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Abstract. Large language models (LLMs) have recently been applied
to dialog systems. Despite making progress, LLMs are prone to errors in
knowledge-intensive scenarios. Recently, approaches based on retrieval
augmented generation (RAG) and agent have emerged to improve the
factual accuracy by enhancing the LLMs with knowledge retrieved from
external knowledge bases (KBs). This is mostly implemented by prompt-
ing the LLMs with instructions, examples and the retrieved knowledge.
However, LLMs may have difficulty using the retrieved knowledge effec-
tively for response generation, because they are not well trained to do
such generation for specific domains. To mitigate this problem, we pro-
pose to finetune the LLMs in the RAG-based and agent-based systems
with domain-specific data, together with domain-specific external knowl-
edge, which is called knowledge augmented f inetuning (KAFT). We base
our study on the MobileCS2 dataset, a real-life customer service dialog
dataset that features intensive knowledge interactions, to systematically
compare the prompting and KAFT techniques in the RAG-based and
agent-based systems. Experiment results show that KAFT substantially
surpasses prompting in both RAG and agent systems, particularly in
terms of factual accuracy. To the best of our knowledge, this paper rep-
resents the first solid empirical work to investigate the KAFT idea.

Keywords: Knowledge augmented finetuning · Prompting · Retrieval
augmented generation· Agent · Dialog Systems

1 Introduction

Recent progress in large language models (LLMs), such as GPT4 and PALM [1,
8], has shown improved performance in a range of natural language processing
(NLP) tasks. These improvements have stimulated researchers and practition-
ers to integrate LLMs into real-world applications such as dialog systems. For
real-life dialog systems, it is crucial for LLMs to respond accurately and reli-
ably, which usually require domain-specific knowledge. Despite their power, in
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knowledge-intensive dialog systems, LLMs often generate outputs that are inac-
curate or misleading, a phenomenon known as “hallucination” [18]. This poses a
significant challenge to the factual accuracy of the systems.

In order to mitigate the phenomenon of hallucination, several approaches
have been proposed. Among them, the RAG approach stands out as a promising
solution. By integrating knowledge retrieval into the generative system, RAG
significantly enhances factual accuracy and reduces hallucination [21, 17, 6]. In
addition, there are growing interests in the agent-based approach, which exploits
the tool-calling capability of LLM [25, 27]. By employing API calls, the agent
approach aims to improve factual accuracy within question-answering (QA and
dialogue systems, as demonstrated by the study in [31]. The knowledge obtained
by the API calls in the agent-based system is similar to the retrieved knowledge
in the RAG-based system.

For both the RAG and agent based dialog systems, the commonly adopted
implementation is to prompt the LLM to directly utilize the external knowledge
obtained by the system as in Figure 1(b). Instructions and examples are added
to the prompts, along with the retrieved knowledge, to improve the system per-
formance [23]. However, even with the instructions and examples, the LLMs may
still have difficulty in effectively using the retrieved knowledge, because they are
not well trained to do such generation for specific domains [7, 11]. For example,
in the case shown in Figure 1(b), the LLM does not understand the term “direc-
tional flow” which is specific to the mobile service domain. Therefore, the LLM
cannot deduce that the reason for the user’s overage flow is the use of the flow
in other apps. To mitigate this problem, we propose to finetune the LLMs in
the RAG and agent based systems with domain-specific data, together with the
domain-specific external knowledge, which is called knowledge augmented fine-
tuning (KAFT) in this work, as shown in Figure 1(c). Conventionally, to adapt
LLMs to a specific domain, the LLMs can also been directly finetuned, with-
out using the RAG or agent-based systems, as shown in Figure 1(a). However,
the performance of this direct finetuning of LLMs is often even inferior to the
un-finetuned RAG-based systems [13, 28]. In this paper, we focus on the RAG
and agent based systems, investigate the method of finetuning the LLMs with
retrieved knowledge in those systems, and compare it to the method of prompting
the LLMs in those systems.

