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Abstract—Recently, two approaches, fine-tuning large pre-
trained language models and variational training, have attracted
significant interests, separately, for semi-supervised end-to-end
task-oriented dialog (TOD) systems. In this paper, we propose Vari-
ational Latent-State GPT model (VLS-GPT), which is the first to
combine the strengths of the two approaches. Among many options
of models, we propose the generative model and the inference model
for variational learning of the end-to-end TOD system, both as
auto-regressive language models based on GPT-2, which can be
further trained over a mix of labeled and unlabeled dialog data in
a semi-supervised manner. Variational training of VLS-GPT is both
statistically and computationally more challenging than previous
variational learning works for sequential latent variable models,
which use turn-level first-order Markovian. The inference model
in VLS-GPT is non-Markovian due to the use of the Transformer
architecture. In this work, we establish Recursive Monte Carlo
Approximation (RMCA) to the variational objective with non-
Markovian inference model and prove its unbiasedness. Further,
we develop the computational strategy of sampling-then-forward-
computation to realize RMCA, which successfully overcomes the
memory explosion issue of using GPT in variational learning
and speeds up training. Semi-supervised TOD experiments are
conducted on two benchmark multi-domain datasets of different
languages - MultiWOZ2.1 and CrossWOZ. VLS-GPT is shown to
significantly outperform both supervised-only and semi-supervised
self-training baselines.

Index Terms—Task oriented dialog systems, semi-supervised
learning, variational learning, GPT.

I. INTRODUCTION

TASK-ORIENTED dialogue (TOD) systems are mainly
designed to assist users to accomplish their goals, which

usually consists of several modules for tracking user goals (often
called the belief states), querying a task-related database (DB),
deciding actions and generating responses. The information flow
in a task-oriented dialog is illustrated in Fig. 1, which involves
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Fig. 1. The information flow in one turn from a task-oriented dialog. Square
brackets denote special tokens in GPT-2.

user utterances, belief states, DB results, system acts and re-
sponses. The methodology for building TOD systems is gradu-
ally advancing from separate training of individual modules [1],
[2] to the end-to-end (E2E) trainable approach [3], [4], [5],
[6], [7], [8]. E2E methods usually employ the encoder-decoder
seq2seq architecture [9] to connect modules and train them
together. Incorporating intermediate supervisions from anno-
tated belief states and system acts, and optimizing the system
jointly for belief state tracking, action and response generation
in multi-task settings, is found to significantly improve the
performance [5], [6], [7].

Although E2E methods have achieved promising results,
they usually require substantial amounts of domain-specific
manually labeled data. The long-standing labeled-data scarcity
challenge, which hinders efficient development of TOD systems
at scale, is even magnified in building E2E TOD systems. There
are increasing interests in developing semi-supervised learning
(SSL) [10] methods for E2E TOD systems, which aims to lever-
age both labeled and unlabeled data. Remarkably, two SSL ap-
proaches have attracted significant interests for semi-supervised
E2E TOD systems.

First, a broad class of SSL methods formulates a latent
variable model (LVM) of observations and labels and blends
unsupervised and supervised learning [10]. Unsupervised learn-
ing with LVM usually maximizes the marginal likelihood via
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TABLE I
COMPARISON OF EXISTING GPT-BASED TOD METHODS BY THEIR TRAINING OBJECTIVES

variational learning [11]. This approach has been studied [12],
[13] for semi-supervised TOD systems, and the models typ-
ically use LSTM based seq2seq architectures. Another broad
class of SSL methods is unsupervised pre-training, where the
goal is to find a good initialization point instead of modifying
the supervised learning objective [14]. In the pre-training-and-
fine-tuning approach, large-scale language models pre-trained
on open-domain texts, such as BERT (Bidirectional Encoder
Representations from Transformers) [15], GPT (Generative Pre-
Training) [14]), are fine-tuned with in-domain labels [16], [17].
Particularly, Transformer [18] based auto-regressive language
models, like GPT-2 [19], learn a strong distribution for next-
token prediction, which makes them particularly useful for
generative TOD systems [17], [20], [21], [22], [23], [24].

?> Remarkably, the two approaches, pre-training-and-fine-
tuning and LVM based variational training, are not mutually
exclusive and could be jointly used, and conceivably, can com-
plement each other. The pre-training approach is powerful at
leveraging unlabeled open-domain data, while the variational
approach is suited to exploiting unlabeled in-domain data.1 Par-
ticularly, both applications of pre-trained GPT and variational
learning are previously known separately in the literature for
semi-supervised TOD systems. But how we can leverage both
pre-trained GPT and variational learning is not clear, presents
new challenges and has not ever been examined.

To answer the aforementioned question, we develop Varia-
tional Latent-State GPT model (VLS-GPT), which successfully
combines the pretraining and variational approaches for semi-
supervised TOD Systems. Among many options of models,
we propose the generative model and the inference model for
variational learning of the end-to-end TOD system, both as
auto-regressive language models based on GPT-2, as shown in
Fig. 2. To be clear, GPT-2 [19] in this paper refers to the particular
class of causal language models, which computes conditional
probabilities for next-token generation via self-attention based
Transformer neural network [18].

VLS-GPT takes all the intermediate states (including the
belief states, DB results and system acts) as latent variables.

1Variational semi-supervised learning with LVM generally assumes that the
unlabeled and labeled data are drawn from the same distribution, except that the
unlabeled data are missing data (without labels) [11]. This is often occurred in
real-world situations, e.g. unlabeled in-domain data are easily available between
customers and human agents.

Fig. 2. An overview of VLS-GPT, which consists of two auto-regressive
lanugage models - a generative model and an inference model, both initialized
from GPT-2 but trained with different training sequences as shown in Fig. 3.

The generative model iteratively generates belief states, DB
results, system acts and response given user inputs, and the
inference model iteratively infers all intermediate states given
user inputs and system responses. Both the generative model and
the inference model are initialized from the pretrained GPT-2,
and can be further trained (finetuned) over a mix of labeled
and unlabeled in-domain dialog data from the targeted task in a
semi-supervised manner. Semi-supervised TOD experiments are
conducted on two benchmark multi-domain datasets of different
languages, MultiWOZ2.1 [25] and CrossWOZ [26], which are
in English and Chinese respectively. VLS-GPT is shown to sig-
nificantly outperform both supervised-only and semi-supervised
self-training baselines.

VLS-GPT builds on prior work on using pretrained GPT
and variational learning for semi-supervised TOD systems, and
makes the following contributions in model, algorithm, and
experiment, respectively.
� VLS-GPT is the first to combine the strengths of large

pre-trained language model and variational learning for
semi-supervised TOD systems. Previous GPT based TOD
systems, e.g. SimpleTOD [21] and UBAR [24], only con-
duct supervised learning. LABES [13] employs variational
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learning, but only uses turn level LSTM based generative
and inference models.

� Variational training of VLS-GPT is both statistically and
computationally more challenging than previous varia-
tional learning works for sequential latent variable mod-
els [13], [27], which use turn-level first-order Marko-
vian. The inference model in VLS-GPT is non-Markovian
due to the use of the Transformer architecture. In this
work, we establish Recursive Monte Carlo Approximation
(RMCA) to the variational objective with non-Markovian
inference model and prove its unbiasedness. Further,
we develop the computational strategy of sampling-then-
forward-computation to realize RMCA, which success-
fully overcomes the memory explosion issue of using GPT
in variational learning and speeds up training.

