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ABSTRACT
Energy-Based Models (EBMs) are an important class of
probabilistic models, also known as random fields and undi-
rected graphical models. EBMs are un-normalized and thus
radically different from other popular self-normalized prob-
abilistic models such as hidden Markov models (HMMs),
autoregressive models, generative adversarial nets (GANs)
and variational auto-encoders (VAEs). During these years,
EBMs have attracted increasing interest not only from core
machine learning but also from application domains such
as speech, vision, natural language processing (NLP) and
so on, with significant theoretical and algorithmic progress.
To the best of our knowledge, there are no review papers
about EBMs with applications to speech and language pro-
cessing. The sequential nature of speech and language also
presents special challenges and needs treatment different
from processing fix-dimensional data (e.g., images).
The purpose of this monograph is to present a systematic
introduction to energy-based models, including both algo-
rithmic progress and applications in speech and language
processing, which is organized into four main sections. First,
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we will introduce basics for EBMs, including classic models,
recent models parameterized by neural networks, sampling
methods, and various learning methods from the classic
learning algorithms to the most advanced ones. The next
three sections will present how to apply EBMs in three
different scenarios, i.e., for modeling marginal, conditional
and joint distributions, respectively. 1) EBMs for sequen-
tial data with applications in language modeling, where we
are mainly concerned with the marginal distribution of a
sequence itself; 2) EBMs for modeling conditional distribu-
tions of target sequences given observation sequences, with
applications in speech recognition, sequence labeling and
text generation; 3) EBMs for modeling joint distributions of
both sequences of observations and targets, and their appli-
cations in semi-supervised learning and calibrated natural
language understanding. In addition, we will introduce some
open-source toolkits to help the readers to get familiar with
the techniques for developing and applying energy-based
models.



1
Introduction

1.1 The Probabilistic Approach

As a community we seem to have embraced the fact that dealing with
uncertainty is crucial for machine intelligence tasks such as speech recog-
nition and understanding, speech synthesis, natural language labeling,
machine translation, text generation, computer vision, signal denoising,
decision making, and so on. Uncertainty arises because of limitations
in our ability to observe the world, limitations in our ability to model
it, and possibly even because of innate nondeterminism [77]. In the
face of such uncertainty, we use probabilistic models to describe the
random phenomena. Indeed, many tasks in intelligent signal processing
and machine learning are solved in the probabilistic approach, which
generally involves probabilistic modeling, inference and learning, as
shown in Figure 1.1. Such probabilistic approach has been introduced
in textbooks with sufficient details [14], [59], [77], [110], and thus in this
paper we only give a brief overview as the background material.

A probabilistic model is, in mathematical terms, a distribution over a
set of random variables, which are assumed to characterise the random
phenomena in the specific task. The set of variables can generally
be divided into observations x and (optionally) hidden variables h,

3



4 Introduction

Figure 1.1: The probabilistic approach

according to their roles in the task. Hidden variables, or called latent
variables, are variables that are part of the model, but which we do
not observe, and are therefore not part of the data. Remarkably, the
observability of some variables may change, depending on what phase
(training or testing) the model is used. A most common example is the
target variable in prediction tasks, such as the class label in classification
or the response variable in regression, which is observed in training but
becomes unknown in testing. To avoid clutter in this paper, such variable
is viewed as part of the hidden variables and usually denoted by y.

We will typically denote a variable by a lower case letter such as
x, h and y. Whether x denotes the value that the variable takes or
represents the variable itself would be clear from the context. Further,
for notational simplicity, we also use lower case letter (e.g., x) to denote
a set of random variables, i.e., flattened and concatenated such that the
set is represented as a single vector. So if x is a vector or a sequence,
its components can be accessed by subscripts xi. Here, we are using
the terminology distribution or density loosely, typically denoted by
p. Our notation p should be understood as a mass function (density
with respect to counting measure) in the discrete case, and a density
function with respect to Lebesgue measure in the continuous case. See
Appendix A for more on notations.

Given the form of the probabilistic model, namely the distribution
pθ(x, h) with parameters θ, there are two crucial problems that must
be solved in applying the model in real-world tasks:
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• Inference: how to reason in the presence of uncertainty;

• Learning: how to learn from experience.

The former problem is often referred to probabilistic inference with
a fully-specified model, or inference for short; and the later problem
sometimes referred to statistical inference (or more often to say, learning
in machine learning terminology) for model parameters [112].

Put in a more straightforward way, learning is to find the most
appropriate model with parameters, using both data and human knowl-
edge. Human knowledge is implicitly employed to specify the family of
parametric distributions, and data are used to estimate the parameters.
Given a fully-specified model, i.e., fully-determined with fixed parame-
ters, inference is to infer the unknown from the observation x. There
are several typical classes of inference problems:

• Computing conditional probabilities, e.g., pθ(h|x). This amounts
to computing the posterior probability of some variables given the
values of other variables (i.e., given evidence on others).

• Computing marginal probabilities, including the likelihood pθ(x).

• Computing modes, e.g., arg maxh pθ(h|x).

• Sampling from the model [87], [112].

We provide two more points for readers to appreciate the importance
of the inference problems. First, the inference problems themselves
are often taken as the means to use the model. For example, speech
recognition is generally to find the mode of the posterior distribution
on state sequences given observed speech. Second, learning algorithms
often make use of some inference problem as a subroutine. For example,
algorithms that maximize the likelihood for learning latent variable
models, e.g., the expectation-maximization (EM) algorithm [38], call the
calculation of pθ(h|x) as a subroutine. Seeking computational efficient
algorithms to solve these inference problems for increasingly complex
models has been an enduring challenge for our research community.
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1.1.1 Generative models and discriminative models

One major division in the probabilistic approach is generative versus
discriminative modeling. In generative modeling, one aims to learn
the joint distribution pθ(x, h) over all the variables. In discriminative
modeling, one only models the conditional distribution pθ(h|x) over the
target variable (denoted by h for convenience) given the observation x.
In discriminative modeling, the observation and the target variable are
also called the input and output, respectively.

The generative-discriminative distinction has received much atten-
tion in machine learning [84], [116]. When a discriminative model
follows the induced form of the conditional distribution pθ(h|x) from
a generative model pθ(x, h), the two models are called a generative-
discriminative pair (i.e., under the same parametric family of models)
[116]. For example, naive Bayes classifier and logistic regression, hidden
Markov model (HMM) [133] and conditional random field (CRF) [79],
[170], form Generative-Discriminative pairs, respectively. To compare
generative and discriminative learning, it seems natural to focus on
such pairs. Basically, there are different regimes of performance as the
training set size is increased. Taking naive Bayes and logistic regression
as a case study, it is shown in [116] that “while discriminative learning
has lower asymptotic error, a generative classifier may also approach its
(higher) asymptotic error much faster”. The comparison of HMM and
CRF is further studied in [84], and it is found that generative modeling
(modeling more of the data) tends to reduce asymptotic variance, but
at the cost of being more sensitive to model misspecification. These
previous results, including [84], [116], to name a few, strengthen our
basic intuitions about generative-discriminative distinction.

