4
Graph Theory

The power and appeal of probabilistic networks stems from the pictorial
representation they provide of the structural inter-relationships and de-
pendencies between the variables of a problem, and the fact that these
pictures have a formal definition as graphs. Many people find this form
easy to understand and manipulate. But the graphs also serve as a precise
and compact way of communicating these relations to a computer, paving
the way for the use of efficient computational algorithms.

Problems that can be usefully tackled by probabilistic networks are those
for which the graphs are relatively sparse. Such structures exhibit many in-
dependence relationships, thereby facilitating local inference, involving only
a few variables at any one time. This chapter collects together a number of
ideas and results from graph theory, and primarily contains definitions, no-
tation, properties, and algorithms. Readers may prefer to skip this chapter
on first reading and refer back to it only to clarify unfamiliar terms.

4.1 Basic concepts

Graph theory can be developed as a purely abstract mathematical subject.
However, much of the immediate power of graph theory when applied to
probabilistic expert systems lies in its ability to present a visual summary
of expert knowledge or opinion about some subject. Accordingly, we shall
develop graphical ideas and theorems making liberal use of pictorial rep-
resentations. There are many variants of definitions and notations in use,



hence the need here to state explicitly those that will be used throughout
the book.

We define a graph G to be a pair G = (V, E), where V is a finite set
of vertices, also called nodes, of G, and E is a subset of the set V x V of
ordered pairs of vertices, called the edges or links of G. Thus, as E is a set,
the graph G has no multiple edges. We further require that F consist of
pairs of distinct vertices so that there are no loops.

If both ordered pairs (o, ) and (8,a) belong to E, we say that we
have an undirected edge between a and 3, and write a ~ 8 (or a ~g
to indicate the relevant graph G; similar elaborations may be made to the
other notation introduced below). We also say that o and 3 are neighbours,
« is a neighbour of 8, or 3 is a neighbour of . The set of neighbours of a
vertex [ is denoted by ne(g3).

If (a, B) € E but (f,a) € E, we call the edge directed, and write a — .
We also say that a is a parent of 3, and that 3 is a child of a. The set
of parents of a vertex A is denoted by pa(8), and the set of children of a
vertex a by ch(a). The family of 3, denoted fa(B), is fa(8) = {8} U pa(B).

If (o, 3) € E or (8,a) € E we say that a and 3 are joined. Then a « 8
indicates that a and /3 are not joined, i.e., both (o, 3) € E and (8,a) € E.
We also write a 4 B if (o, 3) € E.
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FIGURE 4.1. Examples of valid graphs on four vertices.

Figure 4.1 illustrates some graphs permitted by our definitions. Vertices
are visually represented by (possibly) labelled circles, directed edges by
arrows, and undirected edges by lines. In (iii) A~ Band A — C, but A
D. In contrast, Figure 4.2 shows some ‘graphs’ which fail our definition, but
which may pass definitions used by other authors for different purposes.

If A C V, the expressions pa(A), ne(A) and ch(A) will denote the collec-
tion of parents, children, and neighbours, respectively, of the elements of
A, but exclude any element in A:

pa(Ad)  =U,ecqpa(a)\ 4
ne(A) =,cqne(a)\ A
ch(A) =U,each(a)\ A.

Referring to Figure 4.1(iii), A is a parent of C, and thus C a child of A.
Also, B is a parent of D, so that D is a child of B. In addition, C' and
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FIGURE 4.2. Examples of invalid graphs on four vertices. Examples (i), (ii) and
(iii) exhibit illegal multiple edges of various types; example (iv) exhibits a loop
as the node A is connected to itself.

D are neighbours, as are A and B. Finally, we have that pa({A, B}) = 0,
while pa({C, D}) = {A, B}.

If all the edges of a graph are directed, we say that it is a directed graph.
Conversely, if all the edges of a graph are undirected, we say that it is
an undirected graph. Referring again to Figure 4.1, graphs (i) and (iv) are
directed graphs and (ii) is an undirected graph; neither of graphs (iii) nor
(v) specialize to either of these two categories.

The boundary bd(a) of a vertex a is the set of parents and neighbours
of @; the boundary bd(A) of a subset A C V is the set of vertices in V' \ A
that are parents or neighbours to vertices in A, i.e., bd(A) = pa(A)Une(A).
The closure of A is cl(A) = AUbd(A). Hence, in Figure 4.1(i), bd(A) = 0,
while in (iii), bd(C) = {A, D}.

The undirected version G~ of a graph G is the undirected graph obtained
by replacing the directed edges of G by undirected edges. For example,
Figure 4.1(ii) is the undirected version of the other four graphs.

We call G4 = (A,E4) a subgraph of G = (V,E) if A C V and E4 C
E'N (A x A). Thus, it may contain the same vertex set but possibly fewer
edges. If, in addition, E4 = E N (A x A), we say that G4 is the subgraph
of G induced by the vertex set A. This is illustrated in Figure 4.3.
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FIGURE 4.3. A graph (i), a subgraph (ii), and a vertex induced subgraph (iii).

A graph is called complete if every pair of vertices is joined. Figure 4.4
shows the complete undirected graph on five vertices. We say that a subset



of vertices of G is complete if it induces a complete subgraph. A complete
subgraph which is maximal (with respect to C) is called a cligue. In all
graphs of Figure 4.1 there are four cliques: {A, B}, {A4,C}, {C, D}, and
{B, D}. In Figure 4.3(i) there are three cliques: {A, B,C}, {B,C, E}, and

{B,D, E}.

FIGURE 4.4. The complete undirected graph on five vertices.

A path of length n from « to 8 is a sequence & = ag,... ,a, = 3 of
distinct vertices such that (a;_,,0;) € E for all i = 1,... ,n. Thus, a path
can mever cross itself and movement along a path never goes against the
directions of arrows.

If the path of length n from a to 8 given by the sequence & = ay, ... ,a,
= 3 is such that for at least one i € {1,...,n} there is a directed edge
@;_1 — a;, we say that the path is directed.

We write a — (3 if there is a path from a to (3, and say that « leads to 3.
If @ + § and B — a we say that a and 3 connect, and write a = §. This is
clearly an equivalence relation which induces equivalence classes [a], where

BE€la] ®a=p.

We call the equivalence classes the strong components of G. If a € AC V,
the symbol [a] 4 denotes the strong component of & in G 4. In Figure 4.1(iii)
the strong components are {A, B} and {C, D}.

A graph G is said to be connected if there is a path between every pair of
vertices in its undirected version G~. Any graph can be decomposed into
a umion of its connected components. The connected components are the
strong components of G™.

An n-cycle is a path of length n with the modification that the end
points are identical. Similarly a directed n-cycle is a directed path with
the modification that the end points are identical. We say that a graph is
acyclic if it does not possess any cycles.

A directed graph which is acyclic is called a directed acyclic graph, or
DAG. A graph that has no directed cycles is called a chain graph. Thus,
undirected graphs and directed acyclic graphs are both special cases of

chain graphs.



For example, in Figure 4.1 graphs (i) and (iv) are directed graphs, but
(iv) has a directed cycle and so is not a directed acyclic graph, whereas (i)
is a DAG. Similarly, neither of the graphs (iv) and (v) are chain graphs,
as they contain directed cycles, whereas graphs (i), (ii), and (iii) are chain

graphs.

A trail of length n from a to 3 is a sequence o = ag,...,a, = 3 of
distinct vertices such that «;_; — a;, or o; — @, 1, or &, ~ a; for all
i=1,...,n. Thus, movement along a trail could go against the direction

of the arrows, in contrast to the case of a path. In other words, a trail in G
is a sequence of vertices that form a path in the undirected version G™ of

If K is a chain graph, let K7* denote the same graph but with the directed
edges removed. Then each connected component of K7* is called a chain
component of K. The strong components of a chain graph K are exactly its
chain components. In fact, a graph is a chain graph if and only if its strong
components induce undirected subgraphs.

As a special case, each node of a DAG D forms a chain component of D.
Figure 4.5 shows a six-vertex chain graph having five chain components.
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FIGURE 4.5. A six-vertex chain graph. The chain components are A, B, {C,D},
E, and F.

It is always possible to well-order the nodes of a DAG by a linear order-
ing or numbering such that, if two nodes are connected, the edge points
from the lower to the higher of the two nodes with respect to the order-
ing. For example, the graph in Figure 4.3(i) has the unique well-ordering
(A, B,C,E, D). Note that a DAG may not have a unique well-ordering. If
a DAG is well-ordered, the predecessors of a node a, denoted by pr(a), are
those nodes that have a lower number than a.

A simple method to construct such a well-ordering is the following:

Algorithm 4.1 [TOPOLOGICAL SORT]
* Begin with all vertices unnumbered.
* Set counter i := 1.

* While any vertices remain:
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— Select any vertex that has no parents;
— number the selected vertex as i;

— delete the numbered vertex and all its adjacent edges from the
graph;

— increment i by 1. O

Alternatively, we can use the dual version of this algorithm, which recur-
sively selects and deletes childless vertices, while numbering downward.