� We conduct extensive experiments on two benchmark
multi-domain datasets of different languages (Mul-
tiWOZ2.1 in English and CrossWOZ in Chinese)
and demonstrate the effectiveness of VLS-GPT in
semi-supervised TOD experiments, outperforming both
supervised-only and semi-supervised baselines. Overall,
VLS-GPT using 50% labels can obtain close performance
to the strong GPT-based supervised-only baseline on 100%
labeled data. We release the code to reproduce our experi-
ments at https://github.com/thu-spmi/VLS-GPT.

II. RELATED WORK

A. Semi-Supervised TOD Systems With Pre-Trained GPT-2

GPT-2 is an auto-regressive language model (LM), pre-trained
over large amounts of open-domain data, which can be fine-
tuned to accomplish a range of natural language processing
tasks. The pre-training-and-fine-tuning approach broadly falls
under the category of semi-supervised learning [14]. Two early
studies in finetuning GPT-2 on labeled dialog data for TOD sys-
tems are [17] and [20]. Later, two similar further developments
are proposed, namely SimpleTOD [21] and SOLOIST [22].
Two recent studies are AuGPT [23] and UBAR [24]. AuGPT
proposes a modification of the loss function and a data aug-
mentation strategy based on back-translation. UBAR proposes
the session-level finetuning of GPT-2, namely on the whole
sequence of the entire dialog session which is composed of user
utterances, belief states, DB results, system acts and responses
of all dialog turns. This is different from the turn-level training,
employed in all previous works. Moreover, UBAR also performs
session-level evaluation, which means it uses previous generated
responses instead of the ground truth to form the context for
current turn. We summarize the differences between existing
GPT-based TOD methods by their training objectives in Table I.
Notably, all previous GPT-based TOD systems only conduct
supervised learning of the generative model.

VLS-GPT adopts the session-level training and evaluation
as in UBAR, which is found to be useful. But as can be seen
from Table I, VLS-GPT uses a new objective for training the
generative model, which is different from that used in UBAR.
VLS-GPT does not calculate the cross-entropy loss over user
utterances, while UBAR does. This is important for VLS-GPT in
developing variational learning, since both the generative model

and the inference model in VLS-GPT are defined as conditional
distributions given user utterances for variational learning.

B. Semi-Supervised TOD Systems With Variational Latent
Variable Models

Variational latent variable models have been used in TOD
systems with two different, orthogonal aims. In the first class of
studies, latent variables are introduced to model the system acts
of a TOD system, which aims to help reinforcement learning
(RL) of dialog policy. The second aim, which is also the aim
of this work, is to enable semi-supervised training of a TOD
system, where belief states (optionally with other annotations)
are treated as latent variables. Notably, two fundamental abilities
of a TOD system are tracking of the belief states and planning
of the system actions [28]. It is interesting to see that the two
classes of studies aim to enhance the two fundamental abilities
of a TOD system respectively.

For the first class of modeling system acts, typical studies
include LIDM [2], LaRL [29], and LAVA [28]. Traditional
approaches use handcrafted system acts. LIDM [2] employs a
categorical latent variables to discover dialog intentions (i.e. sys-
tem acts), which is similar to unsupervised clustering. LaRL [29]
and LAVA [28] follows the latent action framework and uses
the latent space of a variational model as the action space. The
motivation is to alleviate the problem of large action spaces and
long trajectories of word-level RL (i.e. using the entire output vo-
cabulary as the action space), instead of towards semi-supervised
learning of TOD systems. On top of LaRL, LAVA [28] further
leverages auxiliary tasks to shape the latent variable distribu-
tion to yield a more action-characterized latent representation.
Recently, PLATO [30] also uses a K-way categorical latent
variable, still modeling system actions, to tackle the inherent
one-to-many mapping problem in response generation.

For the second class, there are previous studies in us-
ing latent variable models for semi-supervised TOD systems.
SEDST [12] uses a combination of posterior regularization
and auto-encoding to perform semi-supervised learning for be-
lief tracking. LABES [13] is an inspiring related work, which
models belief states as latent variables and employs variational
learning. However, only turn-level LSTM based generative and
inference models are used in LABES; In contrast, VLS-GPT
adopts session-level GPT based models. Such difference can be
seen from Table I for the generative models. Correspondingly,
the session-level inference model designed in this paper for
VLS-GPT is radically different from that in LABES, which is
non-Markovian, and we need to address new challenges in using
GPT in variational learning, both statistically and computation-
ally. To the best of our knowledge, combining both pre-trained
GPT and variational learning for semi-supervised TOD systems
has not been explored yet.

III. PRELIMINARIES

A. Variational Learning

Here we briefly review the variational learning methods,
recently developed for learning latent variable models [11],
[31]. Consider a latent variable model pθ(x, z) for observation
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x and latent variable z, with parameter θ. Instead of directly
maximizing the marginal log-likelihood log pθ(x) for the above
latent variable model, variational methods maximize the follow-
ing variational evidence lower bound (ELBO), after introducing
an auxiliary inference model qφ(z|x) to approximate the true
posterior pθ(z|x):

ELBO(θ, φ;x) � Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)
]

It is known that the gradient of ELBO with respect to (w.r.t.) θ
can be reliably estimated with a single Monte Carlo sample:

∂

∂θ
ELBO(θ, φ;x) ≈ ∂

∂θ
log pθ(x, z), z ∼ qφ(z|x)

Estimating the gradient of ELBO w.r.t. φ in the case of contin-
uous z can be effectively performed via the reparameterization
trick [11], [31], but is challenging for the case of discrete z,
mainly due to the difficulty in estimating the second term:

∂

∂φ
ELBO(θ, φ;x)

= Eqφ(z|x)

[
∂

∂φ
log

pθ(x, z)

qφ(z|x)
]
+
∑
z

[
∂

∂φ
qφ(z|x)

]
log

pθ(x, z)

qφ(z|x)
(1)

For estimating gradients with discrete latent variables, some
methods have been proposed, as reviewed in [32]. The classic
REINFORCE trick [33] can suffer from high variance, and vari-
ous variance reduction techniques have been developed to make
the estimator more usable. The categorical reparameterization
trick [34] relaxes discrete variables to be continuous variables
computed by the Gumbel-Softmax function and then apply the
reparameterization trick to estimate the gradients.

B. The Straight-Through Trick

For scenarios in which we need to sample discrete values
(e.g. from a vocabulary of tokens) in addition to estimating
the gradients, the Straight-Through [35] gradient estimator is
attractive. To study the estimation of the second term in (1),
we consider the illustrative problem of estimating the gradient
of the expectation of f(z) where z is a discrete variable with
distribution qφ(z) over the domain {1, 2, . . . ,K}, i.e.

∂

∂φ
Eqφ(z) [f(z)] =

∂

∂φ

K∑
z=1

qφ(z)f(z) (2)

Denote z = onehot(z) by encoding z as the K-dimensional
one-hot vector and hereafter we can rewrite f(z) as f(z)
by abuse of notation. Assume the probability vector π =
(qφ(1), qφ(2), . . . , qφ(K)) is denoted shortly as π, which is
usually calculated by softmax function on top of neural networks
parameterized by φ. Here we suppress the dependence of π on
φ to reduce notational clutter.