Given that the generative and discriminative estimators are com-
plementary, one natural question is how to interpolate between the
two to get the benefits of both. There have been studies on hybrid
generative-discriminative methods (see [15] and the references therein).
Notably, those hybrid models have been applied for semi-supervised
learning (SSL), where one may have few labeled examples and many
more unlabeled examples, but mostly based on traditional generative
models like naive Bayes.
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In recent years, generative modeling techniques have been greatly ad-
vanced by inventing new models with new learning algorithms under the
umbrella of deep generative models (DGMs), which are characterized by
using multiple layers of stochastic or deterministic variables in modeling
and are much more expressive than classic generative models such as
naive Bayes and HMM. See [121] for a systematic introduction to DGMs
from perspective of graphical modeling. The generative-discriminative
discussion continues with new points, when more types of generative
models have constantly emerged and become studied. Here we provide
two examples with the new points.

• A type of DGMs, variational autoencoders (VAEs) [75], has been
successfully applied in the setting of semi-supervised learning.

• It is concurrently shown in [49], [162] that a standard discrimina-
tive classifier pθ(y|x) can be used to directly define an energy-based
model (EBM) for the joint distribution pθ(x, y). It is shown in [162]
that energy-based semi-supervised training of the joint distribu-
tion produces strong classification results on par with state-of-art
DGM-based semi-supervised methods. It is demonstrated in [49]
that energy based training of the joint distribution improves
calibration, robustness, and out-of-distribution detection while
also generating samples rivaling the quality of recent generative
adversarial network (GAN) [45] approaches.

1.1.2 Conditional models

Discriminative models are a kind of conditional models for discrimina-
tive tasks. However, conditional modeling is a more general modeling
concept than discriminative modeling. Basically, a conditional model is,
in probability terms, a conditional distribution of a random variable of
interest, when another variable c is known to take a particular value.
In this case, c is often called the input of the model. The variable of
interest generally can still consist of observable and (optionally) hidden
components, denoted by x and h respectively. Thus, a conditional model
can generally be denoted by pθ(x, h|c).
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Many real-world applications are solved by conditional modeling.
Some examples from discriminative tasks are as follows.

• First, by abuse of notation, discriminative modeling of image
classification involves the conditional model pθ(y|x), where x is
the input image and y is the images’s class.

• A more complicated example is the recurrent neural network trans-
ducer (RNN-T) model [50] for speech recognition. Let x denote
the input speech, y the label sequence (e.g., word transcription),
and π the hidden state sequence (or say, a path) which realizes
the alignment of x and y. Then the RNN-T model involves the
conditional model pθ(y, π|x). See Section 4.3.1 for more details on
RNN-T.

Apart from discriminative tasks, conditional models can also be
used for conditional generation tasks. One example is the reverse of the
image classification problem: prediction of a distribution over images,
conditioned on the class label.

Importantly, one should keep in mind that the learning and inference
methods introduced in unconditional modeling are in theory equally
applicable to conditional models. So the basics introduced in Section
2 lay the foundation for both (unconditional) EBMs in Section 3 and
conditional EBMs in Section 4. On the other hand, the unconditional
and conditional settings have their own characteristics, and thus needs
different treatments, as we will detail in Section 3 and 4 respectively.

1.2 Features of EBMs

In the probabilistic approach, the family of models chosen in real-world
applications clearly plays a crucial role. In terms of graphical modeling
terminology [77], probabilistic models can be broadly classified into two
classes - directed and undirected.

• In directed graphical models (DGMs), also known as (a.k.a.)Bayes-
ian networks (BNs) or called locally-normalized models, the dis-
tribution is factorized into a product of local conditional density
functions.
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• In contrast, in undirected graphical models (UGMs), also known
as Markov random fields (MRFs) or energy-based models (EBMs)
or called globally-normalized models, the distribution is defined to
be proportional to the product of local potential functions. The
three terms, UGMs, MRFs and EBMs, are exchangeable in this
monograph.

Simply speaking, an easy way to tell an undirected model from a directed
model is that an undirected model is un-normalized and involves the
normalizing constant (also called the partition function in physics),
while the directed model is self-normalized.

In general, directed models and undirected models make different
assertions of conditional independence. Thus, there are families of prob-
ability distributions that are captured by a directed model and are
not captured by any undirected model, and vice versa [126]. Therefore,
undirected models, though less explored, provide an important comple-
mentary choice to directed models for various real-world applications.

During these years, EBMs have attracted increasing interest not
only from core machine learning but also from application domains such
as speech, vision, natural language processing and so on, with significant
theoretical and algorithmic progress. There has emerged a dedicated
workshop at ICLR 2021, which is a broad forum about EBM research,
and a tutorial at CVPR 2021, which focuses on computer vision tasks.

• ICLR2021 Workshop - Energy Based Models: Current Perspec-
tives, Challenges, and Opportunities, https://sites.google.com/
view/ebm-workshop-iclr2021

• CVPR 2021 Tutorial: Theory and Application of Energy-Based
Generative Models, https://energy-based-models.github.io/

To the best of our knowledge, there are no review papers about EBMs
with applications to speech and language processing. The sequential
nature of speech and language also presents special challenges and needs
treatment different from processing fix-dimensional images that was
described in the CVPR 2021 tutorial. The aim of this monograph is
to present a systematic introduction to energy-based models, including

https://sites.google.com/view/ebm-workshop-iclr2021
https://sites.google.com/view/ebm-workshop-iclr2021
https://energy-based-models.github.io/
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both algorithmic progress and applications in speech and language
processing. We hope it will also be of general interest to the artificial
intelligence and signal processing communities.

Before delving into the specific content, we first point out five key
features of EBMs, which may motivate you to pursue the study and
application of EBMs.

• Flexibility in modeling. Compared to modeling a self-normalized
density function, learning EBMs relaxes the normalization con-
straint and thus allows much greater flexibility in the parameteri-
zation of the energy function. Moreover, undirected modeling is
more natural for certain domains, where fixing the directions of
edges is awkward in a graphical model.

• Computation efficiency in likelihood evaluation, since the negative
log likelihood of an EBM (by ignoring an additive constant)
can be easily evaluated, without incurring any calculation for
normalization.