The above algorithm, or its dual, extends to well-ordering the chain com-
ponents of a chain graph as follows. Let K be a chain graph having the set
of chain components K. Then, instead of selecting a parentless node for
deletion, one selects a parentless chain component, that is a chain compo-
nent none of whose nodes have parents. The result is a well-ordering of the
chain components. One possible well-ordering of the chain components of
Figure 4.5 is (A, B, {C, D}, E, F); yet another is (E,B,A,{C,D},F).

Given a chain graph, the set of vertices a such that a — £ but not 8 — a
is the set an() of the ancestors of 3, and the descendants de(e) of e are
the vertices 3 such that a — 8 but not g+ a. The nondescendants nd(«)
of a is the set V \ (de(a) U ). If bd(a) C A for all a € A, we say that
A is an ancestral set. The symbol An(A) denotes the smallest ancestral
set containing A. Note that in general An(A) # A Uaea an(a). Thus, in
Figure 4.5 the set of ancestors of F' consists of all remaining nodes. The
ancestors of C are {A, B}, F is the only descendant of C, {A,B,C,D} is
an ancestral set, and An(C) = {4, B,C, D}. Node E has no ancestors, and
{E} is an ancestral set. The set of nondescendants of D is {A,B,C,E}.

A subset C C V is said to be an (a, 8)-separator if all trails from a to
3 intersect C. The subset C is said to separate A from B if it is an (e, B)-
separator for every a € A and 8 € B. An (a, 8)-separator C is said to be
minimal if no proper subset of C is itself an (a, §)-separator. In Figure 4.5
the set {C, D} is an (A, F)-separator; moreover, both C and D are each
minimal (A, F)-separators. In Figure 4.3(i) both {B,C} and {B,E} are
minimal (A, D)-separators.

An important class of graphs is that of the trees. We say that a graph
G is a tree if it is connected and its undirected version G™ has no cycles;
thus, there is a unique trail in a tree between any two vertices. We use the
symbol 7 to denote a tree graph. A rooted tree is a tree with a designated
vertex p called the root. A leaf of a tree is a node that is joined to at
most one other node. A tree that has more than one node thus has at least
two leaves. The diameter of a tree is the length of longest trail between
two leaf nodes. A forest is a graph having no cycles, that is, its connected
components are all trees. The graph of Figure 4.5 is a tree.

Given a chain graph K, we define the moral graph of K to be the undi-
rected graph K™ obtained from K by first adding undirected edges between
all pairs of vertices that have children in a common chain component and
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that are not already joined, and then forming the undirected version of the
resulting graph.

For the special case in which K is a DAG, this process of moralization
involves adding undirected edges between all pairs of parents of each ver-
tex which are not already joined, and then making all edges undirected.
Figure 4.6 shows the moral graph of Figure 4.5, obtained by adding the two
undirected edges A ~ B (common parents of the chain component {C, D})
and D ~ E (the parents of the chain component F'), and then forming the
undirected version. This moralization procedure is an important first step
in constructing the inference engine for a probabilistic network specified by
a chain graph.

FIGURE 4.6. The graph of Figure 4.5 and its moral graph.

4.2 Chordal and decomposable graphs

An important type of graph is the decomposable graph, which we charac-
terize below. This is basic to the analysis of probabilistic networks. The
qualitative and quantitative expertise encoded within a probabilistic net-
work can be transformed into a decomposable graph, using well-defined
graphical algorithms and without loss of information, and then further
into an associated junction tree which supports efficient computational al-
gorithms. This section deals with the properties of decomposable graphs.
Junction trees and their relation to decomposable graphs are discussed in
Section 4.3 below, while Section 4.4 describes algorithms for constructing
a junction tree.

Let G be an undirected graph with vertex set V. Recall that in this case
an n-cycle in G is a sequence (ag, ay,... ,q,) of vertices in V, distinct ex-
cept that ey = a,,, and such that o; ~ a;4, for all i. Let o be an n-cycle
inG. A chord of this cycle is a pair (a;, @;) of non-consecutive vertices in o
such that @; ~ @; in G. The undirected graph G is called chordal or triangu-
lated if every one of its cycles of length > 4 possesses a chord. A definition
such as this is a so-called ‘forbidden path’ definition, which has several con-
sequences. For example, the property is stable under taking vertex-induced



subgraphs, i.e., if G is chordal and A C V, then G4 is also chordal. The
moral graph of Figure 4.6 is clearly not chordal. Figure 4.7 shows two pos-
sible chordal graphs obtained from the moral graph in Figure 4.6 by adding
one undirected edge.
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FIGURE 4.7. Two chordal graphs which can be derived from the moral graph in
Figure 4.6, by either (i) adding the edge B ~ C, or (ii) adding the edge A ~ D.

An important concept that forms the basis of localizing computation in a
probabilistic expert system is that of a decomposition of a graph, as defined
below.

Definition 4.2 [DECOMPOSITION]

A triple (A, B, C) of disjoint subsets of the vertex set V' of an undirected
graph @ is said to form a decomposition of G, or to decompose G, if V =
AU BUC, and the following two conditions hold:

1. C separates A from B;

2. C is a complete subset of V. -

Note that we allow any of the sets A, B, and C to be empty. If both A and
B are non-empty, we say that the decomposition is proper.

Definition 4.3 [DECOMPOSABLE GRAPH]

We say that an undirected graph G is decomposable if either: (i) it is
complete, or (ii) it possesses a proper decomposition (A, B,C) such that
both subgraphs Gauc and Ggue are decomposable. o

Note that this is a recursive definition, which is permissible because the
decomposition (A4, B, C) is required to be proper, so that each of Gauc and
Gpuc has fewer vertices than the original graph G.

There is a strong connection between decomposability and chordality, as
captured by the following theorem:

Theorem 4.4 The following conditions are equivalent for an undirected
graph G:



1. G is decomposable;
2. G is chordal;
3. Bvery minimal («a, 3)-separator is complete.

Proof. The result is well-known (Berge 1973; Golumbic 1980). The present
proof is taken from Lauritzen (1996).

We proceed by induction on the number of vertices |V| of G. The result
is trivial for a graph with no more than three vertices since the three
conditions are then all automatically fulfilled. So assume the result to hold
for all graphs with |V| < n and consider a graph G with n + 1 vertices.

First we show 1 = 2. Suppose that G is decomposable. If it is complete,
it is obviously chordal. Otherwise it has a decomposition (A, B,C) into
decomposable subgraphs Gayc and Gpuc, both with fewer vertices. By
the inductive hypothesis these are chordal. Thus, the only possibility for
a chordless cycle is one that intersects both A and B. But because C
separates A from B, such a cycle must intersect C at least twice. But then
it contains a chord because C is complete.

Now we show 2 = 3. Assume that G is chordal and let C' be a minimal
(o, B)-separator. If C has only one vertex, it is complete. If not, it contains
at least two vertices, v; and 7, say. Since C is a minimal separator, there
will be paths from @ to 3 via v, and back via v,. The sequence

(al"’ P T ‘.Bs--- 3 V2ye e ,G)

forms a cycle, with the modification that it can have repeated points. These,
and chords other than a link between «, and 7,, can be used to shorten
the cycle, still leaving at least one vertex in the component [a]y\ ¢ and one
in [8]y\¢, where these symbols denote the connected components of the
graph Gy\¢ containing a and 3 respectively. This produces eventually a
cycle of length at least 4, which must have a chord, whereby we get that
71 ~ 2. Repeating the argument for all pairs of vertices in C gives that C'
is complete.

Finally we show that 3 = 1. Suppose that every minimal (v, 3)-separator
is complete. If G is complete there is nothing to show. Otherwise it has at
least two non-adjacent vertices, o and 3. Assume that the result has been
established for every proper subgraph of G. Let C be a minimal (a, 8)-
Scparator and partition the vertex set into [a]y\¢, [Blv\c, C and D (where
D is the set of remaining vertices). Then, since C is complete, the triple
(A, B,C), where A = la]y\e UD, and B = [8]y\¢, forms a decomposition
of G. But each of the subgraphs G 4.c and Gzuc must be decomposable. For
if Cy is a minimal (a;, 8;)-separator in G4uc, it is also a minimal separator
in G and therefore complete by assumption. The inductive assumption im-
plies that Guc is decomposable, and similarly with Gg_c. Thus, we have
decomposed G into decomposable subgraphs. ()
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The smallest graph that is not decomposable is a 4-cycle, as displayed in
Figure 4.1(ii).

A directed acyclic graph for which the parents of every node form a
complete set is called perfect. For example, Figure 4.3(i) is a perfect directed
graph. If G is an undirected graph, then a numbering of its vertices, (vy,... ,
vy ) say, is called perfect if the neighbours of any node that have lower
numbers, i.e., ne(v;) N {vy,... ,v;-1}, induce a complete subgraph.

For example, in the graph of Figure 4.7(i), (A, By,C3, D4, E5, Fg) is a
perfect numbering, but this is not the case for (A, By, Ca, Ey4, F5, Dg).
For, in the latter numbering, the previously numbered neighbours of D,
i.e., (B,C,E,F), do not induce a complete graph. Note that any vertex
numbering of a complete undirected graph is perfect.