The basic idea of the Straight-Through gradient estimator is
that the sampled discrete values are used for forward compu-
tation, and the continuous softmax probabilities are used for

backward gradient calculation.2 Specifically, the gradient in (2)
is approximated with a single Monte Carlo sample z ∼ qφ(z),
as follows:

∂

∂φ
Eqφ(z) [f(z)] ≈

∂f(z)

∂z

∂z

∂φ
≈ ∂f(z)

∂z

∂π

∂φ
(3)

It can be seen that the above Straight-Through Trick (STT) can
be realized by representing the one-hot vector of each discrete
variable z as follows, whenever feeding z forward:

STT (z) = z+ π − π.detach (4)

where π.detach means that we do not calculate its gradi-
ent during back-propagation. It can be seen that applying the
above STT (z) in the forward direction and computing back-
propagation as usual realizes the Straight-Through gradient es-
timator (3), and thus successfully propagates gradients through
z in the backward direction.

IV. METHOD

In the following, we first introduce the VLS-GPT model, as
shown in Fig. 2, then we describe the supervised learning and
semi-supervised learning methods based on VLS-GPT, respec-
tively. Finally, we elaborate on the statistical and computational
strategies, which enables us to perform variational training for
the GPT-2 based models.

A. Model

Notations: Consider the information flow in a task-oriented
dialog of T turns, as illustrated in Fig. 1, and let ut denote
the user utterance, bt the belief state, dt the database result,
at the system action and rt be the delexicalized response,
respectively, at turn t = 1, . . . , T , which all are represented
as token sequences. Denote the token sequence, for example,
for ht by h

(i)
t , i = 1, . . . , |ht|, where |ht| denotes the length

of ht in tokens. The vocabulary size of tokens is K. De-
note the sub-sequence h1, . . . , ht−1 by h<t, similarly h

(<i)
t for

h
(1)
t , . . . , h

(i−1)
t .

Motivated by recent studies [21], [24], we unify the work-
flow of a TOD system (belief state tracking, action and re-
sponse generation) into a single sequence prediction prob-
lem, which can be accomplished by an auto-regressive lan-
guage model. In this work, the auto-regressive model for
dialog generation is denoted by the conditional distribution
p({b, d, a, r}1, . . . , {b, d, a, r}T |u1, . . . , uT ) as described in
Table I. Given user utterances u1:T , the belief states, DB results,
system actions and responses b1:T , d1:T , a1:T , r1:T are recur-
sively generated3 according to pθ(b1:T , d1:T , a1:T , r1:T |u1:T ).
Specifically, at the first turn t = 1, given u1, the model
sequentially generates b1, d1, a1, r1. At turn t, based on

2The Straight-Through trick can be used in combination with Gumbel-
Softmax [34], called Straight-Through Gumbel-Softmax estimator, which can
tune a temperature hyper-parameter to balance estimator bias and variance. We
find the Straight-Through estimator works pretty well in our experiments, and
leave the exploration of other estimators as future work.

3The DB results d1:T are obtained by querying the database using the
generated belief states.
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all previous user utterances and all generated outputs
u1, b1, d1, a1, r1, . . . , ut−1, bt−1, dt−1, at−1, rt−1 and current
user utterance ut, the model sequentially generates bt, dt, at, rt.
It can be easily seen that such recursive generation completes
the entire dialog session.

A shorthand for p({b, d, a, r}1, . . . , {b, d, a, r}T |u1, . . . , uT )
is pθ(b1:T , d1:T , a1:T , r1:T |u1:T ), and further will be written as
pθ(h1:T , r1:T |u1:T ) for brevity. ht = {bt, dt, at} denotes the
concatenation of intermediate states, which are observed in
labeled dialogs, but become latent variables in unlabeled dialogs.
Note that these are simplified notations, which should obey the
auto-regressive dialog generation, as explained above. Further,
the generative model can be decomposed as:

pθ(h1:T , r1:T |u1:T )

= ΠT
t=1pθ(ht|{u, h, r}1, . . . , {u, h, r}t−1, ut)

× pθ(rt|{u, h, r}1, . . . , {u, h, r}t−1, {u, h}t)
� ΠT

t=1pθ(ht|h<t, r<t)pθ(rt|h<t, r<t, ht) (5)

where, intuitively, we refer the conditional distribution
pθ(ht|h<t, r<t) as the latent state prior, and pθ(rt|h<t, r<t, ht)
the response probability. To reduce notational clutter, we
suppress the conditioning of ht on user utterances in
pθ(ht|h<t, r<t), which actually should follow the auto-
regressive generation structure as emphasized above. Similarly
for the notation pθ(rt|h<t, r<t, ht).

In order to perform unsupervised variational learning from
unlabled dialogs (to be detailed below), we need an inference
model qφ(h1:T |u1:T , r1:T ) to approximate the true posterior
pθ(h1:T |u1:T , r1:T ), which is defined as follows:

qφ(h1:T |u1:T , r1:T )

= ΠT
t=1qφ(ht|{u, r, h}1, . . . , {u, r, h}t−1, {u, r}t)

� ΠT
t=1qφ(ht|h<t, r<t, rt) (6)

where similarly we suppress the conditioning of ht on user
utterances in the auto-regressive inference structure as shown
in (8) below.

The VLS-GPT model thus consists of two auto-regressive
models - the generative model pθ(h1:T , r1:T |u1:T ) and the in-
ference model qφ(h1:T |u1:T , r1:T ), both initialized from GPT-2
but structured to be trained with different training sequences, as
described below. The two models in VLS-GPT are denoted by
VLS-GPT-p and VLS-GPT-q respectively.

B. Supervised Learning

In supervised learning, the entire dialog is labeled. The train-
ing sequence for the generative model VLS-GPT-p is obtained
by the concatenation as follows:4

u1, b1, d1, a1, r1, . . ., uT , bT , dT , aT , rT (7)

4The training sequence for the generative model VLS-GPT-p is the same
as in UBAR. But as shown in Table I, the training objective in VLS-GPT-p
is pθ(h1:T , r1:T |u1:T ), which is different from UBAR and brings minor
performance improvement as shown in Table II.

Fig. 3. Examples of training sequences described in (7) and (8). Note that a
complete training sequence contains many turns concatenated together.

And the training sequence for the inference model VLS-GPT-q
is organized as:

u1, r1, b1, d1, a1, . . ., uT , rT , bT , dT , aT (8)

See examples in Fig. 3. Both models can then be trained from
these training sequences through maximizing their likelihoods
pθ(h1:T , r1:T |u1:T ) and qφ(h1:T |u1:T , r1:T ) respectively, via
teacher-forcing.

C. Semi-Supervised Learning

When a mix of labeled and unlabeled data is available, we
perform semi-supervised learning, which essentially is a com-
bination of supervised learning and unsupervised variational
learning [10], [11]. Specifically, we first conduct supervised
pre-training of VLS-GPT on labeled data. Then we alternately
draw supervised and unsupervised mini-batches from labeled
and unlabeled data, and update the generative model and the
inference model via supervised gradients and unsupervised gra-
dients, respectively. The supervise gradients are calculated the
same as in supervised learning.