The idea of finetuning LLMs is not new, but prior works mostly study direct
inference tasks with LLMs (such as close-book QA, text completion, machine
translation, and so on). As far as we know, there is no solid work to investigate
the KAFT idea in the knowledge-intensive tasks where RAG or agent based
methods are built to retrieve knowledges from external KBs. This paper repre-
sents the first solid empirical work to investigate the KAFT idea. Futuremore,
unlike other fine-tuning techniques such as the Lora technique [15], which aims
to improve the effectiveness and efficiency of fine-tuning, the proposed KAFT
method aims to teach LLMs a new skill, i.e., the ability to make use of domain-
specific external knowledge. KAFT teaches LLMs to take advantage of retrieved
knowledge by constructing corresponding training data to finetune the model,
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Fig. 1: Overview of the three methods to improve factual accuracy for the LLM
based dialog systems. Direct finetuning without knowledge still often leads to
serious hallucination, as the LLM may be unaware of the information gap during
the training and testing situations. Meanwhile, for the prompting method, the
LLM is not trained on domain specific data, which cannot fully leverage the
domain-specific external knowledge (such as the “directional flow” in the exam-
ple). The proposed KAFT method finetunes the LLM on domain specific data
with external knowledge, which overcomes the drawback of the direct finetuning
method and the prompting method.



4 Yuxuan Wu et al.

similar to the instruction-tuning technique [9] which teaches LLMs the ability
to follow instructions.

To demonstrate the efficacy of the proposed KAFT method, we build both
RAG-based and agent-based dialog systems upon the MobileCS2 dataset [4]. The
mobileCS2 is a real-life human to human knowledge-grounded dialog dataset,
released from the SLT 2024 FutureDial Challenge [4]. It consists of real-world
dialog transcripts between real users and customer service staff, along with an-
notated knowledge pieces necessary for staff to respond properly. Extensive ex-
periments are conducted on the dataset to compare the KAFT method and the
prompting method. The experiment results demonstrate that the KAFT tech-
nique can substantially outperform the prompting technique in both the RAG
and the agent based systems, thereby showing the efficacy of the proposed KAFT
method in knowledge-intensive dialog systems.

In summary, the main contributions of this work are:

– This paper proposes to teach the LLMs to make use of external knowledge by
finetuning the LLMs with domain-specific data, together with the domain-
specific external knowledge, which is called knowledge augmented finetuning
(KAFT).

– To validate the efficacy of the proposed KAFT method, RAG-based and
agent-based dialog systems are built on the real-life customer service dataset
MobileCS2 dataset to compare the proposed KAFT method with the prompt-
ing method.

– Extensive experiments on the MobileCS2 dataset show that the proposed
KAFT method can improve the ability of LLMs to make use of knowledge
and substantially surpass the prompting method in both RAG-based and
agent-based dialog systems.

2 Related Work

2.1 Large Language Models (LLMs)

LLMs are large foundation models pretrained with corpus of trillions of tokens.
The emergence of LLMs [1, 8] has greatly improved the performance in various
NLP tasks. Previous studies have discovered the strong in-context learning [3]
and reasoning [30] ability of LLMs, which inspired the researchers to explore
LLMs in more complicated tasks like question-answering and dialog systems [34,
24, 29, 22]. Despite their success in open-domain dialogs, the absence of specific
domain knowledge and up-to-date facts in the data can pose limitations for those
systems in vertical domains. The RAG-based approach [21, 17, 6] and the agent-
based approach [25, 27] are used to mitigate this issue. The most commonly
adopted implementation of the RAG-based system and agent-based system is
to prompt the LLM with instructions and examples, along with the retrieved
knowledge [31]. However the LLMs still struggles to effectively utilize the knowl-
edge in the RAG-based and agent-based systems as they lack the background
information related to the specific areas [7, 11]. In this work, we propose to use



Title Suppressed Due to Excessive Length 5

the KAFT method to finetune the LLMs to gain the ability to make full use of
the external knowledge.

2.2 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) [21] is a technique that enhances the
performance of LLMs by utilizing external pre-stored data, such as texts, di-
alogues, and knowledge bases. Specifically, when the model needs to generate
text or provide an answer, it can first retrieve relevant information from exter-
nal sources and then generate more accurate and enriched outputs by integrating
the information retrieved. Therefore, a retrieval augmented generation system
typically contains two components, a retriever and an LLM (also called a gen-
erator). There are several works that improve the original RAG work, mainly
focused on improving the retriever [19, 12, 16, 5] and the generator [14, 32, 2, 20].
Unlike the previous works that focus on general domain question answering, this
paper represents the first solid empirical work to investigate the idea that the
ability of LLMs to make use of domain-specific knowledge can be improved by
KAFT.