• Naturally overcoming label bias and exposure bias suffered by
locally-normalized models (Section 4.1.2).

• Superiority for hybrid generative-discriminative and semi-super-
vised learning (Section 5).

• Challenge in model training. Both computation of the exact likeli-
hood and exact sampling from EBMs are generally intractable,
which makes training especially difficult.

1.3 Organization of This Monograph

The rest of the monograph is organized as follows.
In Section 2, we present the basics for EBMs. We start with a

brief introduction to probabilistic graphical models (PGMs), because
we introduce EBMs as undirected graphical models (UGMs). Then,
we present EBM model examples, including both classic ones (such
as Ising model and restricted Boltzmann machines) and modern ones
parameterized by neural networks. Next, basic algorithms for learning
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EBMs are described, which covers the two most widely used classes of
methods - Monte Carlo based maximum likelihood methods and noise-
contrastive estimation (NCE) methods. Finally, we present a dedicated
section to introduce how to sample/generate from EBMs, since sampling
is not only a critical step in maximum likelihood learning of EBMs,
but also itself forms an important class of applications in speech and
language processing.

The basics for inference and learning with EBMs are general for both
discrete and continuous data modeling. Remarkably, most applications
covered in this monograph are discrete data modeling (text in natural
language processing, discrete labels in speech recognition), but in some
places, we also present examples and applications in images. For example,
Ising model is introduced for readers to get the abstract concepts
conveyed by EBMs. EBM based joint-training for semi-supervised image
classification is a fixed-dimensional counterpart of the more complicated
sequence setting, which is for semi-supervised natural language labeling.

The next three sections introduce how to develop EBMs in three
different scenarios respectively.

• Note that the sequential nature of speech and language presents
special challenges and needs treatment different from processing
fix-dimensional data (e.g., images). In Section 3, we introduce
EBMs for sequential data with applications in language model-
ing. In this scenario, we are mainly concerned with learning the
(marginal) distribution of an observation sequence x itself, e.g., a
natural language sentence as in language modeling.

• In Section 4, we introduce EBMs for modeling conditional distribu-
tions of target sequences given observation sequences. Conditional
EBMs have been successfully applied in speech recognition, se-
quence labeling in natural language processing (NLP), and various
forms of conditional text generation (e.g., controlled text genera-
tion, factual error correction).

• In Section 5, we introduce EBMs for modeling joint distributions
of both sequences of observations and targets. We first introduce
the fixed-dimensional case, then move on to the sequential case,
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Figure 1.2: Outline of this monograph

and finally present the applications in semi-supervised natural
language labeling and calibrated natural language understanding.

Finally, conclusions are given in Section 6 to summarize the mono-
graph and to discuss future challenges and directions.

We visualize the content of this monograph in Figure 1.2. At the
center is the basic knowledge for EBM modeling and learning. The
basic theory can be applied to model different types of distributions –
the distribution of the observation itself, the conditional distribution,
and the joint distribution. In different applications or scenarios, we are
concerned with different types of distributions. In Sections 3, 4, and
5, we in fact show how to develop EBMs for the three different types
of distributions in three different scenarios, respectively, as described
above.

This monograph contains the material expanded from the tutorial
that the author gave at ICASSP 2022 in May 2022. Substantial updates
have been made to incorporate more recent work and cover wider areas
of research activities.



2
Basics for EBMs

Basically we introduce EBMs as undirected graphical models. We begin
with background on probabilistic graphical models, which would be
beneficial for readers to intuitively appreciate the differences between
directed graphical models (DGMs) and undirected graphical models
(UGMs).

2.1 Probabilistic Graphical Models (PGMs)

Probabilistic graphical models provide a general framework for describ-
ing and applying probabilistic models in the probabilistic approach.
Many ideas developed in the probabilistic approach can be understood,
unified, and generalized within the formalism of graphical models.

“A graphical model is a family of probability distributions
defined in terms of a directed or undirected graph. The
nodes in the graph are identified with random variables, and
joint probability distributions are defined by taking products
over functions defined on connected subsets of nodes.” [71]

Consider a graph G = (V,E) where V is a set of vertices (also
called nodes) and the set of edges E is a subset of the set V × V .

13
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Figure 2.1: (a) A simple directed graphical model with four variables (x1, x2, x3, x4).
(b) A simple undirected graphical model with four variables (x1, x2, x3, x4). For both
types of graphs, V denotes the set of nodes and E the set of edges. If both ordered
pairs (α, β) and (β, α) belong to E, we say that we have an undirected edge between
α and β. A nice introduction of graph theory in the context of graphical models
could be found in Chapter 4 of [32].

See Figure 2.1 for an illustration of these concepts from graph theory.
Let1 xV ≜ {xv : v ∈ V } be a collection of random variables indexed
by the nodes of the graph. A graphical model in terms of G describes
a family of probability distributions p(xV ) over the variables xV . A
variable can either be scalar- or vector-valued, where in the latter case
the vector variable implicitly corresponds to a sub-graphical model over
the elements of the vector.

The edges E specifies the connections between the nodes and, ac-
cording to the graph semantics (see below), plays a crucial role in
defining the graphical model distribution. One view is that the edges E,
depending on the graph semantics, determines a particular factorized
form of the distribution. Another view is that the edges E, of course
still depending on the graph semantics, determines a particular set of
conditional independence (CI) assumptions over the random variables.
In both views, the properties, either the factorized form or the CI
properties, implied by the graphical model are true for all members of
its associated distribution family. As we will see in Section 2.1.1 and
Section 2.1.2, the two views are, in a strong sense, equivalent.

1As described in Appendix A, we allow sets of indices to appear wherever a single
index appears.
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Graphical models can be defined over different types of graphs,
directed, undirected or mixed, each with differing semantics. The se-
mantics specifies what a graphical model means and tells how the family
of distributions is defined [77], [146]. The set of CI properties specified
by a particular graphical model, and therefore the family of probability
distributions it represents, will be different depending on the type of
graphical model currently being considered.

The two most common forms of graphical model (GM) are directed
graphical models (DGMs) and undirected graphical models (UGMs),
based on directed acylic graphs and undirected graphs, respectively. In
general, directed graphs and undirected graphs make different assertions
of conditional independence. Thus, there are families of probability
distributions that are captured by a directed graph and are not captured
by any undirected graph, and vice versa [77], [126].

2.1.1 Directed graphical models

Let us begin with the directed case. Continuing with the notations in
Section 2.1, let G = (V,E) be a directed acyclic graph (DAG), and xV

be a collection of random variables indexed by the nodes of G. For each
node v ∈ V , let pa(v) denote the subset of indices of its parents; thus
xpa(v) denotes the vector of random variables indexed by the parents of
v.