For unsupervised learning, the intermediate states b1:T , d1:T
and a1:T (simply h1:T ) are unlabeled. Thus, we maximize
marginal likelihood, which is translated to maximizing the fol-
lowing variational bound (ELBO):

JVL = Eqφ(h1:T |u1:T ,r1:T )

[
log

pθ(h1:T , r1:T |u1:T )

qφ(h1:T |u1:T , r1:T )

]
Plugging the GPT-based generative and inference models ((5)

and (6)) into the above ELBO objective function, we obtain

JVL = Eqφ(h1:T |u1:T ,r1:T )

[
T∑

t=1

log pθ(rt|h<t, r<t, ht)

]
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Algorithm 1: Recursive Monte Carlo Approximation With
STT.

Input: u1:T , r1:T with generative model pθ in (5),
inference model qφ in (6)
J = 0;
for t = 1 to T do

i = 1;
Given previous sampled states h<t:
repeat

Given previous sampled state tokens h(<i)
t :

J+=∑
h̄
(i)
t

qφ(h̄
(i)
t |STT (h<t), r<t, rt, STT (h(<i)

t ))

× log
pθ(h̄

(i)
t |STT (h<t),r<t,STT (h

(<i)
t ))

qφ(h̄
(i)
t |STT (h<t),r<t,rt,STT (h

(<i)
t )

;

Draw h
(i)
t ∼ qφ(h

(i)
t |h<t, r<t, rt, h

(<i)
t );

i+ = 1;
until The < eos > token is generated
J+ = log pθ(rt|STT (h<t), r<t, STT (ht));

end for
Return: J

+ Eqφ(h1:T |u1:T ,r1:T )

[
T∑

t=1

log
pθ(ht|h<t, r<t)

qφ(ht|h<t, r<t, rt)

]
(9)

which is analytical intractable to compute and usually optimized
via the Monte Carlo methods.

Remarkably, the inference models in previous variational
learning studies for sequential latent variable models [13],
[27] are first-order Markov models, i.e. the latent state at
current turn only depends on that at previous turn (e.g.
qφ(bt|bt−1, rt−1, ut, rt) used in [13]). In contrast, the session-
level GPT-based inference model in VLS-GPT is inherently not
a Markov model - the latent state at current turn ht depends
on all history latent states h1:t−1. The use of self-attention
in the Transformer architecture connects current position to
all previous positions. The ELBO objective (9) is thus an ex-
pectation under non-Markovian inference model. Its stochastic
optimization presents new challenges, both statistically and
computationally. In the following, we first establish the Re-
cursive Monte Carlo Approximation (RMCA) to the ELBO
objective with non-Markovian inference model and prove its
unbiasedness. Second, we develop the computational strategy of
sampling-then-forward-computation to realize RMCA, which
successfully overcomes the memory explosion issue of using
GPT in variational learning and speeds up training.

D. Recursive Monte Carlo Approximation to ELBO

A naive Monte Carlo approximation is to draw one sample
h1:T ∼ qφ(h1:T |u1:T , r1:T ) and optimize the following estima-
tor of the ELBO objective (via the STT trick):

JVL ≈
T∑

t=1

log pθ(rt|h<t, r<t, ht) + log
pθ(ht|h<t, r<t)

qφ(ht|h<t, r<t, rt)

This method is found to perform very unstable and fails to con-
verge in our experiments, presumably due to the high variance of
the Monte Carlo estimator. Therefore, we propose the following
recursive Monte Carlo approximation for VLS-GPT, as shown
in Algorithm 1, which has two main features. The first is to
employ ancestral sampling according to the inference model,
and the second is to calculate the KL divergences arised in the
second term in the ELBO objective (9) analytically as much as
possible, so that the Monte Carlo variance is reduced [11], [13],
[27].

Algorithm 1 summarizes the forward pass to calculate the
ELBO objective with recursive Monte Carlo approximation.
Here follows several comments for illustration. First, the latent
state ht at any turn is a token sequence. Thus, the second term
in the ELBO objective (9), denoted by JVL2, can be further
decomposed into a token-level sum:

JVL2 =

Eqφ(h1:T |u1:T ,r1:T )

⎡
⎣ T∑

t=1

|ht|∑
i=1

log
pθ(h

(i)
t |h<t, r<t, h

(<i)
t )

qφ(h
(i)
t |h<t, r<t, rt, h

(<i)
t )

⎤
⎦

(10)

The state tokens h
(i)
t are recursively sampled until the special

token < eos > (end-of-sentence) is generated, and the length
|ht| is thus determined. At turn t and position i, the expected log
ratio between the prior and the posterior of current token, given
previous sampled state tokens, turns out to be the KL divergence,
which can be computed analytically. Then, we sample h

(i)
t and

iterate to the next position. After all the sampled tokens for turn
t are obtained, the first term in the ELBO objective (9) can be
directly estimated based on the sampled states.

Second, we show in Appendix that the following Proposi-
tion 1 holds, where we make explicit the dependence of J on
the sampled states h1:T and JVL on T . Proposition 1 is new
and stronger in establishing the unbiasedness of such recur-
sive Monte Carlo approximation to the ELBO objective with
non-Markovian inference model, beyond of those in [13], [27]
which can be thought of as weak versions of RMCA, working
with Markovian inference model.

Proposition 1: The output J(h1:T ) from the recursive Monte
Carlo approximation shown in Algorithm 1 is an unbiased
estimator of the ELBO objective (9), i.e.

Eqφ(h1:T |u1:T ,r1:T ) [J(h1:T )] = JVL(T ) (11)

Third, taking the derivatives of J(h1:T ) w.r.t. θ and φ yields
the stochastic gradients to update the model parameters. Re-
markably, Algorithm 1 not only shows the forward pass to
obtain the stochastic estimator of the ELBO objective J(h1:T ),
but also shows the application of the Straight-Through Trick
(STT), as defined in (4), for calculating the gradients with
discrete latent variables h(i)

t ’s. The STT trick is applied to each
sampled state tokens h

(i)
t ’s in the forward pass for computing

J(h1:T ). Subsequently, in the backward pass, the gradients can
be back-propagated through the sampled h

(i)
t ’s for parameter

update.
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Fig. 4. Illustration of forward calculation with different models for optimiza-
tion in variational learning. (a) qφ(h1, h2, h3) is a first-order Markov model.
(b)(c) qφ(h1, h2, h3) is based on GPT, which is non-Markovian. The difference
between (b) and (c) is how the computational graph is created, which yields
different memory costs. See text for details. For (c), we run a forward pass first
to infer h1:T , which is omitted in the figure; only the second forward pass is
shown here. STT () means applying Straight-Through Trick, as defined in (4).
.

E. Sampling-Then-Forward-Computation Strategy

As remarked above, the inference models in previous
works [13], [27] are turn-level first-order Markovian. In contrast,
the inference model in VLS-GPT is non-Markovian due to the
use of the Transformer architecture. The use of self-attention,
connecting current position to all previous positions, leads to
great memory consumption, if we apply the computational
strategy as used in [13], [27] to realize RMCA to optimize the
ELBO objective J(h1:T ).

For illustration shown in Fig. 4,5 we drop the con-
ditional on u1:T and consider a simplified optimiza-
tion maxθ,φ Eqφ(h1,h2,h3)[log pθ(r1, r2, r3|h1, h2, h3)], which
is similar to optimizing the actual ELBO objective function,
namely optimizing an expectation under the inference model.
The computational strategy used in [13], [27] to realize RMCA
is shown in Fig. 4(a). In this strategy, turn-by-turn sampling
of h1:3 from qφ(h1, h2, h3) and feeding h1:3 forward to com-
pute pθ(r1, r2, r3|h1, h2, h3) are taken in one forward pass,
which creates the computational graph at the same time (with
requires_grad=true). This is feasible, since the model is turn-
level first-order Markovian and the memory complexity of the
computation graph is O(T ) (T denotes the number of turns in
a dialog). If we apply this one-forward-pass strategy to realize
RMCA for VLS-GPT, the memory complexity of the computa-
tion graph will be increased to O(T (T + 1)/2), as illustrated in
Fig. 4(b).