Given a well-ordered perfect directed graph G, its undirected version
G~ is a chordal graph for which the ordering (vq,vs,... ,vx) constitutes a
perfect numbering. This is easily seen by induction using the fact that for
all j the triple (W;,V;_1,S;) forms a decomposition of g;,;, where V; =
{vi,...,v;}, W; = cI™(v;) NV}, and S; = W; N V;_,. Here cI™ denotes
closure relative to the undirected graph G~.

Conversely, given an undirected graph G and a perfect numbering of its
vertices, (vy,... ,vx), one can construct a perfect directed graph simply by
directing the edges from lower to higher numbered vertices. It follows that
the graph G must be chordal for such a perfect numbering to exist. More
precisely, the following result holds true:

Theorem 4.5 An undirected graph is chordal if and only if it admits a
perfect numbering.

Proof. See Lauritzen (1996), Proposition 2.17. ]

It is worth noting the slightly stronger result that if G is chordal and v is
an arbitrary node of G, then a perfect numbering of G exists with v; = v:
see Algorithm 4.9 below.

4.3 Junction trees

In this section we summarize some of the important properties of junction
trees and their relationship to decomposable graphs.

Let C be a collection of subsets of a finite set V and 7 a tree with C as
its node set. Then 7 is said to be a junction tree if any intersection C1NC2
of a pair €y, C» of sets in C is contained in every node on the unique path
in 7 between C, and C,. Equivalently, for any vertex v in G, the set of
subsets in C containing v induces a connected subtree of 7. Junction trees
also appear under other names in the literature, e.g., join trees in relational
databases (see Section 4.5).
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Now let G be an undirected graph, and C the family of its cliques. If 7
is a junction tree with C as its node set, we say that 7 is a junction tree
(of cliques) for the graph G. We have

Theorem 4.6 There exists a junction tree T of cliques for the graph G if
and only if G is decomposable.

Proof. The theorem clearly holds if G contains at most two cliques. Sup-
pose that the theorem holds for all graphs with at most k cliques and let
G have k + 1 cliques.

Assume 7 is a junction tree of cliques for G. Take C and C5 adjacent in
7. On cutting the link Cy ~ Cy, T separates into two subtrees, 7; and 75.
Let Vi be the union of the nodes in 7; for ¢« = 1,2, and let G; = Gy,. The
nodes in 7; are then the cliques of G;, and 7; is a junction tree for G;. By
the inductive hypothesis, G; and G, are both decomposable. Thus, we are
done if we can show that S := V; NV, is complete and separates V) from V5.
Suppose v € V) N V,. Then there exists a clique C! of G; for each i = 1,2,
with v € C!. Clearly the path in 7 joining C| and C; passes through both
', and Cy. Therefore, v € C; N Cy and so we must have Vi NVe € C,NCos.
Since clearly C; N Cy C Vi N Va, we must have that S = C, N Cs and that
S is complete.

Now take u € V; \ S and v € V, \ S, and suppose there exists a path
u, Wy, wy,... , Wk, v with each w; € S. Then there exists a clique C con-
taining the complete set {u,w,}. Clearly C C Vi, so w, € Vi, whence
wy € Vi \ S. Repeat the argument to deduce wy € V1 \ S, ... ,v € V1 \ S.
This is a contradiction, hence S separates Vi from Vs, and (V;,V,,S) is a
decomposition of G. We have now decomposed G into subgraphs that pos-
sess junction trees and thus are decomposable by the inductive assumption.

Conversely, assume that G is decomposable, and let (W, Wy, S) be a
decomposition of G into proper decomposable subgraphs Gy,, Gv,, where
Vi = W; U S. Then at least one of V; and Vo, — say Vj — has the form
UC‘ECL C, with C; C C; and then we can, if necessary, redefine V2 = Jo e, C
(with Co = C\C;) and still have a decomposition. Let C; € C; satisfy S C C;.
By hypothesis, we have a junction tree 7; for G; where, as before, G; = Gy,.
Form T by linking C} in 7} to C3 in Ts.

Let v € V. If v € V5, then all cliques containing v are in C;, and so
connected in 7;, hence in 7. If v ¢ Vi, then similarly for 75. Otherwise
v € S. The cliques in C; containing v are connected in 7;, and include C;.
Since € and C5 are connected in 7, the result follows. o

The above proof demonstrates that an intersection S = C; NC3 between
two neighbouring nodes in a junction tree of cliques separates the decom-
posable graph G (in fact, is a minimal separator). We therefore call S the
separator associated with the edge between C; and C; of the junction tree;
we use the term separator also in the case where the nodes of the junction
tree are not all cliques. It is possible that distinct edges may have identical



separators. The set of all separators, including any such repetitions, will
be denoted by S. When G admits more than one junction tree of cliques,
it can be shown that S will be the same for all of them.

The separators are often displayed as labels on the edges of a junction
tree. They play an important role in the propagation algorithms discussed
in Chapters 6 to 8.

A clique C* € C is called extremal if, with Vo = UCeC\ {c+} C, the triple
(C*\ Vo, Vo \ C*,C* N V) is a decomposition of G. We have:

Corollary 4.7 If a chordal graph G has at least two cliques, it has at least
two extremal cliques.

Proof. Any junction tree of G has at least two leaves. o

Figure 4.8 shows junction trees constructed from the chordal graphs of
Figure 4.7, where the separators are displayed on the links as rectangu-
lar. There are two possible junction tree structures for Figure 4.7(ii), the
difference not being in their cliques but in the way they are connected.
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FIGURE 4.8. Junction trees of the chordal graphs of Figure 4.7.

A sequence (Cy,Cs,...,Ck) of sets is said to have the running in-
tersection property if, for all 1 < j < k, there is an ¢ < j such that
Cin(Ciu---UC;_,) C Ci.

The cliques of a decomposable graph can be ordered to satisfy this prop-
erty simply by well-ordering the junction tree. Conversely, if the cliques
have been ordered to satisfy the running intersection property, a junction
tree (of cliques) can be built using the following algorithm.



Algorithm 4.8 [JUNCTION TREE CONSTRUCTION]
From the cliques (C}, ... ,C}) of a chordal graph ordered to have running
intersection property:

1. Associate a node of the tree with each clique C;.

2. Fori=2,...,p, add an edge between C; and C; where j is any one
value in {1,... ,i — 1} such that '

C,-ﬂ(CIU---UC,-_l)QCJ-. ]

4.4 From chain graph to junction tree

Advances in the computational analysis of probabilistic networks have come
about through the realization that the joint distribution of a probabilistic
network can be represented and manipulated efficiently using a junction
tree derived from the original graph. This section collects together some of
the algorithms for effecting this transformation.

Suppose that a probabilistic network has a chain graph structure K (we
include as a possibility that X may be a directed or undirected graph).
In Chapter 6 we shall see that the first stage in passing to the inference
structure is to form the moral graph K™. The moral graph is undirected,
but it may not be a chordal graph. Tarjan and Yannakakis (1984) gave
the following efficient algorithm, and proved its correctness, for deciding
whether a given undirected graph G = (V, E) is chordal or not; they also
showed that it can be implemented to run in O(n + ) time where n = |V/|
is the number of nodes and e = |E| the number of edges:

Algorithm 4.9 [MAXIMUM CARDINALITY SEARCH]
* Set Output:= ‘G is chordal’.
* Set counter i := 1.
* Set L = 0.
* For all v € V, set ¢(v) := 0.

* While L # V:

|

Set U 1=V \ L.

— Select any vertex v maximizing ¢(v) over v € U and label it i.

|

If IT,, := ne(v;) N L is not complete in G:
Set Output:= ‘G is not chordal’.

— Otherwise, set c(w) = c(w) + 1 for each vertex w € ne(v;) NU.
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— Set L = LU {v;}.
— Increment 7 by 1.

* Report Output. 0

At each stage, L consists of all previously labelled vertices. The algorithm
recursively labels vertices in such a way as to maximize the cardinality of
the set of previously labelled neighbours. If at any stage this set is not
complete, G is not chordal. The process could be aborted at this stage.

If G passes the maximum cardinality search, the vertex numbering found
will be perfect, as for any node v the set II, of its previously numbered
neighbours will be complete, and thus G must be chordal. The converse is
also true:

Theorem 4.10 If G is chordal, then mazimum cardinality search will pro-
vide a perfect numbering of G.

Proof. See Tarjan and Yannakakis (1984). O

If a graph is chordal and its vertices have been numbered by maximum
cardinality search, its cliques can be identified in a simple fashion using the
algorithm described below, which simultaneously provides an ordering of
the cliques having the running intersection property.

Algorithm 4.11 [FINDING THE CLIQUES OF A CHORDAL GRAPH]|
Starting from a numbering (vy,... ,vx) obtained by maximum cardinal-
ity search, we can find the cliques of a chordal graph as follows. Denote the
cardinality of II,, by m;. Call node v; a ladder node if i = k, or if ¢ < k
and m;41 < 1+ 7. Let the jth ladder node, in ascending order, be A;, and
define C; = {A;} UIly,. o

Theorem 4.12 There is a one-to-one correspondence between the ladder
nodes and the cliques of G, the clique associated with ladder node \; being
C;. The clique ordering (C1,Ca,...) will possess the running intersection

property.