Definition 2.1 (DGM). A directed graphical model in terms of G consists
of a family of distributions that factorize in the following way:

p(xV ) =
∏
v∈V

p(xv|xpa(v)) (2.1)

We then also say that p(xV ) has the directed factorization property
(DF) according to G, or simply, p(xV ) factorizes according to G.

Remarkably, the notation in Eq. (2.1) is self-consistent, because it
can be verified that the joint distribution p(xV ) defined by the factor-
ization Eq. (2.1) has {p(xv|xpa(v))} as its conditionals. For the simple
directed graphical model shown in Figure 2.1(a), the joint distribution
that it describes is:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x1, x3)
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General speaking, the nodes in a graphical model correspond to
the random variables, and the edges indicate some direct probabilistic
interactions between the nodes. In directed graphical models, every edges
is directed and, intuitively, correspond to direct influence of the parent
node on the child node. Thus, DGMs are suitable for modeling clear
influence relationships between random variables, which are expressed
through conditional distributions.

Factorization and Markov properties in directed graphical models

The factorization in Eq. (2.1) implies a set of conditional independence
statements among the variables xV . In an opposite way, we could define
a set of conditional independence statements in terms of G, which is
often referred to as a Markov property over G. A range of Markov
properties could be defined, relative to G, such as the directed global
Markov property (DG), the directed local Markov property (DL), the
directed ordered Markov property (DO) (See Section 5.3 of [32]). It can
be shown that the three Markov properties, (DG), (DL) and (DO), are
equivalent, and further, they are equivalent to the (DF) property. These
properties collectively characterize a graphical model (i.e., a family of
distributions defined in terms of a graph). The Markov properties of a
distribution are precisely what allow it to be expressed compactly in a
factorized form. Conversely, a particular factorization of a distribution
guarantees that certain independencies hold.

DGM example - HMM

Many classic probabilistic models in speech and language processing
can be easily understood in terms of graphical models. Figure 2.2 shows
the graphical model representation of a hidden Markov model (HMM)
[133], which has been widely used in speech recognition and various
natural language processing tasks.

In an HMM, there is an underlying hidden Markov chain, corre-
sponding to the state sequence π1:T ≜ π1 · · ·πT . At each time frame,
depending on the state πt, the model probabilistically emit an output
xt, which can be observed. The joint distribution is given by
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Figure 2.2: Graphical model representation of a hidden Markov model (HMM).

p(π1:T , x1:T ) = p(π1)
T −1∏
t=1

p(πt+1|πt)
T∏

t=1
p(xt|πt) (2.2)

where p(πt+1|πt) and p(xt|πt) are often called state-transition distri-
bution and state-output distribution, respectively. It is easy to verify
that the graphical model as shown in Figure 2.2 exactly describes the
joint distribution Eq. (2.2), by following the DGM semantics - the joint
distribution is defined as the product of local conditionals of each variable
given its parents. Through this example, readers can appreciate the
naturalness of the graphical model approach in formulating probabilistic
models of complex phenomena.

DGM example - Neural network based classifier

Traditionally, each conditional probability distribution p(xv|xpa(v)) is
parameterized as a lookup table or a linear model [77]. A more flexible
way to parameterize such conditional distributions is with neural net-
works. In this case, a neural networks takes as input the parents of a
variable in a directed graph, and produces the distributional parameters
over the variable.

η = NeuralNet(xpa(v))
p(xv|xpa(v)) = PDF(xv|η)

where we use NeuralNet(·) and PDF(·|η) to generally denote a neural
network (NN) function and a probability density function (PDF) param-
eterized by η, respectively. For example, if xv is a continuous variable,
η could denote the mean and variance parameters; if xv is a discrete
variable, η could denote the logits (as explained below).
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Figure 2.3: Neural network based classifier. (a) GM representation; (b) Computa-
tional graph representation.

Basically, we can employ the above concept to build arbitrary di-
rected graphical models, which is not the main focus of this monograph.
For illustration, let us examine the widely used NN based classifier,
which could be cast as a simple two-node directed model for observation
x ∈ RD and class label y ∈ {1, · · · ,K}, as shown in Figure 2.3. It is
important to differentiate the GM representation and computational
graph representation.

The classic multi-class logistic regression [14], [110] basically is to
use a single linear layer to obtain the logits zk’s, which are then fed to
a softmax layer to calculate the class posterior:

p(y = k|x) = exp(zk)∑K
j=1 exp(zj)

≜ softmax(z1:K)k (2.3)

where
zk = wT

k x+ bk, k = 1, · · · ,K (2.4)

are often called the logits2, and wk ∈ RD, bk ∈ R denote the weight
vector and bias of the linear layer. A simple notation to describe the
linear layer Eq. (2.4) is

zk = Linear(x|wk, bk)

or denoted as zk = Linear(x) when the parameters are suppressed.
A recent advance in deep learning is that we can use a multi-layer

neural network, often referred to as a deep neural network (DNN), to
2Presumably because the argument of the sigmoid function is often called the logit,

so analogously, the argument of the softmax function (as a multi-class generalization
of the sigmoid) is also called the logit.
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calculate the logits, and then still use the softmax function to obtain
the probability vector from the logits. In this way, the multi-layer NN
could be viewed as a non-linear feature extractor , which hopefully can
be trained to extract features, more discriminative than the raw obser-
vation x. Here in describing an NN based classifier, we show a directed
model which has shallow stochastic connections but use deep determin-
istic layers in implementing the conditional distributions. Variational
autoencoder (VAE) [75] is also such a model. Further, directed models
with deep stochastic connections have also been examined such as such
as Sigmoid belief Networks (SBNs) [115], [154], Helmholtz machines
(HMs) [37], [62].

2.1.2 Undirected graphical models

Let us now consider the undirected case. Given an undirected graph
G = (V,E), we again let xV be a collection of random variables indexed
by the nodes of the graph and let C denote the set of cliques3 of the
graph. Associated with each clique C ∈ C, let ϕC(xC) denote a potential
function, which is a non-negative function of its arguments.

Definition 2.2 (UGM). With the above notation, an undirected graphical
model in terms of G consists of a family of distributions that factorize as:

p(xV ) = 1
Z

∏
C∈C

ϕC(xC) (2.5)

where Z is the normalizing constant (also known as the partition func-
tion) given by

Z =
∑
xV

∏
C∈C

ϕC(xC) (2.6)

We then also say that p(xV ) has the factorization property (F) according
to G, or simply, p(xV ) factorizes according to G.