Recently, there are some studies to compare RAG with the method of di-
rectly finetuning LLMs without using RAG for vertical domains [28, 13, 35]. Un-
like those studies, this paper aims to compare the proposed KAFT method with
the method of prompting the LLMs in both RAG-based and agent-based dia-
log systems to show that the ability of LLMs to make use of domain-specific
knowledge can be enhanced by post-training.

2.3 Large Language Model based Agents

With the development of LLMs, recent researches have explored the potential of
building agents upon LLMs, leveraging their strong generation and understand-
ing abilities. The introduction of LLM based agents has significantly enhanced
the ability of machines to interact with the world [25]. Using the superior abil-
ity of the LLMs, those agents can plan their actions and interact with tools as
human [27, 29]. For knowledge-intensive tasks, the ability to interact with tools
is important, as the agent can actively get the information necessary for ac-
complishing the task like human does. In this work, we explore the possibility
of building a customer service agent that can act like real-life customer service
staffs.

3 Method

3.1 Task and Definition

In a customer service dialog system, assume we have a dialog X with T turns of
user utterances and system responses, denoted by u1, r1, · · · , uT , rT respectively.
At turn t, based on the dialog context ct ≜ u1 ⊕ r1 ⊕ · · · ⊕ ut−1 ⊕ rt−1 ⊕ ut (⊕
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Fig. 2: Overview of the RAG-based dialog systems: (a) the retrieval model, (b)
the generation model.

means sequence concatenation), the system needs to generate an appropriate
response leveraging the knowledge base (KB). For the MobileCS2 dataset, the
knowledge base is made up of the user information (KBuser), which is unique
for each dialog, the product information list (KBproduct), and the FAQ list for
commonly asked questions (KBFAQ).

3.2 Retrieval Augmentation Generation (RAG) based Dialog
System

Knowledge Augmented Finetuning (KAFT) of LLMs The RAG based
dialog system employs a retriever to retrieve the relevant knowledge pieces from
the knowledge base and uses the retrieved knowledge to help the generator (i.e.
the LLM) generate the response. In this work, the RAG-based dialog system is
similar to the system in [4]. For a dialog X in the MobileCS2 dataset, the knowl-
edge base KBX can be denoted as: KBX ≜ KBuser∪KBFAQ∪KBproduct. Given
the knowledge base KBX , at turn t of a dialog X, the system uses a retriever
pη(zi | ct), which is shown in Figure 2(a), to obtain the relevant knowledge ht

from the knowledge base and generate appropriate responses with the generator
pθ(rt | ct, ht), which is shown in Figure 2(b).

The retriever is implemented with the dual-encoder architecture including
the knowledge piece encoder Encoderp and the context encoder Encoderc, as
shown in Figure 2(a). To train the retrieval model, for each knowledge piece
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zi (i = 1, 2, · · · ,K) in KBX , the models fit the retrieval distribution of pη(zi | ct)
as in [21]:

pη(zi | ct) ∝ exp
(
Encoderp(zi)

⊤ Encoderc(ct)
)

(1)

Encoderp and Encoderc are both initialized with a BERT-based pretrained model
[10]. The log probabilities of the positive pieces z ∈ Z+ (labeled in the dataset)
are optimized:

Lret = − 1

| Z+ |
∑
z∈Z+

log pη(z | ct) (2)

The Encoderp is fixed during the training, while the Encoderc is trained with
the loss in Eq. 2, following the setting in [19].

KAFT for RAG refers to finetune the LLM with the dialog context and
knowledge piece, i.e., to finetune the generation model pθ(rt | ct, ht). We use the
auto-regressive loss to optimize the generation probability:

pθ(rt | ct, ht) =

|rt|∏
l=1

pθ(y
l | ct, ht, y

1, . . . , yl−1) (3)

where | · | denotes the length in tokens, and yl the l-th token of rt. This is similar
to [4]. The baseline system in [4] used oracle knowledge in training the LLM.
However, we use the generated ht from the retriever rather than the annotated
ht so that the training procedure of the generation model is aligned to the test
setting where the annotated ht is not available. This adaption, similar to the
noise adding technique in [32, 35], brings some improvement to the system in our
experiments. The generation model in Eq. 3 is initialized with a GPT2-based
pretrained language model [26].