Proof. Again we may suppose that G is connected. We argue by induction.
If [V| = 1 there is nothing to prove. Suppose the algorithm works for
|V| < n, and consider a case having |[V| = n + 1. Let v* = vp4q, II" =
I,,,, = bd(v*), #* = w41 = |[II*|. The first n nodes numbered induce
a subgraph G’ on V' = V \ {v*}, which can itself be regarded as having
been numbered by the same algorithm. Consequently, by the inductive
hypothesis we can suppose that the algorithm has supplied a clique-ordering
for G’, (C},... ,C,) say, with the running intersection property.

Since, by Theorem 4.10, I1* is complete, there exists a clique C;, of g'
such that I1* C C7,. Let v; be its corresponding ladder node. We distinguish
two cases, according as whether (i) II* # C},, or (ii) II* = Cy,. Note that
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if m < p we must be in case (i), since otherwise the maximum cardinality
property would have selected v* over v;4,.

In case (i), Cpy1 := {v* }UII" does not properly contain any clique of G’.
Taking C; = C_; for j =1,...,p,it is easily seen that the algorithm behaves
as asserted for the full graph G’, delivering cliques (C; : j = 1,... ,p+1)
having the running intersection property.

Otherwise, if we are in case (ii), we must have p = m. It readily follows
that, in the final numbering of V', v, is no longer a ladder node, while
v* = v, 41 is; and that the algorithm applied to the full graph G’ has again
behaved as asserted, delivering cliques C; = Cj for j < p, C, = C) U {v"},
having the running intersection property. (]

Algorithm 4.11 is essentially the same as ordering the cliques by their
largest numbered nodes in a maximum cardinality ordering, as described,
for example, by Leimer (1989). However, Algorithm 4.11 can be carried
out ‘online’ during the execution of Algorithm 4.9. Then, if G is chordal,
one pass of this combined algorithm will not only verify the fact, but also
identify its cliques, together with a running intersection ordering for them.

Note that Algorithm 4.11 need not work for an arbitrary perfect number-
ing if it is not generated by maximum cardinality search. A counterexample
is given by the graph in Figure 4.9.

O—CO—0OB—0®

FIGURE 4.9. The numbering of the vertices is perfect, but the cliques, numbered
as ({1,2},{3,4},{2,3,5}), do not have the running intersection property. This
numbering could not have been generated by maximum cardinality search (which
at least would reverse 4 and 5).

4-4.1 Triangulation

If the graph G = (V, E) is not chordal, it can always be made so by adding
CXtra edges F' in a suitable way to form G’ = (V, E’), where E' = EUF.
Thc edges in F are referred to as fill-in edges. If G’ is chordal, we refer to
It as a triangulation of G.

In general, given any ordering, say (vi,...,v), of the nodes of an undi-
rected graph G, one can triangulate G by recursively examining each node
Yj in turn in reverse order, beginning with vy, and joining those pairs of
Neighbours that appear earlier in the ordering and are not already joined.
The end result is a chordal graph G'. Clearly the given ordering (vi,... , k)
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is then a perfect numbering for the triangulation G’ of G. The problem of
obtaining a good triangulation is thus one of finding a good ordering, but
the general problem of finding optimal triangulations for undirected graphs
is NP-hard (Yannakakis 1981), so heuristic algorithms must be developed.

Kjeerulff (1992) examined various algorithms for triangulating a non-
chordal graph. For problems in which large cliques are unavoidable the
method of simulated annealing performs well. Although using simulated
annealing to find a triangulation of a graph may be time-consuming, for
any given probabilistic network it only needs to be performed once, so it can
be a worthwhile investment of time for some problems. Kjeerulff (1992) also
looked at a number of heuristic algorithms that involve selecting the next
node v on the basis of some optimality criterion ¢(v), for example, cither
maximizing or minimizing some cost or utility function which depends upon
the node being selected. The basic algorithm is described by Olmsted (1983)
and Kong (1986) and runs as follows for an undirected graph G with &
vertices.

Algorithm 4.13 [ONE-STEP LOOK AHEAD TRIANGULATION]
= Start with all vertices unnumbered, set counter i := k.
* While there are still some unnumbered vertices:

Select an unnumbered vertex v to optimize the criterion ¢(v).

|

Label it with the number i, i.e., let v; := v.

|

Form the set C; consisting of v; and its unnumbered neighbours.

Fill in edges where none exist between all pairs of vertices in C;.
— Eliminate v; and decrement i by 1. "

Note that this algorithm operates with a numbering strategy opposite to
that of maximum cardinality search. The quality of the triangulation, with
regard to computational efficiency in applications to probabilistic networks,
will depend upon the optimality criterion c(v) used to select vertices.

For models with discrete random variables, selecting ¢(v;) to be the car-
dinality of the joint state space for the variables in the set C; usually
yields good results. Another possibility, which does not depend upon the
interpretation of the variables, is to take c¢(v) to be the number of fill-in
edges required if v were to be selected for labelling. For other methods and
comparisons between them, see Kjerulff (1992).

Although the maximum cardinality search algorithm is efficient for test-
ing the chordality of a graph, as a numbering method for generating a
chordal graph from a non-chordal graph it tends to introduce many more
fill-in edges than are necessary, which in turn leads to larger than neces-
sary cliques and reduces the efficiency of the algorithms for probabilistic
computations.
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4.4.2 Elimination tree

For a given numbering (vy,...,vx) of the nodes of a graph G one can
associate the sequence of sets (C1,... ,C}) defined by Algorithm 4.13. By
construction, each set C; has the following properties: it contains v;; the
indices of any remaining nodes in C; are smaller than j; and v; is not
found in any earlier set, i.e., v; € C; for all | < j. These sets are called
the elimination sets induced by the numbering, and they may be used to
form a tree structure called an elimination tree (Cowell 1994); this can be
useful as an intermediate step to forming a junction tree of cliques and as
the basis for the propagation algorithms (see Chapters 6 and 8).

Algorithm 4.14 [ELIMINATION TREE CONSTRUCTION]

1. Associate a node of the tree with each set C;.

2. For i = 1,... ,k, if C; contains more than one vertex, add an edge
between C; and C; where j is the largest index of a vertex in C;\ {v;}.

]

It is a simple matter to see that the sequence (Cj,... ,Ck) has the run-
ning intersection property and that the elimination tree is therefore a junc-
tion tree of sets. However, the elimination tree is generally not a junction
tree of cliques of the triangulated graph G’, because although the sequence
(Cy,...,Ck) will contain the cliques of G’, it will also contain some subsets
of the cliques. Figure 4.10 shows the elimination tree, using the elimina-
tion ordering obtained by ordering the nodes numerically, derived from
the graph of Figure 4.9. The notation 5:23 reflects that when node 5 is
eliminated its boundary, bd(5), is 23.

FIGURE 4.10. Elimination tree obtained from the chordal graph of Figure 4.9
using the given numbering.

Theorem 4.15 The cliques of the triangulated graph G’ are contained in
the set of elimination sets (Ci, ... ,Ck).
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Proof. Let C be any clique of the triangulated graph G’ formed by the
triangulation algorithm. Then it possesses a greatest-numbered vertex v.
At the stage when v was eliminated, it must have been a neighbour of all
the other vertices in the clique; for if there is a vertex w for which this is
not true, at no stage subsequent to eliminating v could the edge v ~ w be
added because the algorithm only adds edges between unnumbered vertices,
and at all later stages v remains numbered. Hence, we may identify C
with the elimination set formed by eliminating v because the algorithm
adds sufficient edges to ensure all pairs of unnumbered neighbours of v are
joined. o

One can thus find the cliques of G’ simply by deleting redundant elim-
ination sets, i.c., sets that are contained in other sets. However, this will
in general destroy the running intersection property of the sequence. For
example, deleting the elimination set {2, 3} of the graph in Figure 4.9 (with
elimination tree displayed in Figure 4.10) will destroy the running intersec-
tion property of the sequence ({1},{1,2},{2,3},{3,4},{2,3,5}).

However, Lemma 4.16 below, due to Leimer (1989) (see also Lemma 2.13
of Lauritzen (1996)) shows how to modify the ordering when a redundant
subset is to be deleted. We omit the proof.

Lemma 4.16 Let Cy,...,C}y be a sequence of sets having the running in-
tersection property. Assume that C; C C, for some t # p and that p is
minimal with this property for fized t. Then:

(i) Ift > p, then Cy,...,Cy—1,Cis1,... ,Ci has the running intersection
property.

(ii) Ift < p, then Cy,...,Ci—1,Cp,Cis1,... ,Cp_1,Cpt1,- .. ,Cx has the
running intersection property.

Note that the condition ¢ < p is always true for the sequence of elim-
ination sets generated by a vertex numbering because C, contains v, by
construction, and no lower numbered elimination set can contain v, because
v, remains numbered when these sets are formed.

We can remove those sets in (Ci,...,Cy) that are proper subsets of
others until there is no redundancy, by repeatedly applying Lemma 4.16.
The result is an ordering of the cliques of G’ having the running intersec-
tion property. These can now be joined up to form a junction tree using
Algorithm 4.8. Alternatively, knowing that G’ is now chordal, maximum
cardinality search combined with Algorithm 4.11 can be used to find the
cliques and order them with the running intersection property, enabling
the junction tree of cliques to be built.
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4.5 Background references and further reading

There are many general textbooks on graph theory: Harary (1972) and
Berge (1973) are standard references.