3A subset of nodes C is called a clique, if every pair of nodes in C is joined.
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For the simple undirected graphical model shown in Figure 2.1(b),
the joint distribution that it describes is4:

p(x1, x2, x3, x4) = 1
Z
ϕ(x1, x2)ϕ(x2, x3)ϕ(x3, x4)ϕ(x1, x4)

Remarkably, the potentials do not need to be self-normalized, only
required to be non-negative functions. In contrast, the conditionals
in directed models are required to be normalized. Thus, undirected
models generally offer more flexibility in modeling than directed models.
Moreover, undirected models do not require us to specify edge orienta-
tions, and are well suited to be used in problems in which there is little
directional structure to guide the construction of a directed graph.

Factorization and Markov properties in undirected graphical models

We have discussed the equivalence of factorization and conditional
independence in directed models in Section 2.1.1. Similarly, a range of
Markov properties could be defined, relative to a undirected graph G,
such as the global Markov property (G), the pairwise Markov property
(P), the local Markov property (L) (See Section 5.2 of [32]). However,
in contrast to the discussion in the case of directed graphical models,
the four properties, (F), (G), (L) and (P), are different in general. In
general, we have (F)⇒(G)⇒(L)⇒(P). In the case where p(xV ) has a
positive density (i.e., never zero or negative for any value of xV ), it can
be shown that (P) implies (F), and thus the four properties become
equivalent. This result is known as the Hammersley-Clifford theorem.

When we use the term undirected graphical model without further
qualification, we shall always mean one that factorizes, hence satisfies all
of the properties. In the following, we will detail the (G) property, which
is important because it enable us to easily decide when two groups of
variables A and B are conditionally independent give a third group of
variables S in an undirected model.

A probability distribution p(xV ) is said to obey the global Markov
property (G), relative to a undirected graph G , if for any triple (A,B, S)

4Note that factorization over the set of cliques can be easily shown to be equivalent
to factorization over the set of maximal cliques, i.e., the set of all cliques that are not
properly contained within any other clique. Therefore, the joint distribution in this
example can be written as the product of 4 potentials over the 4 maximum cliques,
divided by the normalizing constant.
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Figure 2.4: Illustration of the global Markov property in UGMs.

of disjoint subsets of V such that S separates A from B5, we have
xA ⊥ xB|xS . Simply put, the (G) property means: separation between
nodes in the graph implies CI between variables in the distribution, as
illustrated in Figure 2.4.

Energy-based models and Gibbs distributions

Definition 2.3 (EBM). When we are restricted to potential functions
which are strictly positive, it is convenient to express them as exponen-
tials, so that

ϕC(xC) = exp[−EC(xC)]

where EC(xC) is called an energy function. Hence, negative log-potential
is often called energy, and high probability states correspond to low
energy configurations. Distributions of this exponential form are called
energy-based models (EBMs), also known as the Gibbs (or Boltzmann)
distributions, originating from statistical physics:

p(xV ) = 1
Z

exp
[∑

C∈C
−EC(xC)

]
(2.7)

A benefit of the form of EBMs is that unlike the potential functions,
the log-potential functions (or after negating, the energy functions) are
not constrained to be non-negative and can be very flexibly parameter-
ized.

5We say S separates A from B if all trails from A to B intersect S.
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Log-linear models and maximum entropy models

Definition 2.4 (Log-linear model). A classic approach to implement
log-potentials is to define them as a linear function of the parameters:

log ϕC(xC) = θT
CfC(xC)

where fC(xC) is a feature vector derived from (the values of) the variable
xC , θC is the associated feature weight vector. The resulting distribution
has the form

p(xV ) = 1
Z(θ) exp

[∑
C

θT
CfC(xC)

]
(2.8)

where θ = {θC | C ∈ C} collectively denotes the model parameters and
we explicit the dependence of the normalizing constant on θ. This is
known as a log-linear model or an exponential-family model [110], [180].

Example 2.1 (Word morphology). As an illustrative example, suppose
we are interested in making a probabilistic model of English spelling.
This is known as the word morphology problem, which aims to model
English words as letter sequences, x1, x2, · · · , by assigning probabilities
[110], [129], [189]. Since certain letter combinations occur together quite
frequently (e.g., “ing”), we will need higher order cliques to capture this.
Suppose we limit ourselves to letter trigrams. Since the variables in
the sequence here are discrete, we can represent the potential functions
as tables of (non-negative) numbers, which are often called tabular
potentials. A tabular potential has 263 = 17, 576 parameters in it.
However, most of these triples will never occur. An alternative approach
is to define indicator functions (as feature functions) that look for
certain special triples, such as “ing”, “qu-”, etc. Then we can define the
potential at position t as follows:

ϕt(xt−1, xt, xt+1) = exp
(∑

k

θkfk(xt−1, xt, xt+1)
)

where k indexes the different features, corresponding to “ing”, “qu-”,
etc., and fk is the corresponding binary feature function6. By tying the

6For example, f“ing”(xt−1, xt, xt+1) equals to 1, if xt−1 = “i”, xt = “n”, xt+1 =
“g”, and equals to 0, otherwise.
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parameters across positions, we can define the probability of a word of
any length T using

p(x1:T |θ) = exp
(

T∑
t=1

∑
k

θkfk(xt−1, xt, xt+1)
)

(2.9)

It has been shown in [189] that a (trans-dimensional) log-linear model
outperforms a traditional n-gram model, using the same set of features.

Modeling with Eq. (2.9) raises the question of where these feature
functions come from. Traditionally, the features fC are mainly hand-
crafted to reflect domain knowledge, and people take efforts for feature
engineering. In fact, log-linear models with careful feature engineering
were mainstream in NLP before the revival of neural approaches. Re-
cently, neural networks have been successfully used to implement more
general form of EBMs, where, unlike in classic log-linear models, the
log-potentials are defined by NN-based non-linear functions, as we will
show later in Section 2.2.3. Notably, if NN-based log-potential uses a
linear final layer, these NN-based EBMs could in some sense still be
viewed as log-linear models, but on top of the learned features extracted
by the trainable neural networks.

Interestingly, log-linear models are closely connected to maximum
entropy (maxent) models. A classic conclusion is that the maxent distri-
bution (i.e., the distribution with the maximum entropy subject to the
constraints that empirical expectation of features equal to model expec-
tation of features) is the same as the maximum likelihood distribution
from the closure of the set of log-linear distributions [94], [129] (see Ap-
pendix B for details). Hence EBMs, which could be viewed as log-linear
models as we describe above, also enjoy such a connection to maxent
models. Remarkably, the EBM distribution p(x) is only known up to a
normalizing constant Z and the potentials are not probabilities, it may
be hard for us to understand EBM models. Such maximum entropy
property of EBM models allows us to gain intuitive understanding of
EBM models.
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2.2 EBM Model Examples

In this section, we first introduce classic EBM model examples including
Ising model and restricted Boltzmann machine, to familiarize readers
with basic concepts. Then, we focus on modern ones parameterized by
neural networks.