We propose a sampling-then-forward-computation strategy
to realize RMCA for variational learning of VLS-GPT, as illus-
trated in Fig. 4(c). We first run ancestral sampling of h1:3 from
qφ(h1, h2, h3) (with requires_grad=false), which is not shown
in Fig. 4. Then, we can treat the latent states h1:3 as known, com-
pute qφ(h1, h2, h3) in the forward direction, feed h1:3 forward

5Without loss of generality, the illustration is taken at the turn level, without
delving into the token level. In fact, the latent state ht at any turn is a token
sequence. Thus, Fig. 4(a), (b) and (c) should all be expanded by token-by-token
sampling.

Algorithm 2: Semi-Supervised Training of VLS-GPT.
Input: A mix of labeled and unlabeled dialogue data

Run supervised pre-training of θ and φ on labeled data;
repeat

Draw a labeled mini-batch of dialogs;
Update θ and φ via supervised gradients;
Draw an unlabeled mini-batch of dialogs;
for an unlabeled dialog u1:T , r1:T do

Latent state generation (requires_grad=false):
Draw h1:T ∼ qφ(h1:T |u1:T , r1:T );

Forward computation (requires_grad=true):
Apply Algorithm 1, but omit the step of

sampling h
(i)
t ’s, to obtain J(h1:T );

Backward computation and accumulate gradients;
end for
Update θ and φ via unsupervised gradients;

until convergence
Return: θ and φ

to compute pθ(r1, r2, r3|h1, h2, h3) (with requires_grad=true).
The resulting computational graph becomes much smaller, still
in the complexity of O(T ).

Putting all together, applying the sampling-then-forward-
computation strategy to realize RMCA to optimize the ELBO
objective J(h1:T ) together with the Straight-Through trick, the
unsupervised variational training of VLS-GPT is summarized
as follows. The semi-supervised training of VLS-GPT is shown
in Algorithm 2.

An iteration of unsupervised training consists of three steps
- latent state generation, forward computation, backward com-
putation. First, we run sampling of h1:T (via greedy decoding
in our experiments) from qφ(h1:T |u1:T , r1:T ), which is termed
as latent state generation. Then in forward computation, we can
apply Algorithm 1, but treating h1:T as given, to obtain J(h1:T ).
Finally, we run the backward pass to obtain the gradients, which
are used to update the generative model parameter θ and the
inference model parameter φ.

V. EXPERIMENTS

A. Datasets

We conduct our experiments on MultiWOZ2.1 [25] and
CrossWOZ [26]. MultiWOZ2.1 is a large-scale English multi-
domain dialogue datasets of human-human conversations. Com-
pared to MultiWOZ2.0, MultiWOZ2.1 removed noisy state val-
ues from the dialog state annotations. It contains 8438 multi-turn
dialogues with 13.68 average turns, spanning over seven do-
mains (restaurant, train, attraction, hotel, taxi, hospital, police)
and providing additional validation set and test set, each of 1000
dialogues.

CrossWOZ is the first large-scale Chinese Cross-Domain
Wizard-of-Oz task-oriented dataset. It contains 6 K dialogue
sessions and 102 K utterances for 5 domains, including hotel,
restaurant, attraction, metro, and taxi. Moreover, the corpus
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TABLE II
END-TO-END EVALUATION RESULTS ON FULLY-SUPERVISED MULTIWOZ2.1

contains rich annotation of dialogue states and dialogue acts
at both user and system sides.

B. Data Pre-Processing

We delexicalize dialog responses to reduce surface language
variability on both datasets. During delexicalization, we
replace values in the ontology with specific placeholders
such as [value_name] and [value_price]. We use the
same pre-processing method as in UBAR [24], which
implements domain-adaptive pre-processing like in DAMD [7].
This pre-processing method adopts a domain-adaptive
delexicalization scheme, which decouples the domain and
slot name of placeholders, by representing belief states
as [domain1] slot value slot value [domain2] slot value
sequences and representing system acts as
[domain] [inform] slot [request] slot sequences. The
domains, acts and placeholders for slot values are all bracketed
as special tokens. Remarkably, to interact with real users, the
system will lexicalize the generated delexicalized responses
using the generated belief states and the entities queried from
the database, which currently is a common practice.

C. Metrics

In our experiments on MultiWOZ2.1, we follow the original
MultiWOZ guidance [36] for individual metrics and follow [37]
for the combined score. Inform Rate measures how often the
entities provided by the system are correct. Success Rate refers
to how often the system is able to answer all the requested
attributes by user. BLEU Score is used to measure the fluency
of the generated responses by analyzing the amount of n-gram
overlap between the real responses and the generated responses.
And Combined Score is computed as (BLEU + 0.5 * (Inform +
Success)).

As for CrossWOZ, we develop end-to-end corpus-based eval-
uation scripts, which are missing in the original release of
CrossWOZ. In MultiWOZ, the Inform and Success metrics are
computed in session-levels, which means entity matching and
success can only be 0 or 1 for a dialog. We propose to use finer
grained metrics on CrossWOZ, considering its characteristics.
Match rate is a turn-level metric to measure the system’s ability
to provide correct entities, which is obtained by calculating
the proportion of turns providing correct entities in all turns
that provide entities. Request Success rate (Req-Suc) is also a
turn-level metric, namely the proportion of informative attributes
in oracle system acts that appear in generated responses, which

reflects the system’s ability to successfully answer user requests.
BLEU measures the fluency of generated responses. Combined
Score is computed as (BLEU + 0.5 * (Match + Req-Suc)).

Note that different from MultiWOZ, users in CrossWOZ may
ask for multiple entities with different constraints in the same
domain at different turns. For example, the user wants to eat in
both a roast duck restaurant and a pancake restaurant. The user
asked about the two types of restaurants in two different turns
and the system must provide correct entities respectively. It is
better to calculate Match rate turn by turn in this case. Req-Suc
does not check the matching of entities again, since turn-level
entity matching is already evaluated by Match rate.

D. Implementation Details

All models are trained on two 16-GB Tesla P100 GPUs. The
training time of one semi-supervised experiment (Semi-ST or
Semi-VL) with a certain label proportion in Table III is about two
days. We implement the models with Huggingface Transformers
repository of version 3.5.1. We initialize the generative and
inference models with DistilGPT2 which is a distilled version of
GPT-2 and has 6 self-attention layers. The maximum sequence
length is 1024 and sequences that exceed 1024 tokens are pre-
truncated. We use the AdamW optimizer and a linear scheduler
with 20% warm-up steps. We run 50 epochs during supervised
pre-training and 40 epochs during semi-supervised learning.
Early stopping is not used in our experiment and we select the
model of the highest combined score on validation set during
training. The maximum learning rate of linear scheduler is 1e-4
and the batch size is 32 dialogs, which is implemented with basic
batch size of 2 and gradient accumulation steps of 16. During
evaluation, we use the greedy decoding method and generate
latent states and responses in batches with the past-key-values
mechanism to reduce time consuming. We will release the code
when this work is published.