Chordal graphs are well-studied objects which appear under a variety
of names, including triangulated and decomposable graphs, and also rigid
circuit graphs (Dirac 1961). They are extensively dealt with in Golumbic
(1980). Chain graphs were introduced by Lauritzen and Wermuth (1984);
see also Lauritzen and Wermuth (1989).

The notion of a graph decomposition has deep connections to many ar-
cas of mathematics (Lauritzen et al. 1984; Diestel 1987, 1990), including
the four-colour problem (Wagner 1937), measure theory (Kellerer 1964a,
1964b; Vorob’ev 1962, 1963), the solution of systems of linear equations
(Parter 1961; Rose 1970, 1973), game theory (Vorob’ev 1967), and rela-
tional databases (Beeri et al. 1981, 1983).

The notion of a junction tree has appeared under an abundance of names.
The first explicit identification seems to be in relational databases, where
it has been known as a join tree (Maier 1983); the terms k-tree (Arnborg
et al. 1987), Markov tree and hypertree (Shenoy and Shafer 1990), or simply
clique tree have also been used.

There is an extensive literature concerned with algorithms for manip-
ulating decomposable graphs in an efficient way. It includes other algo-
rithms for checking decomposability of a graph and finding their cliques
(Rose et al. 1976; Gavril 1972), for constructing optimal junction trees for
given decomposable graphs (Jensen and Jensen 1994), and for construct-
ing optimal decompositions of a non-chordal graph into its indecomposable
components (Tarjan 1985; Leimer 1993). There is also some efficiency to
be gained by constructing junction trees of special types (Almond 1995;
Shenoy 1997). For recent results on triangulation algorithms, see Becker
and Geiger (1996), Larrafiaga et al. (1997), and Meild and Jordan (1997).



5
Markov Properties on Graphs

The Markov properties of graphs provide a theoretical foundation of lo-
calized computation for inference in probabilistic networks. General chain
graphs and their specializations — directed and undirected graphs — each
have different types of Markov properties. A common theoretical tool to
understanding these properties is the notion of conditional independence.

5.1 Conditional independence

In Chapter 2 we saw simple examples of probabilistic networks, in which
the factorization of joint distributions is expressed by directed graphs, and
inference consists of reversing arrows. OQur aim is to develop tools for ma-
nipulating the probability distributions of variables in models that factorize
over graphical structures having more complicated topologies, and to en-
able efficient inference to be performed for such models.

As a precursor to this we need to introduce the notion of conditional in-
dependence, which will allow us to justify the local computations developed
for our inference process later in the book. For simplicity, we mainly confine
ourselves to distributions of discrete variables, each having a finite number
of states. We will let V denote the index set of a collection of variables
(X,),v € V taking values in probability spaces X,,v € V. The probability
Spaces can be quite general, just sufficiently well-behaved to ensure the ex-
istence of regular conditional probabilities. For A being a typical subset of
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V, we let X4 = x,eaX, and further X = AXy-. Typical elements of X4 are
denoted by z4 = (z,),c4 and so on.

Thus, let X,Y, Z,... denote random variables with a joint distribution P,
having density p with respect to a product measure. Note that each variable
may itself be a random vector. We can consider, for any possible value y of
Y, the conditional distribution of X given Y = y, denoted by D(X |Y = y).
This is defined if p(y) > 0, in which case we may call y a possible value of
Y. Thus, if A denotes a set of possible values for X, then D(X|Y = y)
attaches to A the conditional probability value P(X € A|Y = y).

Definition 5.1 [CONDITIONAL INDEPENDENCE]

We say X is conditionally independent of Y given Z, and write X 1LY | Z,
if, for any possible pair of values (y, 2) for (Y, Z), we have D(X |Y =y, Z =
2)=D(X|Z =2z),ie, forany A, P(X € A|Y,Z) = P(X | Z). O

As a special case we note that the expression X 1LY means that we have
D(X|Y = y) = D(X) (the marginal distribution of X), for any possible
value y of Y'; we say that X and Y are (marginally) independent.

Suppose for simplicity that all variables are discrete. Similar properties
hold for continuous quantities. Let p(z,y|z) denote P(X =z,Y =y | Z =
z), and let a(z, z), for example, denote unspecified functions of z, z, ete.
Then X 1LY |Z if and only if any of the following equivalent conditions
holds:

Cla: p(z|y,2) =p(z|2) if p(y,z) >0
Clb: p(z|y,z) has the form a(z, z) if p(y,z) >0
C2a: p(z,y|2) =p(z|2)ply|2) if p(z) >0

C2b: p(z,y|z) has the form a(z, z)b(y, ) if p(z) >0
C3a: p(z,y,2) = p(z|2)p(y| 2)p(2)

C3b: p(z,y,2) = p(z, 2)p(y, 2)/p(2) if p(z) >0
C3c: p(z,y,z) has the form a(z, z)b(y, 2)

The ternary relation X 1LY | Z has the following properties:

PLsIf XY |.Z then YUX|Z
P2:1f XY |Z and U isa function of X then ULY |Z
P3:If X1Y|Z and U is a function of X then XY |[(Z,U)
P4:If XUY|Z and XUW|(Y,2) then XU (W)Y)|Z

Another property sometimes holds, viz.:
P5:1f XUY|(Z,W) and X1UZ|(Y,W) then XU(Y,Z)|W,

but only under additional assumptions, essentially that there be no non-
trivial logical relationships between Y and Z. This is true when the density
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p is strictly positive. For if p(z,y,2,w) > 0 and both X 1LY | (Z, W) and
X1L.Z|(Y,W) hold, then by C3c

p(z,y, z,w) = g(z,y, w) h(y, 2, w) = k(z, z,w) l(y, 2, w)
for suitable strictly positive functions g, h, k, l. Thus, for all z we must have

Hence, choosing a fixed z = 2y we have g(z,y,w) = n(z, w)p(y,w), where
TF(I,WJ = k(.’.!?, 20, UJ) and p(ys ‘U'J) = 'E(yr 20, w)/h(y, 20, 'U..F] Thus, p(fﬂ' Y, 2z, w]
= 7(z,w)p(y, w)h(y, z,w), and hence X IL(Y,Z) | W.

If properties (P1) to (P4) are regarded as axioms with “is a function of”
replaced by a suitable partial order, then it is possible to develop an abstract
calculus of conditional independence which applies to other mathematical
systems than probabilistic conditional independence. Any such model of
these abstract axioms has been termed a semi-graphoid by Pearl (1988)
or, if (P5) is also satisfied, a graphoid. A range of examples is described by
Dawid (1998). Important statistical applications include meta conditional
independence, which generalizes the concept of a cut in a parametric statis-
tical family (Barndorfl-Nielsen 1978); and hyper conditional independence,
which imposes, in addition, corresponding independence properties on a
prior distribution over the parameters. A detailed description and discus-
sion may be found in Dawid and Lauritzen (1993). Further application
areas of interest in artificial intelligence include concepts of conditional
independence for belief functions (Shafer 1976) and various purely logi-
cal structures such as, e.g., embedded multi-valued dependencies (Sagiv
and Walecka 1982) and natural conditional functions (Spohn 1988; Stu-
deny 1995). Purely mathematical examples include orthogonality of linear
spaces and the various separation properties in graphs that form the basis
of this chapter. The last properties form the reason for Pearl’s nomencla-
ture. Virtually all the general results on conditional independence which
can be shown to hold for probability distributions can be reinterpreted in
these alternative models, and remain valid.

Now let (X,),v € V be a collection of random variables, and let B be
a collection of subsets of V. For B € B, let ag(z) denote a non-negative
function of z depending only on z5 = (z,).en-

Definition 5.2 [HIERARCHICAL DISTRIBUTION]
A joint distribution P for X is B-hierarchical if its probability density p
factorizes as

p(z) = [] asla).

BeB
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Note that if all of the functions a are strictly positive, then P is B-hierarchi-
cal if and only if it satisfies the restrictions of a hierarchical log-linear model
with generating class B* (Christensen 1990), where B* is obtained from B
by removing sets that are subsets of other sets in B.

Example 5.3 Let V = {A,B,C} and B = {{A, B},{B,C}}; then the
density factorizes as p(za,zp,zc) = a(za,z5)b(zs, Tc). O

Example 5.4 Now let V = {4, B,C} and B = {{A, B},{B,C},{A,C}};
then the density factorizes as p(z 4, zp, Tc) = a(za,zp)b(Tp, Tc)c(za, 2C)-
a

In Example 5.3 the factorization is equivalent to having X4 1L X¢ | X, but
Example 5.4 shows that not all factorizations have representations in terms
of conditional independence. We can ask what conditional independence
properties are implicit in a hierarchical distribution? To answer this we
form an undirected graph G with node set V, in which we join nodes u
and v if and only if they occur together within any subset in B. Figure 5.1
shows the graphs obtained in this way for the Examples 5.3 and 5.4.