2.2.1 Ising model in statistical physics

A well-known example of EBMs is the Ising model, which arose from
statistical physics, and has been a classic probabilistic model for binary
images. It was originally used for modeling the behavior of magnets.
In particular, the spin of an atom can either be spin down or up. The
spins are arranged in a lattice, allowing each spin to interact with its
neighbors. Neighboring spins that agree have a lower energy than those
that disagree; the system tends to the lowest energy but heat disturbs
this tendency, thus creating the possibility of different structural phases.
The two-dimensional square-lattice Ising model is one of the simplest
statistical models to show a phase transition.

Consider a lattice of variables x1:N , each component xi taking values
−1/+1 to model a spin down/up or a pixel black/white, as shown in
Figure 2.5. This

√
N ×

√
N lattice, as an undirected graph, defines an

Ising model p(x1:N ) ∝ exp[−E(x1:N )] with the energy function

E(x1:N ) = −β

∑
i∼j

Jxixj +
∑

i

Hxi

 (2.10)

where i ∼ j denotes that two spins i and j are neighbours.
The energy for an Ising model includes two contributions: the inter-

action between neighboring spins and the effect of an applied external
magnetic field on each individual spin. Consider the case of ferromag-
netism. The interaction between neighboring spins tends to induce
parallel alignment of the neighbors, so it should be favorable (negative
energy) when the neighbors are both +1 or both −1, and unfavorable
(positive energy) when the neighbors are +1 next to −1. Hence, for
each pair of neighbors i and j, the interaction energy can be written as
−Jxixj , where J is a positive coefficient giving the interaction strength.
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(a) (b)

Figure 2.5: Ising model: (a) The undirected graph representation, (b) A sample.

If the applied magnetic field is pointing up, it favors each spin pointing
up; if the field is pointing down, it favors each spin pointing down.
Hence, for each site i, the field energy can be written as −Hxi, where H
denotes the magnetic moment of the field. Putting these pieces together,
the total energy for the system becomes Eq. (2.10).

It is usual to include in Eq. (2.10) the inverse temperature parameter
β = 1

kBT , where kB is Boltzmann’s constant, and T the temperature. β
measures how much neighboring spins take identical values is favored.
The larger β (equivalently the lower temperature T ) is, the more favor-
able of neighboring spins to take identical values. Figure 2.6 shows a
sequence of typical samples from the simulation of N = 4096 spins at a
sequence of decreasing temperatures. At infinite temperature (β = 0),
each spin is completely independent of any other, and if typical states
at infinite temperature are plotted, they look like television snow. For
high, but not infinite temperature, there are small correlations between
neighboring positions, the snow tends to clump a little bit, but the
screen stays randomly looking. When the temperature decreases (β
increases), it is more favored for neighboring spins to take identical
values, so large patches of black or white become to appear.

Through this example, we could get some sense of the characteristics
of EBM modeling - EBMs are natural for modeling interactions (mutual
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Figure 2.6: Sample states of square Ising models with J = 1, H = 0, kB = 1, N =
4096 at a sequence of temperatures T = 5, 2.5, 2.4, 2.3, 2. [94]

influences), where the directions of edges cannot be clearly defined. For
example, here it is hard to say one pixel determines another pixel, even
in a probabilistic sense. It is better to use undirected edges to model
interactions between pixels through energy functions. Particularly in
this example, for each pair of nodes connected by an edge in the lattice,
there is an clique potential, which is implemented as follows:

ϕij(xi, xj) =
{

eβ, xi = xj = ±1
e−β, xi = −xj = ±1

where we set J = 1, H = 0, kB = 1. So when the two neighboring pixels
take the same value, it will contribute eβ to the un-normalized density;
otherwise, contribute e−β.

2.2.2 Restricted Boltzmann Machines (RBMs)

Restricted Boltzmann machines (RBMs) are the main building blocks
of deep belief networks (DBNs) [63], which ignite deep learning. A RBM
is a classic undirected graphical model with hidden variables. It is
defined over a bipartite graph, in which the visible, binary stochastic
variables v ∈ {0, 1}D are connected to hidden binary stochastic variables
h ∈ {0, 1}H , as shown in Figure 2.7. The energy of the state {v, h} is
defined over cliques7:

Eθ(v, h) = −vTWh− bT v − aTh

= −
D∑

i=1

H∑
j=1

viWijhj −
D∑

i=1
bivi −

H∑
j=1

ajhj

7Each node is a clique, and for each edge connecting vi and hj , there is a clique.
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Figure 2.7: Restricted Boltzmann Machine. The top layer represents a vector of
stochastic binary hidden variables h and the bottom layer represents a vector of
stochastic binary visible variables v. [148]

where θ = {W, b, a} are the model parameters: Wij represents the
symmetric interaction term between visible unit i and hidden unit j; bi

and aj are bias terms. The joint distribution is:

pθ(v, h) = 1
Z(θ) exp [−Eθ(v, h)]

Z(θ) = −
∑

v

∑
h

exp [−Eθ(v, h)]

where Z(θ) is the normalizing constant.
Due to the special bipartite structure of RBMs, given v, different

hidden units hj ’s are separated and thus are conditionally independent,
according to the Markov property of UGMs. Therefore, the conditional
distribution of h given v is factored:

pθ(h|v) =
∏
j

pθ(hj |v)

pθ(hj |v) ∝ exp
(∑

i

viWijhj + ajhj

)

from which we could easily obtain the conditional probability of a single
unit hj , expressed by the sigmoid function σ(·):

pθ(hj = 1|v) = σ

(∑
i

Wijvi + aj

)
(2.11)
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Similarly, the conditional distribution of v given h is also factored
and given by:

pθ(v|h) =
∏

i

pθ(vi|h)

pθ(vi|h) ∝ exp

∑
j

viWijhj + bivi


pθ(vi = 1|h) = σ

∑
j

Wijhj + bi

 (2.12)

Remarkably, it can be seen from Eq. (2.11) that an RBM is related
to a stochastic version of a neural network, also known as a sigmoid
belief network (SBN) [115], [154]. To see this8, imagine that the nodes
v1:D and the edges of an RBM as shown in Figure 2.7 are viewed as
the input layer and the synaptic connections of a two-layer SBN; the
output layer at h1:H fires, hj taking 0 or 1, j = 1, · · · , H, stochastically
from a sigmoid activation function. Therefore, the conditional distri-
bution pθ(h|v) induced from an RBM can be viewed as implementing
a two-layer SBN, and a two-layer SBN is very similar to an ordinary
two-layer feedfoward neural network, except it stochastically fires in-
stead of outputting activations to the next layer (see Figure 2.8). This
resemblance between RBMs and NNs is the underlying intuition that a
stack of RBMs can be trained as pre-training for a multi-layer neural
network [148].