Prompting of LLMs In the method of prompting LLMs for RAG, we use the
prompted LLM as the generator, while using the same retriever as in KAFT.
The in-context learning (ICL) [3] method is used to prompt the LLM to generate
appropriate responses given the examples randomly selected from the dataset.
The generation probability of the LLM can be written as pθ(rt | promptt, ct, ht).
The prompt promptt contains the instruction for the LLM and the example
dialogs, which clearly instructs the LLM to generate the response leveraging the
retrieved knowledge ht. The prompt for the LLM, as well as an example of a
turn in a dialog using the RAG-based system is shown in Figure 4(a).

3.3 Agent based Dialog System

Knowledge Augmented Finetuning (KAFT) of LLMs The agent based
dialog system leverages the planning and search ability of the agent to accomplish
the dialog, as shown in Figure 3. The agent consists of a decision maker, API
calling, and an LLM as the generator. At turn t in a dialog, the agent first makes
the search decision at of what database the system needs to search based on the
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Fig. 3: Overview of the agent-based dialog systems. The system first decides
the search intention, then calls the corresponding API to perform the search
operation. The system then generates the response based on the search results.

input context ct. Based on the decision at, the agent conducts the corresponding
search. If at is ‘No Search’, then the agent responds directly to the context;
otherwise, the agent queries the corresponding API for the product, FAQ, and
personal information.

To simulate the Product API, the FAQ API, and the Personal APIs, we
use the annotated data of the corresponding search decisions in the MobileCS2
dataset. For example, the turns annotated with the search decision of “Search
Product” are used to train the Product API. Notably, the purposes of all these
search APIs are to retrieve some knowledge pieces from the knowledge bases,
which is similar to the retrieval in RAG. Thus, for building the Product API and
the FAQ API, we separately train two dual-encoder based retrievers, using the
architecture in Figure 2(a) and the loss function in Eq. 2. For the personal API,
we return all the personal information to ensure the recall of the information, as
the knowledge base for the user information (KBuser) is relatively smaller than
other knowledge bases.

The search result can be viewed as ht, denoting a kind of knowledge piece.
KAFT for agent consists of finetuning LLMs for response generation given ht

and decision making given at, respectively. We use the similar auto-regressive
loss as in KAFT for RAG to optimize the generation probability pθ(rt | ct, ht)
(Eq. 3). The difference is that ht in the agent is the result given by the API
search rather than from the retriever in RAG. The decision maker of the agent
is finetuned based on the probability pθ(at | ct), also using auto-regressive loss,
where the decision at, as a token sequence, can be viewed as another kind of
knowledge.

Prompting of LLMs In the method of prompting LLMs for agent, we em-
ploy the prompted LLM to implement decision making and response generation,
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Fig. 4: An illustration of the prompts for the LLMs, as well as an example turn
in the dialog in the RAG-based and agent-based systems.

while using the same search API as in KAFT. We use the ICL) method [3] to
prompt the LLM to generate appropriate search decisions and responses, given
the contexts and the prompts. We give corresponding examples and instructions,
which clearly instruct the LLM which task, decision making or response genera-
tion, to perform. As there are only four possible search decisions, we enumerate
them in the prompts for the decision making and ask the LLM to choose one of
the 4 search decisions in the decision making task. The prompt for the LLM, as
well as an example of a turn in a dialog using the agent-based system is shown
in Figure 4(b).

4 Experiment

4.1 Experiment Settings

The experiments are carried out on a real-life human-human dialog dataset,
called MobileCS2, released from the SLT 2024 FutureDial-RAG Challenge [4].
The MobileCS2 dataset is derived from the real-world mobile conversational
scenarios and comprises around 3000 carefully annotated dialog logs between
customers and customer service staffs. The dataset aims to promote the study
of training and testing dialog systems for knowledge-intensive customer service.
The dataset was officially split into train, development and test sets, which
consist of 1,926, 412 and 413 dialog samples, respectively.