(ii) B C

FIGURE 5.1. Undirected graphs formed from the hierarchical distributions of (i)
Example 5.3 and (ii) Example 5.4.

Clearly any subset in B is a complete subset of G. However, in the process
of forming G, other complete sets not belonging to B may be introduced,
for example, {A, B,C} in Example 5.4. Now let C denote the collection
of cliques of G. Since any subset in B is contained within some clique in
C, it follows that every B-hierarchical distribution is also C-hierarchical.
Thus, in discussing the conditional independence properties of hierarchical
distributions, we are led to consider the cliques of an underlying graph and,
as we shall see, separation properties in such graphs.

5.2 Markov fields over undirected graphs

Let G = (V, E) be an undirected graph, and consider a collection of random
variables (X,),v € V. Let P be probability measure on &, which factorizes
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according to G, i.e., there exist non-negative functions ¢4 defined on X'y
for only complete subsets A, and a product measure g = ®,evp, on &,
such that the density p of P with respect to p factorizes in the form

p(z) = [[ oa(za).
A

In other words, P factorizes if and only if P is A-hierarchical, for A the
class of complete subsets of G. The functions ¢4 are referred to as factor
potentials of P. They are not uniquely determined because there is arbi-
trariness in the choice of the measure p, and also groups of potentials can
be multiplied together or split up in different ways. One can without loss
of generality assume that only the cliques of G appear in the sets A, i.e.,
that

p(z) = [] ve(ze), (5.1)

CeC

where C is the set of cliques of G, or, in other words, that P is C-hierarchical.
If P factorizes as above, we also say that P has property (F).

Associated with the graph G is a range of Markov properties, different in
general. Write AL B|C if X4 1l X5 | X¢ under P. A probability measure
P on X is said to obey:

(P) the pairwise Markov property, relative to G, if for any pair (o, 3) of
non-adjacent vertices,

allB|V\{a,B};

(L) the local Markov property, relative to G, if for any vertex a € V,
allV \ cl(a) | bd(a);

(G) the global Markov property, relative to G, if for any triple (A, B, S) of
disjoint subsets of V such that S separates A from B in G,

ALB|S.

Note that, if we write AlLgB|S to denote that S separates A from B
in G, replace “function” by “subset” in (P2) and (P3), and similarly (Z,U)
by ZUU, etc., then the subsets of V' constitute a graphoid under 1Lg, and
the various Markov definitions relate properties of probabilistic conditional
independence L to corresponding obvious properties of graph separation
dg.

In the terminology defined above we have that

(F) = (G) = (L) = (P), (5.2)
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but in general the properties are different. Note that (5.2) only depends
on the properties (P1) to (P4) of conditional independence. If P admits
a strictly positive density p with respect to p, (P5) can also be used and
then all the properties are equivalent. This is a consequence of the theorem
below, due to Pearl and Paz (1987) (see also Pearl (1988)).

Theorem 5.5 (Pearl and Paz) If a probability distribution on X is such
that (P5) holds for all pairwise disjoint subsets, then

(G) <= (L) < (P).

Proof. We need to show that (P) implies (G), so assume that S separates
A from B in G and that (P) as well as (P5) hold. The proof is then reverse
induction on the number of vertices n = |S| in S. If n = |V| — 2, then both
A and B consist of one vertex, and the required conditional independence
follows from (P).

So assume |S| =n < |V|— 2, and that the independence A1LB | S holds
for all § with more than n elements. We first assume that AUBUS =V,
implying that at least one of A and B has more than one element, A, say.
If @ € A then SU {a} separates B from A\ {a}, and also SU A\ {a}
separates B from a. Thus, by the inductive hypothesis

Bl A\ {a}|SU{a} and Blla|SU A\ {a}.

Now (P5) gives A1LB|S.

If AUBUS C V we choose a € V\(AUBUS). Then SU{a} separates A
and B, implying A1l B |SU{a}. Further, either AUS separates B from {a}
or BUS separates A from {a}. Assuming the former gives Bl {a} | AUS.
Using (P5) we derive A1LB|S. The latter case is similar. o

The global Markov property (G) is important because it gives a general
criterion for deciding when two groups of variables A and B are condition-
ally independent given a third group of variables S.

In the case where all state spaces are discrete and P has a positive density,
we can show that (P) implies (F), and thus that all Markov properties are
equivalent. More precisely, we have the classical result:

Theorem 5.6 A probability distribution P on a discrete sample space with
strictly positive density satisfies the pairwise Markov property if and only
if it factorizes.

Proof. See Lauritzen (1996). o

In general, without positivity assumptions on the density, the global
Markov property (G) may not imply the factorization property (F). An
example was given by Moussouris (1974) for the graph being a four-cycle
(see also Lauritzen (1996)).
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When we use the term Markov probability distribution on an undirected
graph G without further qualification, we shall always mean one that fac-
torizes, hence satisfies all of the properties. The set of such probability
distributions is denoted by M(G). When (A, B, S) forms a decomposition
of G the Markov property is decomposed accordingly:

Proposition 5.7 Assume that (A, B,S) decomposes G = (V, E). Then P
factorizes with respect to G if and only if both Py_s and Ppus factorize
with respect to Gaus and Gpus respectively and the density p satisfies
Paus(Taus)pPus(TBus)
T) = : 53
p(z) Se(Es) (5.3)

Proof. Suppose that P factorizes with respect to G such that

p(z) = [] ve(@).

Cec

Since (A, B, S) decomposes G, all cliques are subsets of either AU S or of
BU S, so that

p(z) = [] ve@) [] ¢el@) = hzaus)k(zsus)-
CeA CeB

By direct integration we find

p(Taus) = h(IAus)E(irs)
where

k(zs) = f k(zpus)ks(dep),

and similarly with the other marginals. This gives (5.3) as well as the
factorizations of both marginal densities. The converse is trivial, a

In the case of discrete sample spaces we further have, if we take 0/0 = 0:

Proposition 5.8 Assume that (A, B,S) decomposes G = (V, E) and the
sample space is discrete. Then P is globally Markov with respect to G if and
only if both Pays and Pgys are globally Markov with respect to Gaus and
Gpus respectively, and

P(zaus)P(TBus)
p(zs)
Proof. See Lauritzen (1996). o

p(z) = (5.4)

When G is decomposable, recursive application of (5.3) shows that a
distribution P is Markov with respect to G if and only if it factorizes as

H(:‘(:’C p(:.t:(:)

p(e) = [IsesP(zs)’
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where C, S are, respectively, the sets of cliques and separators of G. The
clique-marginals {Pc} can be assigned arbitrarily, subject only to imply.
ing identical marginals over any common separators. Markov properties of
decomposable graphs are studied by Dawid and Lauritzen (1993).

5.3 Markov properties on directed acyclic graphs

Before we proceed to the case of a general chain graph we consider the same
set-up as in the previous section, except that now the graph D is assumed
to be directed and acyclic.

We say that a probability distribution P admits a recursive factorization
according to D if there exist (o-finite) measures p, over X’ and non-negative
functions kV(-,-),v € V, henceforth referred to as kernels, defined on &), x

Xpa(v) such that

/kv(ym Ipa(u})}uu(dyu) =1,

and P has density p with respect to the product measure 1= Queviy
given by

#(2) = J] & (%o Zoate))-

veEV

We then also say that P has property (DF). It is easy to show that if
P admits a recursive factorization as above, then the kernels k”(:, Zpa(v))
are in fact densities for the conditional distribution of X, given Xpa) =
Tpa(v), and thus

p(@) = [] (o | Zpaqw))- (5.5)

veV

Also it is immediate that if we form the (undirected) moral graph D™ (see
Section 4.1) we have the following:

Lemma 5.9 If P admits a recursive factorization according to the directed
acyclic graph D, it factorizes according to the moral graph D™ and therefore
obeys the global Markov property relative to D™.

Proof. The factorization follows from the fact that, by construction, the
sets {v} U pa(v) are complete in D™ and we can therefore let ¥(,}upa(v) =
kY. The remaining part of the statement follows from (5.2). a

This simple lemma has very useful consequences when constructing the
inference engine in a probabilistic expert system (see Section 3.2.1 for an
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example of this). Also, using the local Markov property on the moral graph
p™, we find that
vILV \ v|bl(v),

where bl(v) is the so-called Markov blanket of v. The Markov blanket is
the set of neighbours of v in the moral graph D™. It can be found directly
from the original DAG D as the set of v’s parents, children, and children’s
parents: .

bl(v) = pa(v) U ch(v) U {w : ch(w) N ch(v) # 0}. (5.6)

The following result is easily shown:

Proposition 5.10 If P admits a recursive factorization according to the
directed acyclic graph D and A is an ancestral set, then the marginal dis-
tribution Py admits a recursive factorization according to D 4.

Corollary 5.11 Let P factorize recursively according to D. Then
AULB|S

whenever A and B are separated by S in (DAH(AUBUs))m, the moral graph
of the smallest ancestral sel containing AUBUS.

The property in Corollary 5.11 will be referred to as the directed global
Markov property (DG), and a distribution satisfying it is a directed Markov
field over D. If we now reinterpret ILp to denote the relation between sub-
sets described in Corollary 5.11, the subsets of V' again form a graphoid
under |Lp, and the global directed Markov property again relates proba-
bilistic conditional independence L with graph separation 1Lp.