2.2.3 EBMs parameterized by neural networks

Classic EBM models employ simple energy functions, e.g., the energy
functions in both the Ising model and the RBM model are bilinear.
Recently, beyond the classic EBM models, there have emerged a bundle
of deep EBM models (deep undirected generative models), which are
characterized by using multiple layers of stochastic or deterministic
variables.

Those deep EBM models with multiple stochastic hidden layers such
as deep belief networks (DBNs) [63] and deep Boltzmann machines

8Such relationship could also seen from Eq. (2.12) from an opposite direction.
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(a) (b)

Figure 2.8: (a) Restricted Boltzmann machine (RBM), (b) Sigmoid belief network
(SBN).

(DBMs) [147] involve very difficult inference and learning, which severely
limits their applications beyond of the form of pre-training. Another type
of deep EBM models, which appear to be more successfully applied, is to
directly define the energy function through a multi-layer neural network.
In this case, the layers of the network do not represent latent variables
but rather are deterministic transformations of input observations.

For simplicity, we will first introduce unconditional models in the
following. It is relatively straightforward to extend to models with
conditioning variables, which will be detailed in Section 4.

Definition 2.5 (EBMs parameterized by neural networks). Generally,
consider an EBM to define a probability distribution for a collection of
random variables x ∈ X with parameter θ in the form:

pθ(x) = 1
Z(θ) exp [Uθ(x)] (2.13)

where X denotes the space of all possible values of x, and Z(θ) denotes
the normalizing constant:

Z(θ) =
∫

exp [Uθ(x)] dx (2.14)

Uθ(x) : X → R denotes the (log) potential function9 which assigns a
scalar value to each configuration of x in X and can be very flexibly

9In the literature, log potential function is sometimes also referred to as potential
function. Whether taking log or not should be clear from the context, although
with abuse of nomenclature. Moreover, reversing the potential function will obtain
the energy function, and vise versa. So an EBM could be equivalently defined by an
energy function or a potential function.
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Figure 2.9: Potential functions in EBMs can be flexibly parameterized by neural
networks for images, natural languages and so on.

parameterized through neural networks of different architectures. For
different applications, X could be discrete or continuous, and x could be
fix-dimensional or trans-dimensional (i.e., sequences of varying lengths).
For example, images are fix-dimensional continuous data (i.e., X =
RD), and natural languages are sequences taking discrete tokens (i.e.,
X = ⋃

l Vl where V is the vocabulary of tokens). The general idea is
to parameterize Uθ(x) by a neural network, taking multi-variate x as
input and outputting scalar Uθ(x), so that we can take advantage of
the representation power of neural networks, as shown in Figure 2.9.

Historically, this type of EBMs has been studied several times in
different contexts. They are once called deep energy models (DEMs) in
[74], [117], generative ConvNet in [195], descriptive models in [53], [194],
neural trans-dimensional random field language models in [43], [184]–
[186], neural random fields (NRFs) in [162]. There are some specific
differences between implementation (or say, parameterization) of the
potential functions in these deep EBM models.

• The potential function in [74], [117] uses the form of a product of
experts [61] and is composed of linear and squared terms and the
aggregated (i.e., the sum of) logistic regression responses of a set
of weak classifier (“expert”) for images x:

Uθ(x) = bTx− 1
σ2x

Tx+
∑

i

log(1 + ewT
i fθ(x)+ci) (2.15)
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The first two terms capture the mean and the global variance, and
the last term comes from a set of experts over the feature data
space fθ(x). fθ(x) is the output of a feedforward neural network.
One can allow activations other than logitic sigmoid as shown in
Eq. (2.15).

• In [39], [43], [184]–[186], deep EBM models are defined over se-
quences (natural language sentences).

• In [39], [53], [184], [194], [195], the EBM is defined in the form of
exponential tilting of a reference distribution q(x):

pθ(x) = 1
Z(θ)q(x) exp [Uθ(x)] (2.16)

In [53], [194], [195] for image modeling, a Gaussian white noise
distribution is used as q(x). In [39], [184] for language modeling,
autoregressive language models based on LSTM or Transformer
networks are often used as q(x).

Despite the different parameterizations of the potential function
in various deep EBM models, these differences would not affect much
when presenting learning algorithms, as we will introduce immediately
in the next section.

Comparison between classic undirected graphical models and modern
EBM models parameterized by neural networks

As we introduced before, classic undirected graphical models such as the
Ising model and the RBM model employ simple potential functions like
linear or bilinear, while modern EBM models utilize neural networks to
parameterize potential functions. From this apparent difference, there
is a remarkable implication, which will be described below.

In graphical modeling terminology, without loss of generality, let
each component of x indexed by a node in an undirected graph. The
EBM distribution pθ(x) is defined to be decomposed over cliques, as
shown in Eq. (2.7). Such decomposition reduces the complexity of model
representation but may be at the sacrifice of model expressive capacity.
In an EBM model parameterized by a neural network as introduced



32 Basics for EBMs

above, the model essentially becomes defined over a fully-connected
undirected graph and captures interactions in x to the largest order,
since the neural potential function U(x) involves all the components in
x. In this manner, hopefully we can take advantage of the representation
power of neural networks for modeling. As shown above, we can define
very flexible potential functions Uθ(x), by utilizing neural networks
of various architectures to define the densities Eq. (2.13). For this
reason, it is often assumed in theoretical analysis that pθ(x) has infinite
capacity (sometime called in the non-parametric setting). In practice, the
performances of the models largely depend on how they are optimized
in model learning.

2.3 Learning EBMs by Maximum Likelihood

The de facto standard for learning probabilistic models from IID (in-
dependent and identically distributed) data is maximum likelihood
estimation (MLE) . Let pθ(x), as defined in Eq. (2.13), be an EBM
model parameterized by θ, and pemp(x) ≜ 1

N

∑N
i=1 δ(x− xi) denote the

empirical distribution for a training dataset consisting of N IID data
points {x1, · · · , xN}. We can fit pθ(x) to data by maximizing the scaled
log-likelihood of the data, defined by

L(θ) ≜ 1
N

N∑
i=1

log pθ(xi) =
[

1
N

N∑
i=1

Uθ(xi)
]
− logZθ (2.17)

as a function of θ.
Maximizing likelihood is equivalent to minimizing the (inclusive)

KL divergence between pemp(x) and pθ(x), because

KL[pemp(x)||pθ(x)] = Ex∼pemp(x)[log pemp(x)]− Ex∼pemp(x)[log pθ(x)]
= constant− L(θ),

where the second equality holds because Ex∼pemp(x)[log pemp(x)] does
not depend on θ.