E. Fully-Supervised Baselines

In this section, we show the results of end-to-end modeling
and evaluation in the fully-supervised setting, where the models,
trained with 100% labeled data, are used to generate belief states,
query database with the generated belief states, and then generate
acts and responses. In the fully-supervised setting, only the
generative model in VLS-GPT, namely VLS-GPT-p, is trained
and tested. We compare VLS-GPT-p with other task-oriented
end-to-end models including LABES [13], SimpleTOD [21],
AuGPT [23] and UBAR [24]. The main purpose of the fully-
supervised experiments is to gauge the strength of the generative
model VLS-GPT-p. The results are shown in Table II.

Table II shows that VLS-GPT-p obtains state-of-the-art re-
sults on MultiWOZ2.1, compared to other recent models in an
end-to-end evaluation.6 Considering that the generative model
VLS-GPT-p is similar to UBAR (but can be suited to variational

6Note that the end-to-end results reported in UBAR’s original paper [24] are
obtained through an incomplete end-to-end evaluation, where the oracle belief
states are used for database query. When also using this trick in our evaluation,
VLS-GPT-p obtains a combined score of 106.6, which is higher than 105.7
reported in UBAR.
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TABLE III
SEMI-SUPERVISED RESULTS ON MULTIWOZ2.1 AND CROSSWOZ

learning), and their results are close to each other, the two models
were run with 3 random seeds. Further, taking each testing
dialog as a sample, we conduct the matched-pairs significance
test [38] to compare fully-supervised VLS-GPT-p and UBAR.
The p-values for Inform, Success and BLEU are 0.42, 0.87, 0.23,
respectively. Overall, these results show that fully-supervised
VLS-GPT-p achieves minor improvement over as UBAR (not
significantly better). Enhancing the fully-supervised baseline is
not the main focus of this paper.

F. Semi-Supervised Experiments

Some proportions of the labeled dialogs from MultiWOZ2.1
training set are randomly drawn, with the rest dialogs treated
as unlabeled. In supervised-only training, denoted by SupOnly,
the rest dialogs are discarded and only the generative model
VLS-GPT-p is trained. Different semi-supervised models are
trained in two stages. The first stage is supervised pre-training
of VLS-GPT-p and VLS-GPT-q (if used) over labeled data
only. The second stage is semi-supervised learning over both
labeled and unlabeled data. Semi-supervised models could be
implemented by the variational learning method (Semi-VL) or
the self-training (Semi-ST) baseline method. Semi-VL stands
for exactly what VLS-GPT does, as shown in Algorithm 2.
Self-training (ST), also known as pseudo-labeling, is a classic
strong semi-supervised learning method. It uses only the gen-
erative model VLS-GPT-p and performs as its name suggests,
i.e. generating hypothesized labels using the current model
and then perform supervised training with the pseudo-labeled
samples to update the model. See Section V-I for more details
about ST.

We conduct semi-supervised experiments with different label-
ing proportions from 10% to 50%. The results on MultiWOZ2.1
and CrossWOZ are shown in Table III. The combined scores
against label proportions with standard deviations are shown in
Fig. 5. The main observations are as follows.

First, we can see that the two semi-supervised methods
(Semi-ST and Semi-VL) generally outperform the SupOnly
method across the two datasets of different languages and
at different label proportions. This clearly demonstrate the
advantage of semi-supervised TOD systems. A few results
where Semi-ST performs worse than SupOnly may reflect some
instability of Semi-ST.

Second, when comparing the two semi-supervised methods,
Semi-VL generally performs better than Semi-ST across differ-
ent languages and label proportions. A close look at Table III
reveals that the improvements of Semi-VL over Semi-ST are
much larger in Match Rate and Success Rate than in BLEU.
Remarkably, the Inform and Success metrics depend on the
capability of a particular method for predicting hidden states
(belief states and system acts). In contrast, BLEU measures
the fluency of generated responses and may be improved just
by observing more (unlabeled) responses. In semi-supervised
experiments, the system responses are observed in both methods
of Semi-VL and Semi-ST, which may make BLEU results across
different methods differ not much. Therefore with the above
analysis, better Inform and Success of Semi-VL than Semi-ST
indicate the superiority of Semi-VL in learning from unlabeled
data to improve the prediction accuracy of belief states and
system acts, not merely to improve BLEU.

Third, From Table III, careful readers may find that Semi-
VL outperforms Semi-ST with a large margin on MultiWOZ
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Fig. 5. Combined Scores at different label proportions on MultiWOZ2.1 and CrossWOZ. The standard deviations are shown by the error bars.

2.1, while it only slightly outperforms Semi-ST on CrossWOZ.
Presumably, this difference is caused by the more complexity
of CrossWOZ, compared to MultiWOZ. The average number
of mentioned domains per dialog in CrossWOZ is 3.24, while
it is 1.80 in MultiWOZ. Moreover, users in CrossWOZ may
ask for multiple entities with different constraints in the same
domain at different turns, as introduced in SectionV-C; and there
are many co-references when users query nearby entities. The
more complexity of the dialog tasks in CrossWOZ increases the
difficulty for both Semi-VL and Semi-ST in predicting belief
states in many cases. As long as the predicted belief states are not
completely correct, the results produced by both methods will
be counted as failures and the difference between the metrics
from the two methods will become smaller.

Fourth, notably, combining Table II and III, we can see that
Semi-VL of VLS-GPT with only 20% labeled data already
performs better than fully-supervised LABES (namely with
100% labeled data). Moreover, it is observed that Semi-VL
of VLS-GPT with 50% labeled data performs close to the
fully-supervised VLS-GPT. These results clearly show that the
benefit of combining the strengths of both pre-trained GPT
and variational learning for semi-supervisded TOD systems.
Dialog examples are provided in Section V-K to understand the
superiority of Semi-VL over SupOnly and Semi-ST.

Finally, from the plot of metric scores against labeling pro-
portions in Fig. 5, we observe that the smaller proportion of
labels, the larger gain obtained by the semi-supervised methods.
The semi-supervised methods can significantly improve the
performance when the label proportion is as small as 10%, which
demonstrates the fast learning capability of the semi-supervised
learning methods.

G. The Performance of Inference Model

As suggested by a referee, we examine the performance of
the inference models in inferring the latent states (belief states,
DB results and system actions). We consider the two inference
models, which are obtained by the two methods of SupOnly and
Semi-VL respectively with 10% labeled data on MultiWOZ2.1.

TABLE IV
THE PERFORMANCE OF THE INFERENCE MODELS TRAINED BY DIFFERENT

METHODS WITH 10% LABELED DATA ON MULTIWOZ2.1

The ground truth latent states and the inferred latent states (via
greedy decoding with the inference models) are compared on the
test set of MultiWOZ 2.1. The joint goal accuracy (Joint Goal)
and slot F1 score (Slot F1) for belief states, DB result accuracy
(DB acc), and system act F1 score (Act F1) are calculated and
the results are shown in Table IV. It can be seen that the Joint
Goal, Slot F1 and DB acc of the inference model of Semi-VL are
substantially increased, when compared to the inference model
of SupOnly. This shows the advantage of variational learning.
On the other hand, it is interesting to see that the Act F1 becomes
worse after Semi-VL. Notably, the variational ELBO objective
(9) consists of two terms, and the second term is to minimize
the KL divergence of the approximate posterior from the prior
of latent states, which acts as a regularizer [11]. Note that the
prior for at (i.e., determining at from ut without knowing rt)
is dramatically different from its posterior (i.e., determining at
with both ut and rt), while less so for bt (i.e., determining bt
from ut with rt or not). Thus, pushing the posterior closer to the
prior will presumably have more adverse effect on learning the
posterior of at than on that of bt. This reveals some shortcoming
of variational learning and points to interesting future work.