For evaluation, we follow the official scripts in [4]. To evaluate the retriever
in RAG and the search APIs in agent, we use the recall metrics and report
recall@1, recall@5 and recall@20. To evaluate the whole dialog system, we use
three metrics. The generated response is evaluated by measuring the similarity
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Table 1: Comparison between the dialog systems built with different methods
and settings on the MobileCS2 dataset. “Direct respond” means that we do not
use the knowledge base and let the system to directly respond given the context.

Method Setting BLEU BERTScore Inform Combined Score

Direct Respond
prompt + 0-shot (GPT3.5) 4.81 0.601 0.003 0.328
prompt + 5-shot (GPT3.5) 11.4 0.646 0.002 0.382

finetuning (GPT2) 17.3 0.652 0.011 0.424

RAG

prompt + 0-shot (GPT3.5) 17.2 0.657 0.063 0.478
prompt + 5-shot (GPT3.5) 20.6 0.663 0.059 0.493

KAFT (GPT2) 22.2 0.668 0.145 0.590

Agent
prompt + 0-shot (GPT3.5) 10.4 0.620 0.033 0.395
prompt + 5-shot (GPT3.5) 18.0 0.645 0.082 0.495

KAFT (GPT2) 23.6 0.656 0.147 0.594

score with the ground truth response (BLEU and BERTScore) and whether
the system correctly provides the requested information by the user (Inform
Rate). BLEU measures the fluency of the generated responses by analyzing
the amount of n-gram overlap between the real responses and the generated
responses. BERTScore [33] measures the semantic similarity of the generated
responses with the oracle responses by using a pretrained BERT model. Inform
Rate refers to how often the system response is able to cover the information
requested by the user. The final score is calculated as score = 0.5∗(BLEU/100+
BERTScore) + Inform, as in the original scripts in [4].

For the KAFT method, we finetune the GPT2 [26] in this study, while for
the prompting method, we use the GPT3.5 [24]. In the experiments, hyperpa-
rameters are chosen based on the development set and evaluated on the test
set.

4.2 Main Results

In the experiments, we examine the efficacy of the KAFT method compared to
the prompting method. Based on the results in Table 1, we find that KAFT can
greatly boost the performance over prompting in both RAG-based and agent-
based systems. While prompting the LLM with 5 examples can improve the per-
formance, the dialog systems built with the prompting method still lag behind
the systems built with the KAFT method on the BLEU, BERTScore, Inform and
the Score metrics, especially on the Inform metric that requires accurate under-
standing and utilization of the domain-specific knowledge. The results demon-
strate that the proposed KAFT method can substantially improve the ability of
LLMs to make use of knowledge.

Moreover, according to the results in Table 2 for agent-based systems, prompt-
ing the LLM with examples and instructions cannot perform well in the decision-
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Table 2: The decision making accuracy in the agent-based system for the Per-
sonal, Product and FAQ search, using the prompting method and the KAFT
method respectively.

Setting Personal Product FAQ

0-shot (+prompt) 0.183 0.357 0.005
5-shot (+prompt) 0.290 0.468 0.355

KAFT 0.381 0.580 0.475

Table 3: Comparison of the retrieval performance between the search APIs in
the agent system and the retriever in the RAG system, for the Product search
and FAQ search tasks.

Task Model Recall@1 Recall@5 Recall@20

Product Search Retriever 0.049 0.132 0.398
Product API 0.075 0.199 0.451

FAQ Search Retriever 0.395 0.649 0.782
FAQ API 0.546 0.782 0.872

making task, which shows a large performance gap behind the KAFT method.
Presumably, this is because the complex contexts in real-life customer service
dialogs make it difficult for the LLM to accurately predict the search decision
given only instructions and examples.

Overall, these results show that by using the KAFT method, the system
can be greatly improved on both the response quality and the factual accuracy,
mainly because the system is trained to adapt to speaking tunes and think-
ing manner for the vertical domain. This finding reflects the importance of the
proposed KAFT method for building dialog systems for vertical domains.