One can show that the global directed Markov property has the same
role as the global Markov property does in the case of an undirected graph,
in the sense that it gives the sharpest possible rule for reading conditional
independence relations off the directed graph. The procedure is illustrated
in the following example:

Example 5.12 Consider a directed Markov field on the first graph in
Figure 5.2 and the problem of deciding whether alLb|S. The moral graph
of the smallest ancestral set containing all the variables involved is shown
in the second graph of Figure 5.2. It is immediate that S separates a from
b in this moral graph, implying alLb|S. 8

An alternative formulation of the global directed Markov property was
given by Pearl (1986a) with a formal treatment in Verma and Pearl (1990).
Recall that a trail in D is a sequence of vertices that forms a path in the
undirected version D™ of D, i.e., when the directions of arrows are ignored.
A trail w from a to b in a directed acyclic graph D is said to be blocked by
S if it contains a vertex y € 7 such that either
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a b a b

(D

< § = {z,y}

FIGURE 5.2. The directed global Markov property. Is allb|S? In the moral
graph of the smallest ancestral set in the graph containing {a} U {b} U S, clearly
S separates a from b, implying alLb|S.

* 4 € S and arrows of m do not meet head-to-head at ~, or

« ~ and all its descendants are not in S, and arrows of 7 meet head-to-
head at ~.
A trail that is not blocked by S is said to be active. Two subsets A and B

are said to be d-separated by S if all trails from A to B are blocked by S.
We then have the following result:

Proposition 5.13 Let A, B, and S be disjoint subsets of a directed acyclic
graph D. Then S d-separates A from B if and only if S separates A from
B in (Dan(ausus))™:

Proof. Suppose S does not d-separate A from B. Then there is an active
trail from A to B such as, for example, the one indicated in Figure 5.3.

FIGURE 5.3. Example of an active trail from A to B. The path from c to d is
not part of the trail, but indicates that ¢ must have descendants in S.

All vertices in this trail must lie within An(A U B U S). Because if the
arrows meet head-to-head at some vertex =, either v € S or « has descen-
dants in §. And if not, either of the subpaths away from ~ either meets
another arrow, in which case v has descendants in S, or leads all the way to
A or B. Each of these head-to-head meetings will give rise to a marriage in
the moral graph, such as illustrated in Figure 5.4, thereby creating a trail
from A to B in (Dan(aupus))™, circumventing S.
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Suppose conversely that A is not separated from B in (Dan(aunus))™.
Then there is a trail in this graph that circumvents S. The trail has picces
that correspond to edges in the original graph and picces that correspond
to marriages. Each marriage is a consequence of a meeting of arrows head-
to-head at some vertex ~. If v is in S or it has descendants in S, the
meeting does not block the trail. If not, v must have descendants in A or
B since the ancestral set was smallest. In the latter case, a new trail can
be created with one less head-to-head meeting, using the line of descent,
such as illustrated in Figure 5.5.

Continuing this substitution process eventually leads to an active trail
from A to B, and the proof is complete. O

We illustrate the concept of d-separation by applying it to the query
of Example 5.12. As Figure 5.6 indicates, all trails between a and b are
blocked by S, whereby the global Markov property gives that alLb|S.

Geiger and Pearl (1990) show that the criterion of d-separation cannot
be improved, in the sense that, for any given directed acyclic graph D, one
can find state spaces X,,,a € V' and a probability P such that

AILB|S <= S d-separates A from B. (5.7)

Indeed, we can take each state space to be the real plane, with the
overall distribution Gaussian. Meek (1995) proved a similar result for the
case where the state spaces are all binary.

A variant on the d-separation criterion, well-suited to computation of
separating sets, is the “Bayes-ball” algorithm of Shachter (1998).

To complete this section we say that P obeys the local directed Markov
property (DL) if any variable is conditionally independent of its non-desc-
endants, given its parents

vilnd(v) | pa(v).

A seemingly weaker requirement, the ordered directed Markov property
(DO), replaces all non-descendants of v in the above condition by the pre-
decessors pr(v) of v in some given well-ordering of the nodes:

B,

FIGURE 5.4. The moral graph corresponding to the active trail in D.
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vilpr(v) | pa(v).

In contrast with the undirected case we have that all the four properties
(DF), (DL), (DG), and (DO) are equivalent just assuming existence of the
density p. This is stated formally as:

Theorem 5.14 Let D be a directed acyclic graph. For a probability distri-
bution P on X which has density with respect to a product measure y, the
following conditions are equivalent:

(DF) P admits a recursive factorization according to D;

(DG) P obeys the global directed Markov property, relative to D;
(DL) P obeys the local directed Markov property, relative to D;
(DO) P obeys the ordered directed Markov property, relative to D.

Proof. That (DF) implies (DG) is Corollary 5.11. That (DG) implies
(DL) follows by observing that {v} Und(v) is an ancestral set and that
pa(v) obviously separates {v} from nd(v) \ pa(v) in (Dgyjunaq))™- It is
trivial that (DL) implies (DO), since pr(v) C nd(v). The final implication
is shown by induction on the number of vertices |[V| of D. Let v be the
last vertex of D. Then we can let k" be the conditional density of X,,,
given Xy (y,}, Which by (DO) can be chosen to depend on zp,(,,) only.
The marginal distribution of Xy} trivially obeys the ordered directed
Markov property and admits a factorization by the inductive assumption.
Combining this factorization with k0 yields the factorization for P. This
completes the proof. O

Since the four conditions in Theorem 5.14 are equivalent, it makes sense
to speak of a directed Markov field as one where any of the conditions is
satisfied. The set of such distributions for a directed acyclic graph D is
denoted by M(D).

In the particular case when the directed acyclic graph D is perfect (see
Section 4.2) the directed Markov property on D and the factorization prop-

A B

S

FIGURE 5.5. The trail in the graph (Da,caupsus))” makes it possible to con-
struct an active trail in D from A to B.
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erty on its undirected version D™~ coincide (note that in this case D™~ is
decomposable):

Proposition 5.15 Let D be a perfect directed acyclic graph and D~ its
undirected version. Then a distribution P is directed Markov with respect
to D if and only if it factorizes according to D™ .

Proof. That the graph is perfect means that pa(a) is complete for all a €
V. Hence, D™ = D~. From Lemma 5.9 it then follows that any P € M(D)
also factorizes with respect to D™.

The reverse inclusion is established by induction on the number of ver-
tices [V| of D. For |V| = 1 there is nothing to show. For |[V| = n+ 1
let¢ P € M(D™) and find a terminal vertex @ € V. This vertex has
pap(a) = bdp~(a) and, since D is perfect, this set is complete in both
graphs as well. Hence, (V '\ {a}, {a}, bd(a)) is a decomposition of D~ and
Proposition 5.7 gives the factorization

p(z) = p(Tv\(a})P(Tei(a))/P(Tbd(a) = P(Tv\(a}) K (Tar Tpa(a))s

say, where [ k*(Ya, Tpa(a))la(dya) = 1, and the first factor factorizes ac-
cording to ’D;\{a}. Using the inductive assumption on this factor gives the
full recursive factorization of P. a

5.4 Markov properties on chain graphs

In this section we deal with general chain graphs K = (V, E). We further
assume that all probability measures have positive densities, implying that
all five of the basic properties of conditional independence (P1) to (P5)
hold. Again there is a pairwise, a local, and a global Markov property.
More precisely we say that a probability P satisfies:

<]
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FIGURE 5.6. Illustration of Pearl’s d-separation criterion. There are two trails
!'rom a to b, drawn with broken lines. Both are blocked, but different vertices v,
indicated with open circles, play the role of blocking vertices.
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(CP) the pairwise chain Markov property, relative to K, if for any pair
(o, B) of non-adjacent vertices with 8 € nd(a),

allB|nd(a)\ {a,8});

(CL) the local chain Markov property, relative to K, if for any vertex a € V/,

allnd(a) \ bd(a) | bd(a);

(CG) the global chain Markov property, relative to K, if for any triple
(A, B, S) of disjoint subsets of V such that S separates A from B
in (Kancausus))™, the moral graph of the smallest ancestral set con-
taining AU BU S, we have

ALLB|S.

Studeny and Bouckaert (1998) have introduced a definition of c-separat-
ion of A and B by S in a chain graph, which extends d-separation for
directed acyclic graphs and is equivalent to the separation property used
in the global chain Markov property above.

Once again, the graph separation property L x described in (CG) engen-
ders a graphoid structure on subsets of V', and the Markov properties relate
1L and 1Lx. We note that these Markov properties unify the properties for
the directed and undirected cases. For in the undirected case nd(a) = V
and K = (Kan(ausus))™, and in the directed case bd(a) = pa(a).