H. Complexity Analysis

Recall that an iteration in Semi-VL consists of three steps -
latent state generation, forward computation, backward compu-
tation. Due to its auto-regressive nature, the generation process
of GPT-2 is very slow and latent state generation in Semi-VL
consumes large amounts of training time. Take running Semi-VL
with 20% labels on MultiWOZ2.1 in two 16-GB Tesla P100
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TABLE V
ABLATION EXPERIMENTS ON DIFFERENT SEMI-SUPERVISED SELF-TRAINING

SCHEMES WITH 10% LABELED DATA ON MULTIWOZ2.1

GPUs as an example. The three steps for an epoch take 32
minutes, 12 minutes and 12 minutes respectively. In the pro-
posed sampling-then-forward-computation strategy, we first use
the inference model to generate latent states without gradients
(requires_grad=false), so that we can use a much larger batch
size of 32 in latent state generation. In contrast, if we use the
previous strategy of coupling sampling and forward computation
in one pass, the affordable batch size is 2 and such one-forward-
pass takes 300 minutes for an epoch. Thus, the proposed strat-
egy achieves a speedup by 7-fold (300/(32+12)). In summary,
the proposed strategy of sampling-then-forward-computation in
training not only reduces the memory cost, but also accelerates
latent state generation substantially.

I. On the Self-Training Semi-Supervised Method

Notably, applying self-training to the generative model VLS-
GPT-p is different from applying self-training to an ordinary
classifier, and there are several possible schemes. This section
introduces more experiments on the self-training methods, and
we choose the strongest among possible self-training schemes
as the Semi-ST method, which is reported in Table V to compare
with Semi-VL.

In self-training, given unlabeled dialog {u, r}1:T , we generate
hypothesized label h1:T via greedy decoding based on the latent
state prior

∑T
t=1 log pθ(ht|h<t, r<t), and then use the pseudo-

labeled h1:T to update the generative model parameter θ by
maximizing the response probability,

JST-response =
T∑

t=1

log pθ(rt|h<t, r<t, ht)

or the joint probability

JST-joint =
T∑

t=1

[log pθ(ht|h<t, r<t) + log pθ(rt|h<t, r<t, ht)] .

In forward calculation of either objective function, we can apply
STT (h

(i)
t ) and thus the gradients will propagate through the

discrete h1:T , while classic self-training does not use STT.
Notably, self-training typically involves only one model, i.e.

VLS-GPT-p here. The model used for prediction in testing is
used for predicting pseudo labels in training. As suggested by
a referee, we experiment with a variant of self-training, which
uses not only VLS-GPT-p but also VLS-GPT-q. This ST scheme
involves two models and is referred to as “ST with inference

model”. Specifically, we first use labeled data to train VLS-GPT-
q, which is then used to predict pseudo labels for unlabeled data.
Finally, both labeled data and pseudo-labeled data are used to
train the generative model VLS-GPT-p in a supervised manner.

Table V shows the semi-supervised results for the five pos-
sible schemes of self-training with 10% labeled data on Mul-
tiWOZ2.1. It can be seen that using JST-response with Straight-
Through performs the best, which is exactly the Semi-ST used
in Table III for comparing with Semi-VL and represents a strong
semi-supervised baseline.

Presumably, the performance superiority of Semi-VL over
the self-training methods comes from introducing the infer-
ence model for hypothesis generation and optimizingbased on
the solid variational learning principle. The first four ST only
use the prior pθ(ht|h<t, r<t) for hypothesis generation. In
contrast, Semi-VL uses the inference model via the posterior
qφ(ht|h<t, r<t, rt), and thus can exploit more information from
rt to infer belief states and system acts. Remarkably, the per-
formance of “ST with inference model” is moderate among
the ST schemes. It seems that simply introducing an inference
model, through supervised pre-training, to predict pseudo labels
is inferior to Semi-VL. Importantly, the inference model in
Semi-VL is optimized based on the solid variational learning
principle. This is beneficial for the inference model in Semi-VL
to learn to generate better pseudo-labeled samples.

J. Comparison With Data Augmentation

In addition to semi-supervised learning, a widely-used
method to improve system performance in low resource scenar-
ios is data augmentation. Data augmentation (DA) is a technique
that augments the labeled training set with label-preserving
synthetic samples. An effective DA method for TOD systems is
paraphrasing via back-translation, as shown in AuGPT [23]. In
AuGPT, a trained multilingual machine translation model [39] is
employed with ten intermediate languages, and a set of different
paraphrases for each input utterance is obtained. We use the
paraphrased data released by AuGPT at GitHub7 and conduct
experiments in the same low resource settings as in Table III.
Specifically, some proportions of the labeled dialogs from the
MultiWOZ2.1 training set are drawn and paraphrased, which
are used to train the generative model VLS-GPT-p. In training,
as in AuGPT, we choose the input user utterance uniformly at
random from the set of all variants of the utterance including
the original one. The results are shown in Table VI. We can see
that the models trained with augmented data perform slightly
better than the SupOnly baseline in Table III at the labeling
proportions of 50% and 30%, while they are inferior to SupOnly
at other proportions. The proposed Semi-VL outperforms the
back-translation DA method at all proportions significantly.
Presumably, such performance difference may be attributed to
the fact that semi-VL can exploit not only the labeled data but
also the unlabeled data, while back-translation only augments
the labeled data.

7[Online]. Available: https://github.com/ufal/augpt/
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TABLE VI
DATA AUGMENTATION (BACK-TRANSLATION) RESULTS ON MULTIWOZ2.1

TABLE VII
A LEXICALIZED TESTING EXAMPLE IN MULTIWOZ2.1

K. Case Study

We provide a lexicalized testing example in MultiWOZ2.1 in
Table VII. It can be seen that the supervised-only (SupOnly)
baseline fails to predict the correct belief state, while Semi-VL
makes the correct prediction. The SupOnly model misses the
generation of the pricerange slot and its corresponding value
expensive. Due to the incorrect belief state, the SupOnly model
gets the wrong database result, and generates a completely in-
appropriate response. The belief state generated by the Semi-ST
model contains some error but does not affect the generated
response. The Semi-VL model outperforms the previous two
models and generates both belief state and response perfectly.
Table VIII shows an example in MultiWOZ2.1, which helps to
illustrate why unlabled dialog data are helpful in learning TOD
systems. Intuitively, there are cues from user inputs and system
responses, which reveal the belief states, database results and
system acts. So the dialog data, even unlabeled, can be used to
enhance the performance of belief tracking and action selection,
and thus benefit the whole dialog system.

