Entriever: Energy-based Retriever for Knowledge-Grounded Dialog Systems

Yucheng Cai, Ke Li, Yi Huang, Junlan Feng, Zhijian Ou Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, China Mobile Research Institute, China fengjunlan@chinamobile.com, ozj@tsinghua.edu.cn

Motivation

- Traditional retrievers assume conditional independence of knowledge pieces, ignoring inter-dependencies. This leads to redundant retrievals or missing critical information (e.g., price-flow package constraints).
- ➤ In unlabeled data, the knowledge base (KB) is unavailable, making traditional methods unable to accurately compute retrieval probabilities, thus limiting semi-supervised dialog system performance.

The cheapest plan with 1GB flow is \$18, which has 60 min phone call. You can also choose the 28\$ plan with 120 min phone call or the 38\$ plan with 240 min phone call.

(b) Entriever (energy-based retriever)

31.2

10.flow: 1GB,price: \$8,call: 20min (X)

Key Innovation

- Folistic Modeling via Energy Function: Treats candidate retrieval results (combinations of knowledge pieces) as a whole, calculating relevance scores through an energy function $U_{\theta}(c_t, u_t, \xi_t)$ to model inter-piece dependencies directly.
- ➤ Residual Energy Design: Constructs a residual form $p_{\theta}^{\rm ret} \propto p^{\rm ref}$. exp $(-U_{\theta})$ based on traditional retrieval distribution $p^{\rm ref}$, reducing training difficulty.
- ➤ Semi-supervised Adaptability: Enables retrieval probability calculation without accessing the full KB, suitable for pseudo-label filtering in unlabeled data.

Experiment Set up

Datasets: 4 TOD Datasets with Extensive Knowledge Interaction

- ➤ MobileCS (Chinese)
- CamRest (English)
- In-Car (English)
- ➤ Woz2.1 (English)

Baselines:

- Retrieval: Dual-encoder (DPR),Cross-encoder
- > Semi-supervised dialog system:
 JSA-KRTOD

Evaluation metrics:

- retrieval: Joint-acc /
 Inform / F1
- dialog: Success /
 BLEU (dialog)

Method

Energy Function Architecture:

ightharpoonup Inputs: Dialog context c_t + user query u_t + knowledge piece combination $ξ_t$.

$$x \triangleq c_t \oplus u_t \oplus \xi_t$$

Architecture: BERT bidirectional encoding + linear layer output $U_{\theta}(c_t, u_t, \xi_t)$

Experiment Main Results

Results for knowledge retrieval task:

Method	MobileCS		Camrest		In-Car		Woz2.1					
1/1001100	Joint-acc	Inform	F1	Joint-acc	Inform	F1	Joint-acc	Inform	F1	Joint-acc	Inform	F1
Cross-encoder	73.15	35.95	0.589	81.38	63.84	0.816	74.70	42.16	0.870	75.00	32.86	0.508
Entriever (MIS)	76.67	39.81	0.620	83.17	68.05	0.824	78.66	49.64	0.875	80.24	43.78	$0.52\bar{4}$
Entriever (IS)	77.21	42.45	0.628	83.17	68.28	0.825	78.51	50.53	0.875	79.72	45.02	0.530

Comparison over the MobileCS dataset for different semisupervision methods (pseudo labeling (PL) and JSA)

Ratio	Method	Success	BLEU-4	Combined	p-value		
	PL	87.5	8.853	105.21		 1	
1:1	JSA	88.0	8.713	105.43	0.025	0.013	
	JSA + Entriever	90.6	9.816	110.23			
	PL	87.8	9.196	106.19			
2:1	JSA	88.7	9.490	107.68	0.006	0.018	
	JSA + Entriever	92.1	9.725	111.55			
	PL	88.5	9.341	107.18			
4:1	JSA	90.9	9.398	109.70	0.049	0.088	
	JSA + Entriever	92.8	9.554	111.91			
	PL	89.4	9.532	108.46			
9:1	JSA	91.8	9.677	111.15	0.083	0.192	
	JSA + Entriever	93.0	9.627	112.25		_	

Semi-supervised response generation results on the MobileCS dataset

Method	Success	BLEU-4	Combined
Baseline (Liu et al., 2022)	31.5	4.170	39.84
Passion (Lu et al., 2022)	43.2	6.790	56.78
TJU-LMC (Yang et al., 2022)	68.9	7.54	83.98
PRIS (Zeng et al., 2022)	78.9	14.51	107.92
JSA-KRTOD (Cai et al., 2023)	91.8	9.677	111.15
JSA-KRTOD+Entriever (ours)	93.0	9.627	112.25

Training Methods:

Target: Maximum Likelihood Estimation: $\mathcal{J}_{\theta} = -\log p_{\theta}^{\text{ret}}(\xi_t|c_t,u_t)$

$$rac{\partial \mathcal{J}_{ heta}(\xi_t|c_t,u_t)}{\partial heta} = -rac{\partial U_{ heta}(c_t,u_t,\xi_t)}{\partial heta} + \mathbb{E}_{\xi_t \sim p_{ heta}^{ ext{ret}}} \left[rac{\partial U_{ heta}(c_t,u_t,\xi_t)}{\partial heta}
ight]$$

- > Sampling Methods
 - > Importance Sampling (IS)
 - ➤ Metropolis Independence Sampling (MIS)

Retrieval Pipeline:

- \triangleright Retrieval Inference Flow: Viterbi algorithm, to generation K candidates from the 2^N choices
- > Semi-supervised Application
 Weights for unlabeled data:

$$w(\xi_t) \propto \frac{\exp(-U_{\theta}(c_t, u_t, \xi_t)) \times p_{\theta}^{\text{gen}}(r_t | c_t, u_t, \xi_t)}{q_{\phi}(\xi_t | c_t, u_t, r_t)}$$

Allowing for scoring pseudo knowledge without KB

Ablation Results

Residual Structure: Joint-acc improved by 4.5%, significantly enhancing stability

	<i>J</i>		
Setting	Joint-acc	Inform	F1
Dual-encoder (Karpukhin et al., 2020b)	65.60	32.17	0.563
Cross-encoder (Cai et al., 2023)	73.15	35.95	0.589
Entriever (Non-residual, MIS)	76.94	31.89	0.593
Entriever (Non-residual, IS)	72.19	32.22	0.596
Entriever (Residual, MIS)	76.67	39.81	0.620
Entriever (Residual, IS)	77.21	42.45	0.628

Candidate number K: K=16 balances performance and computation

Config	Joint-acc	Inform	Precision	Recall	F1
K = 4	76.02	39.33	0.7162	0.5376	0.6142
K = 8	76.73	40.70	0.7054	0.5580	0.6231
K = 16	77.21	42.45	0.6855	0.5789	0.6277
K = 32	76.79	42.60	0.6455	0.6076	0.6260

Conclusion

- > Contributions:
 - Apply energy-based language model to **retrieval**, modeling candidate retrieval results holistically
 - Extensive experiments demonstrate the efficacy of the energy-based retrieval model, and its potential in improving semi-supervised dialog system
- ➤ Limitations: BERT-based retriever can be substituted by LLM