When interpreting the conditional independence relationships in a chain
graph, it is occasionally more straightforward to use the following approach,
an extension of the ordered directed Markov property for directed acyclic
graphs: since the graph is a chain graph, the vertex set can be partitioned
as V = V(1)U- - -UV(T) such that each of the sets V() only has undirected
edges between its vertices, and any directed edges point from vertices in
sets with lower number to those with higher number. Such a partition is
called a dependence chain. The set of concurrent variables of V/(t) is defined
to be the set C(t) = V(1)U ---U V(t). Then P satisfies the block-recursive
Markov property (CB) if for any pair (o, ) of non-adjacent vertices we
have

allB|C(t") \ {a, 8},

where t* is the smallest t that has {a,3} C C(t). It appears that this
property depends on the particular partitioning, but it can be shown (Fry-
denberg 1990) that — if P satisfies (P5) — it is equivalent to any of the
above.

Theorem 5.16 Assume that P is such that (P5) holds for subsets of V.
Then
(CG) <= (CL) <= (CP) «<= (CB).



5.4 Markov properties on chain graphs 77

Proof. See Frydenberg (1990). O

Example 5.17 As an illustration of this, consider the graph in Figure 5.7
and the question of deciding whether 31L8|{2,5}. The smallest ancestral
set containing these variables is the set {1,2,3,4,5,6,7,8}. The moral graph
of this adds an edge between 3 and 4, because these both have children in
the chain component {5,6}. Thus, the graph in Figure 5.8 appears.

Since there is a path between 3 and 8 circumventing 2 and 5 in this
graph, we cannot conclude that 3118 | {2,5}.

If we instead consider the question whether 3.1.8 |2, the smallest ances-
tral set becomes {1,2,3,4,7,8}, no edge has to be added between 3 and 4,
and Figure 5.9 reveals that 3118 |2. O

FIGURE 5.7. A chain graph with chain components {1,2,3,4}, {5,6}, {7,8},
{9,10}, {11}. Is 3118 {2,5} 7 Is 311827

(=]
(=2}

1 3 5

FIGURE 5.8. Moral graph of smallest ancestral set in the graph of Figure 5.7
containing {2,3,5,8}. A connection between 3 and 4 has been introduced since
these both have children in the same chain component {5,6}. We cannot conclude
31.8|{2,5}.

One way of constructing a distribution that satisfies the chain graph
Markov property is through factorization. For example, if V(1),...,V(T)
is a dependence chain of K or the chain components of K, then any distri-
bution P with density p with respect to a product measure p will factorize
as

p.

p(z) = HP(&CV(L) |1‘c(s—|))

i=1
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7 8
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e @
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FIGURE 5.9. Moral graph of smallest ancestral set in the graph of Figure 5.7
containing {2,3,8}. We conclude that 3112 8.

where C(t) = V(1)U --- U V(t) are the concurrent variables, as usual.
If B(t) = pa(V(t)) = bd(V(t)) and p is Markov with respect to K, the
factorization reduces to

T
p(@) =[] p(eve |zB0) - (5.8)

=1
¢

This factorization is essentially identical to the factorization for directed
Markov densities due to the chain graph forming a directed acyclic graph of
its chain components. But the factorization does not reveal all conditional
independence relationships. To describe the remainder, let K*(t) be the
undirected graph with vertex set V(¢) U B(t) and a adjacent to 8 in K*(t)
if either (a,3) € E or (8,a) € E or if {a, 8} C B(t), i.e., B(t) is made
complete in X*(t) by adding all missing edges between these, and directions
on existing edges are ignored. We cannot expect factorization results to be
more general for chain graphs than for undirected graphs, since the chain
graphs contain these as special cases. But if all variables are discrete, there
is a result analogous to Theorem 5.6.

Theorem 5.18 A probability distribution on a discrete sample space with

strictly positive density p satisfies the pairwise chain graph Markov property
with respect to K if and only if it factorizes as

T

_ 11 ?(eveusm)
p(x)-g—-p o) (5.9)

and each of the numerators factorizes on the graph K*(t).

Proof. See Lauritzen (1996). o

Corollary 5.19 If the density p of a probability distribution factorizes as
in (5.9), it also factorizes according to the moral graph K™ and therefore
obeys the undirected global Markov property relative to K™.

Proof. By construction, sets that are complete in K*(t) are also complete
i ™
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An equivalent formulation of the factorization (5.9) is

T
p(z) = HP (zv@y lzB@)) (5.10)

where each factor further factorizes according to K*(t). This is true because
B(t) is complete in K* ().
Alternatively, each of the factors in (5.10) must further factorize as

pave |zsw) = 27" (zw) [ oalza) (5.11)
A€ A(t)

where A(t) are the complete subsets of KV us( and

Z(zpw) =Y, [I ¢alza)

Ty ey AEA(L)

5.5 Current research directions

There has been much recent research activity developing and extending the
links between graphical structures and conditional independence properties
which have been the subject of this chapter. Some of this concentrates
on logical issues, such as strong completeness, i.c., whether a probability
distribution (perhaps of a special form, e.g., Gaussian or having a positive
density) exists displaying all and only the conditional properties displayed
by a given graphical representation (Geiger and Pearl 1990, 1993; Studeny
and Bouckaert 1998). Studeny (1997) and Andersson et al. (1998) give
good overviews of recent issues and advances in graphical descriptions of
conditional independence. We briefly describe some of the major current
research themes below.

5.5.1 Markov equivalence

There may be more than one graph representing the same conditional inde-
pendence relations. A focus of recent attention has been how to character-
ize such Markov equivalence of graphs and, if possible, nominate a natural
representative of any equivalence class. Issues of equivalence of seemingly
distinct representations need careful attention when attempting statistical
model selection on the basis of data (Heckerman et al. 1995b).

Extending a result of Verma and Pearl (1991) for directed acyclic graphs,
Frydenberg (1990) showed that two chain graphs are Markov equivalent if
and only if they have the same skeleton (i.e., undirected version), and the
same complexes, where a complez is a subgraph, induced by a set of nodes
{’ul,vg, ... ,vr} with k > 3, whose edge set consists of v; — va, Vk—1 « Uk,



and v; ~ vy for 2 < i < k — 2. In any class of Markov equivalent chain
graphs there is a unique ‘largest’ one, having the maximum number of undi-
rected edges; its arrows are present in every other member of the class. If we
restrict attention to directed acyclic graphs, there is no natural represen-
tative of an equivalence class within the class, but it can be characterized
by its essential graph (Andersson et al. 1996b), the chain graph (with the
same skeleton) in which an edge has an arrow if and only if at least one
member of the equivalence class has that arrow, and none has the reverse
arrow (see Section 11.5).

5.5.2 Other graphical representations

Alternative graphical representations of conditional independence have been
considered. Cox and Wermuth (1996) allow their graph edges to be dashed
as well as solid lines and arrows, introducing an appropriately modified
semantics to relate the graph structure to marginal and conditional in-
dependence properties of Gaussian distributions. This approach is related
to that of Andersson et al. (1996a), who use chain graphs, but with a new
‘AMP’ semantics, based on a graph separation property different from that
considered here, which they term ‘LWF." The AMP semantics is related to
the interpretation of structural equation models (Bollen 1988). It gives rise
to many questions similar to those for the LWF approach: equivalence of
different descriptions of graphical separation, Markov equivalence of dis-
tinct graphs, etc. However, it does not correspond in a simple fashion to
a factorization property of the joint density, an aspect that is crucial for
computational efficiency.

Further graphical representations include possibly cyclic directed graphs
using cssentially the same moralization semantics as in the acyclic case;
Markov equivalence and related issues have been addressed by Richardson
(1996). An extension to ‘reciprocal graphs,’ a generalization of chain graphs,
has been studied by Koster (1996).

Starting from any graphical Markov criterion, we can also consider the
effects of collapsing out over unobservable variables, or conditioning on
‘selection variables,’ thus broadening still further the range of conditional
independence structures that may be represented (Cox and Wermuth 1996).
Again, issues of equivalence, etc., need addressing (Spirtes and Richardson
1997).

5.6 Background references and further reading

Dawid (1979, 1980b) proposed the axioms of conditional independence,
without any graphical connections, and showed how they could be devel-
oped as a unifying concept within probability and statistics. Applications



within theoretical statistics include: sufficiency and ancillarity; nuisance pa-
rameters (Dawid 1980a); Simpson’s paradox; optional stopping, selection
and missing data effects (Dawid 1976; Dawid and Dickey 1977); invariance
(Dawid 1985); and model-building (Dawid 1982). An overview is given by
Dawid (1998).

Graphical representations of probability models have a long history. Di-
rected models can be traced back to the path analysis of Wright (1921,
1923, 1934), and undirected models to the work of Bartlett (1935) on
interactions in contingency tables. The latter was taken. up by Darroch
et al. (1980) and has led to intensive investigation of graphical models in
statistics, well summarized by Whittaker (1990) and Lauritzen (1996). The
connections between undirected graphs and conditional independence were
first made in the unpublished work of Hammersley and Clifford (1971).
Statistical use of directed graphs came into its own with the introduction
of influence diagrams (Howard and Matheson 1984), but it was the appli-
cation by Pearl (1986b) (see also Pearl (1988)) to probability calculations
in graphical networks which initiated the recent explosion of interest in
directed graphical representations. Their Markov properties were explored
by Pearl (1986a) and Verma and Pearl (1990) using d-separation, while
Lauritzen et al. (1990) introduced the moralization criterion. A detailed
study of chain graph representations can be found in Frydenberg (1990).



