDPM for 600k iterations
with the continuous-time objective function (7) in Song et al. (2021). The continuous time step avoids ad-hoc interpolation when evaluating the
model density by solving the probability flow SDE. We remove the attention layer in the network structure and choose the network such that the
bottom-up part agrees with our network structure in Table S2.

The main differences in training implementations for different methods are summarized in Table S3. Normalized density estimates are directly
available from Glow, and can be obtained by solving a probability flow ODE for cDDPM.
Langevin sampling. The replay buffer size is set to 50,000. The number of Langevin steps L is set to L = 80 for the noise-initialized EBM and
L = 40 for all other methods. EBMs trained with different initializations all use a Langevin step size 0.005. For our DA-EBM, the step sizes for
different time labels are initialized to be 0.01. We turn on acceptance-rejection in the MGMS algorithm after the warm-up stage and adjust step
sizes σt dynamically based on acceptance rates as follows.

The average acceptance rate for each time label is calculated every 100 iterations during training, and the corresponding step size is then
adjusted. Similar to the step size tuning in Appendix V.4 in Song and Tan (2021), we adjust the step size such that the acceptance rate of each
time label is between 0.6 and 0.8 during the training. When the acceptance rate is smaller than 0.6, we decrease σt by a factor of 1/(1 + 2τ), and
when the acceptance rate is larger than 0.8, we increase σt by a factor of (1 + τ), where τ is an adjustment value taken to be τ = 0.1 in all our
experiments. The increase and decrease factors are designed to be asymmetric. Otherwise, the step sizes fall in a fixed set of values determined
by the initial value.
Long-run sampling and post-training sampling.We report 100k or 500k long-run samples, obtained after running 100k or 500k Langevin sampling
steps, starting from real images, with the learned energy function. For DRL and DA-EBM, this is the learned energy function Uθ̂(x, 0) at time
0. Post-training samples are obtained starting from standard Gaussian noises. EBMs trained with noise and hybrid initializations use L and 20L

Langevian steps for post-training image generation, while EBM trained with persistent initialization uses 100k Langevian steps. DRL uses 50L

Langevian steps in sequential conditional sampling. Our post-training image generation procedure is described below.
For post-training sampling, the Langevin step size is fixed to be the final step size during training.We startMarkov chains from standard Gaussian

noises and Repeatedly run the MGMS algorithm (Algorithm 2) until MCMC samples become realistic images. In this work, we regard a sampled
configuration x as a realistic image when sampled configurations have been classified as time label t = 0 for 50 times in the Repeated MGMS runs
(see Algorithm 3).
Diffusion scheduling.While DRL and cDDPM use original scheduling in their released codes, DA-EBM uses a cumulative-sum diffusion scheduling
as follows. We set α1, . . . , αT such that the standard deviation √1− αt in the diffusion process is increasing with respect to t as a cumulative
sum. Specifically, we set T = 50 and set δi to increase from δ1 = 0.0002 to δT = 0.02 with equal spaces. Then we determine αt according to
√

1− αt =
∑t
i=1 δi. The diffusion scheduling is not particularly optimized and can possibly be improved for better training performance.

Additional sampling results. We show additional long-run samples obtained from 100k MCMC steps in Table S4. The results are similar to 500k
long-run samples, but may be less obvious for visual inspection. Additional post-training samples of DA-EBM are presented in Table S5.
Additional OOD results.We plot the ROC curves and PR curves in Figure S2 and summarize the AUC-PR results in Table S7. A comparison of the
computational cost of likelihood evaluation for DA-EBM and cDDPM is shown in Table S6. The computation time for cDDPM is huge compared
to the almost negligible time for DA-EBM, which shows the advantage of learning EBMs for OOD detection.

3https://github.com/y0ast/Glow-PyTorch4https://github.com/yang-song/score_sde_pytorch

https://github.com/y0ast/Glow-PyTorch
https://github.com/yang-song/score_sde_pytorch
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Table S4 Results of (100k) long-run sampling on MNIST and FashionMNIST

MNIST Fashion-Mnist

Train. Data
(Long-run starting points)

Method Long-run Long-run

EBM PERS.

EBM NOISE

EBM HYBRID
(5% noise)

DRL

DA-EBM

VI LIMITATIONS

Our post-training sampling is more costly than short-run EBM, hybrid-initialized EBM, and DRL. The average Langevin steps needed for generating
100 images are about 274,162 and 723,844 in Fashion-MNIST and MNIST experiments. To scale our method to more complex images and larger
models, further investigation is needed. Nevertheless, we believe this work presents a necessary step towards improving persistent training of
EBMs for complex data like natural images, to achieve post-sampling generation and proper density estimation simultaneously.
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Table S5 Additional images generated by DA-EBM in post-training sampling

Method MNIST FashionMnist

DA-EBM

Table S6 Elapsed time for likelihood evaluation on test split of datasets using a single NVIDIA GeForce GTX 1080Ti GPU

Fashion-MNIST MNIST EMNIST KMNIST
# of samples 10,000 10,000 14,800 10,000
DA-EBM ≈ 2s ≈ 2s ≈ 4s ≈ 2s

cDDPM 1h 49m 4s 2h 6m 49s 4h 30m 24s 2h 11m 17s

Table S7 OOD AUC-PR results. InD column indicates that InD examples are used as the positive class, while OOD column indicates that OOD
examples are used as the positive class.

InD OOD
Method Mnist EMnist KMnist Mnist EMnist KMnist

EBM PERS. 0.85 0.87 0.94 0.78 0.95 0.93
EBM HYBRID 0.59 0.50 0.73 0.39 0.60 0.65

DRL 0.32 0.26 0.54 0.32 0.56 0.51
DA-EBM 0.84 0.71 0.94 0.96 0.97 0.99
GLOW 0.44 0.47 0.32 0.39 0.69 0.62
cDDPM 0.39 0.34 0.60 0.36 0.65 0.32



Diffusion-assisted Energy-based Models 11

(a) Fashion-MNIST (InD) vs MNIST(OOD)

(b) Fashion-MNIST (InD) vs EMNIST(OOD)

(c) Fashion-MNIST (InD) vs KMNIST(OOD)

Figure S2 ROC curves, PR curves
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