TABLE VIII
AN EXAMPLE IN MULTIWOZ2.1

Table IX is an example from CrossWOZ testing set. The user
utterance informs the constraint of “duration” and requests about
the fee and surrounding restaurants. Among the three models,
only Semi-VL generates the correct belief state. SupOnly gen-
erates “fee 1_hour,” which is false. Semi-ST mistakenly adds a
slot-value pair “fee free”.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose Variational Latent-State GPT model
(VLS-GPT), which, to the best of our knowledge, is the first
to combine the strengths of large pre-trained language model
and variational learning for semi-supervisded TOD systems.
Due to the use of the Transformer architecture, the inference
model in VLS-GPT is non-Markovian. The variational ELBO
objective is thus an expectation under non-Markovian inference
model. Its stochastic optimization presents new challenges, both
statistically and computationally, compared to previous vari-
ational learning works for sequential latent variable models,
which use turn-level first-order Markovian. In this work, we
establish Recursive Monte Carlo Approximation (RMCA) to
ELBO with non-Markovian inference model and prove its un-
biasedness. Further, we develop the computational strategy of
sampling-then-forward-computation to realize RMCA, which
successfully overcomes the memory explosion issue of using
GPT in variational learning and speeds up training.

Semi-supervised TOD experiments are conducted on two
benchmark multi-domain datasets - MultiWOZ2.1 in English
and CrossWOZ in Chinese. VLS-GPT is shown to outperform
the supervised-only baseline, the strong semi-supervised GPT-
based self-training baseline, and the variational learning only
baseline, across languages.
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TABLE IX
AN EXAMPLE FROM CROSSWOZ TESTING SET

Remarkably, the recursive Monte Carlo approximation to
ELBO with non-Markovian inference model and the computa-
tional strategy of sampling-then-forward-computation are useful
in general for variational training of Transformer based latent
variable models. On top of VLS-GPT, there are interesting
directions for future work. First, it is interesting to extend
VLS-GPT to leverage unlabeled open-domain data together with
in-domain data for better semi-supervised learning of TOD sys-
tems. Second, as overviewed in Section II-B, variational latent
variable models can be used in TOD systems to enhance not
only semi-supervised learning but also reinforcement learning.
While this paper mainly develops GPT based variational latent
variable models for semi-supervised learning of TOD systems,
it is definitely worthwhile to investigate the utilization of the
RMCA and the sampling-then-forward-computation methods to

learn GPT based latent action models for reinforcement learning
of TOD systems. Hopefully this may be realized by marrying
LaRL or LAVA-type models with some variant of VLS-GPT.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Note that for both the generative model pθ in (5) and
the inference model qφ in (6), the auto-regressive structures at the
token-level are very close to those at the turn-level. This analogy
can also be seen from the similarity between the token-level
sum in (10) and the turn-level sum in (9). Thus, without loss of
generality, we mainly prove the unbiasedness of the turn-level
recursive Monte Carlo approximation shown in Algorithm 3, i.e.

Eqφ(h1:T |u1:T ,r1:T ) [F (h1:T )] = JVL(T ) (12)
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Algorithm 3: Turn-Level Recursive Monte Carlo Approxi-
mation.

Input:u1:T , r1:T with generative model pθ in (5),
inference model qφ in (6)
F = 0;
for t = 1 to T do

Given previous sampled states h<t:
F+ =

∑
h̄t

qφ(h̄t|h<t, r<t, rt) log
pθ(h̄t|h<t,r<t)

qφ(h̄t|h<t,r<t,rt)

Draw ht ∼ qφ(ht|h<t, r<t, rt);
F+ = log pθ(rt|h<t, r<t, ht);

end for
Return: F

The unbiasedness of the token-level recursive Monte Carlo
approximation shown in Algorithm 1 can be proved analogously.

First, (12) clearly holds forT = 1. Then, we proceed by math-
ematical induction. Suppose (12) holds for T ≥ 1. Consider
F (h1:T+1), which can be written as:

F (h1:T+1) = F (h1:T )︸ ︷︷ ︸
a1

+ log pθ(rT+1|h1:T , r1:T , hT+1)︸ ︷︷ ︸
b1

+

∑
h̄T+1

qφ(h̄T+1|h1:T , r1:T , rT+1) log
pθ(h̄T+1|h1:T , r1:T )

qφ(h̄T+1|h1:T , r1:T , rT+1)︸ ︷︷ ︸
c1

(13)

where hT+1 ∼ qφ(hT+1|h1:T , r1:T , rT+1).
According to (6), we have

qφ(h1:T+1|r1:T+1) = qφ(h1:T |r1:T )qφ(hT+1|h1:T , r1:T , rT+1)
(14)

where we suppress the dependence on ut’s.
Consider JVL(T + 1), which can be written as:

JVL(T + 1)

= Eqφ(h1:T |r1:T )qφ(hT+1|h1:T ,r1:T ,rT+1)⎡
⎢⎢⎢⎢⎣log pθ(rT+1|h1:T , r1:T , hT+1)︸ ︷︷ ︸

b2

+

T∑
t=1

log pθ(rt|h<t, r<t, ht)︸ ︷︷ ︸
a2

⎤
⎥⎥⎥⎥⎦

+ Eqφ(h1:T |r1:T )qφ(hT+1|h1:T ,r1:T ,rT+1)⎡
⎢⎢⎢⎢⎣

pθ(hT+1|h1:T , r1:T )

qφ(hT+1|h1:T , r1:T , rT+1)︸ ︷︷ ︸
c2

+
T∑

t=1

log
pθ(ht|h<t, r<t)

qφ(ht|h<t, r<t, rt)︸ ︷︷ ︸
a3

⎤
⎥⎥⎥⎥⎦

(15)

Next, we will see the equality between JVL(T + 1) and the
expectation over F (h1:T+1) under qφ(h1:T+1|u1:T+1, r1:T+1).

� The sum of expected a2 and a3 terms in JVL(T + 1)
is JVL(T ), which equals to the expected a1 term in
F (h1:T+1), by induction hypothesis;

� The expected b2 term inJVL(T + 1) is exactly the expected
b1 term in F (h1:T+1);

� The expected c2 term inJVL(T + 1) is exactly the expected
c1 term in F (h1:T+1).

Thereby, we show that the expected F (h1:T+1) equals to
JVL(T + 1). This concludes the inductive step. �
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[17] P. Budzianowski and I. Vulić, “Hello, it’s GPT-2 - how can I help you?
towards the use of pretrained language models for task-oriented dialogue
systems,” in Proc. 3rd Workshop Neural Gener. Transl. Assoc. Comput.
Linguistics, 2019, pp. 15–22.

[18] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, 2019, Art. no. 9.

[20] D. Ham, J.-G. Lee, Y. Jang, and K.-E. Kim, “End-to-end neural pipeline for
goal-oriented dialogue systems using GPT-2,” in Proc. 58th Annu. Meeting
Assoc. Comput. Linguistics, 2020, pp. 583–592.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2023 at 08:28:09 UTC from IEEE Xplore.  Restrictions apply. 

http://openai-assets.s3.amazonaws.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://openai-assets.s3.amazonaws.com/research-covers/language-unsupervised/language_understanding_paper.pdf


984 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

[21] E. Hosseini-Asl, B. McCann, C.-S. Wu, S. Yavuz, and R. Socher, “A simple
language model for task-oriented dialogue,” Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 33, pp. 20179–20191, 2020.

[22] B. P. C. Li, J. Li, S. Shayandeh, L. Liden, and J. Gao, “SOLOIST: Building
task bots at scale with transfer learning and machine teaching,” Trans.
Assoc. Comput. Linguistics, 2020, pp. 807–824.
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