Note that in the experiments, the KAFT method is implemented with GPT2,
which is small. Also note that the main research question investigated in this
paper is to systematically compare the prompting and KAFT techniques for
the RAG-based and agent-based systems. It is found in our experiments that
a small model like GPT2 with KAFT can beat GPT3.5 with prompting in the
knowledge-intensive vertical domain, which clearly shows the advantage of the
KAFT method. Using GPT-2 suffices to investigate the research question.

4.3 Analysis and Ablation

As shown in Table 1, both the RAG based and the agent based systems show
great improvements over the systems that directly respond to the user given the
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Table 4: Ablation study about using the retrieved knowledge pieces (denoted by
“Retrieve”) versus using the annotated knowledge pieces (denoted by “Oracle”)
in testing in the RAG-based system (using retrieved knowlede in training).

Test setting BLEU BERTScore Inform Score

Retrieve 22.23 0.668 0.145 0.590
Oracle 48.03 0.720 0.392 0.992

Table 5: Ablation study about using the retrieved knowledge pieces (denoted by
“Retrieve”) versus using the annotated knowledge pieces (denoted by “Oracle”)
in training in the RAG-based system (using retrieved knowlede in testing).

Test setting BLEU BERTScore Inform Score

Oracle 14.09 0.640 0.127 0.517
Retrieve 22.23 0.668 0.145 0.590

context, in terms of all the BLEU, BERTScore, Inform and the Score metrics.
This finding shows that both the RAG and agent based systems can augment
pure generative language models with knowledge. This is crucial in building
knowledge-intensive dialog systems.

According to the results in Table 1, the RAG based systems and the agent
based systems perform on par with each other. As both the RAG based and agent
based systems are competitive in building knowledge-intensive dialog systems,
it is interesting to compare the two systems and discuss how to improve these
systems in future work. First, on the one hand, from Table 3, we can see that
the search APIs in the agent system perform better than the RAG system in
the retrieval task. On the other hand, from Table 2, we can observe that the
agent system suffers from low decision making accuracy, whether by prompting
or by KAFT, while the RAG system has no such limitation. The combined effect
is that the agent systems perform close to the RAG system. The performance
difference between the RAG systems and the agent systems on the knowledge
search task and the decision making task may vary under different domains.
Therefore, it is suggested to explore both agent systems and RAG systems for a
certain real-world application in order to achieve the best performance.

Second, we examine whether the knowledge pieces provided by the RAG
retriever or the agent search API is accurate enough for the language model
to generate the ideal responses. The results in Table 3 show that the recall@1
is relatively low for the product and FAQ search, especially the product search,
indicating that more efforts should be put into increasing the knowledge retrieval



Title Suppressed Due to Excessive Length 13

accuracy for both RAG and agent systems. Moreover, as shown in Table 4, we can
find out that using the annotated knowledge instead of the retrieved knowledge
in testing can greatly improve the RAG performance, which also emphasizes the
importance of accurate knowledge retrieval.

Finally, we examine whether using the annotated knowledge or using the
knowledge retrieved by the retriever in the training process in the RAG-based
system will yield better performance. The results in Table 5 show that using the
retrieved knowledge in the training stage will greatly improve the performance,
as the generator needs to discern whether the retrieved knowledge are correct
or not. In testing, the oracle knowledge is not provided, and therefore the abil-
ity to discern whether the knowledge provided by the retriever is correct is an
important skill for a good generator.

5 Conclusion

In this paper, we propose to finetune the LLMs in the dialog systems with
domain-specific data, together with the domain-specific external knowledge, which
is called knowledge augmented finetuning (KAFT). The proposed KAFT method
aims to teach LLMs how to make use of external knowledge. To test the efficacy
of the KAFT method, we build RAG-based and agent-based dialog systems with
the KAFT method, leveraging the real-life customer service dataset MobileCS2.
In our experiments, systems using the KAFT method achieve substantial perfor-
mance gains over those using the prompting method, particularly in terms of fac-
tual accuracy, which shows the efficacy of KAFT in building knowledge-intensive
dialog systems. With the KAFT method, the model gains improved capability
of making use of external knowledge in both RAG-based and agent-based dia-
log systems. Furthermore, we conduct ablation studies on the knowledge usage
and accuracy in the systems, which shed light on future work on building dialog
systems that can provide more accurate responses.
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