Taking the derivative of log-likelihood with respect to (w.r.t.) θ, the
first term of the gradient is a sum over data points and can be written
as an expectation under the empirical distribution:
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1
n

N∑
i=1
∇θUθ(xi) = Epemp(x) [∇θUθ(x)]

The second term involves taking the derivative of the log normalizing
constant, which, as shown below, can also be written as an expectation
but under model distribution pθ(x):

∇θ logZθ = 1
Zθ
∇θZθ = 1

Zθ

∫
∇θ exp [Uθ(x)] dx

= 1
Zθ

∫
exp [Uθ(x)]∇θUθ(x)dx

=
∫ exp [Uθ(x)]

Zθ
∇θUθ(x)dx

=
∫
pθ(x)∇θUθ(x)dx

= Epθ(x) [∇θUθ(x)] (2.18)

Combining the two terms, we obtain the core formula in learning EBMs:

∇θL(θ) = Epemp(x) [∇θUθ(x)]− Epθ(x) [∇θUθ(x)] (2.19)

The maximum likelihood estimate of θ is obtained as a solution to
∇θL(θ) = 0. Obviously, the challenge is in calculating the expectation
under model distribution, which is often intractable to compute exactly
and approximated by Monte Carlo averaging.

Suppose that we can draw random samples from the EBM pθ(x),
denoted as x(1), · · · , x(M) ∼ pθ(x), then we can obtain an unbiased
estimate of the second term in the log-likelihood gradient10:

Epθ(x) [∇θUθ(x)] ≈ 1
M

M∑
j=1
∇θUθ(x(j)) (2.20)

Additionally, note that the computational cost of Eq. (2.19) is linear in
N (the number of training data points). So when N is large, we often
apply minibatching as follows. Through random drawing a minibatch

10Here we suppose that the samples are direct samples from pθ(x). As will
be described in Section 2.3.3, such assumption can be relaxed in the stochastic
approximation methodology, which allows us to use Markov chain samples.
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of κ1, · · · , κB from {1, · · · , N}, we can obtain an unbiased estimate of
the first term in the log-likelihood gradient:

Epemp(x) [∇θUθ(x)] ≈ 1
B

B∑
j=1
∇θUθ(xκj ) (2.21)

Combining Eq. (2.20) and Eq. (2.21) allows us to optimize the parame-
ters with stochastic gradient ascent. See further introduction in Section
2.3.3.

We have shown above the basic idea of applying Monte Carlo meth-
ods in maximum likelihood learning of EBMs. As long as we can draw
random samples from the model pθ(x), we have access to an unbiased
estimate of the log-likelihood gradient, allowing us to optimize the
parameters with stochastic gradient ascent. So a critical step in
learning EBMs by Monte Carlo methods is the simulation (sam-
pling) from the EBM distribution pθ(x), as defined in Eq. (2.13) in
general.

In some applications, directly generating independent samples from
a distribution is not feasible. There are two broad classes of strategies for
sampling from high-dimensional distributions. The first is the MCMC
strategy, which produces statistically dependent samples based on the
theory of Markov chains. The second is the importance sampling (IS)
strategy, in which independent samples are generated from a trial
distribution (a.k.a. a proposal distribution) and then weighted according
to the importance weight. The two methods will be introduced as follows
in Section 2.3.1 and Section 2.3.2 respectively. Further introduction can
be found in monographs [87], [112] or general textbooks on machine
learning [14], [77], [110].

2.3.1 Markov Chain Monte Carlo (MCMC)

Let pθ(x) be the target distribution under investigation. The basic
idea of Markov Chain Monte Carlo (MCMC) is to construct a Markov
chain in the state space of x, denoted by X , so that the limiting (or
say, stationary or equilibrium) distribution of this chain is the target
distribution pθ. Roughly speaking, this means that the fraction of time
spent in each state along the chain in a long run is equal to pθ.
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Metropolis–Hastings algorithm

A classic MCMC method is the Metropolis-Hastings (MH) algorithm,
which is described in Algorithm 1. Starting with any configuration x(0),
the MH algorithm proceeds by iterating “propose” and “accept/reject”,
as shown in Line 3 and Line 4 respectively. A single run of “propose”
and “accept/reject” is often called a MH transition, which defines a
particular Markov chain.

• First, we propose to move from the previous state x(t−1) to a
new state x′ with probability q(x′|x(t−1)), where q is called the
proposal distribution.

• Having proposed a move to x′, we then decide whether to accept
this proposal or not according to some formula, which ensures that
the limiting distribution of this chain is the target distribution pθ.
If the proposal is accepted, the new state is x′, otherwise the new
state is the same as the previous state, x(t−1) (i.e., we repeat the
sample).

At the end of the iterations, we obtain a realization (or say, a single
run) of the Markov chain, x(1), · · · , x(T ). It can be shown that this
particular Markov chain leave pθ invariant. Note that theoretically, only
the limiting distribution of the chain follows pθ. So it is necessary to
discard a few initial samples until the Markov chain has burned in,
or entered its stationary distribution. The remained samples can then
be used for Monte Carlo averaging such as in Eq. (2.20) to estimate
expectations.

In practice, the accept/reject step is taken by drawing U ∼ Uni[0, 1],
calculate the acceptance probability

r = min
{

1, pθ(x′)q(x(t−1)|x′)
pθ(x(t−1))q(x′|x(t−1))

}
(2.22)

and update

x(t) =
{
x′, if U ≤ r
x(t−1), otherwise.
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Algorithm 1 Metropolis-Hastings Algorithm
Input: A target distribution pθ(x), a proposal distribution q(x′|x)
1: Randomly initialize x(0);
2: for t = 1 to T do
3: Generate x′ from the proposal q(x′|x(t−1));
4: Accept x(t) = x′ with probability min

{
1, pθ(x′)q(x(t−1)|x′)

pθ(x(t−1))q(x′|x(t−1))

}
,

otherwise set x(t) = x(t−1);
5: end for
6: Return: {x(1), · · · , x(T )}

Critically, the MH algorithm only needs to know the target distri-
bution up to a normalization constant. In particular, consider the EBM
distribution pθ(x) = 1

Zθ
exp [Uθ(x)], then MH ratio

pθ(x′)q(x(t−1)|x′)
pθ(x(t−1))q(x′|x(t−1))

=
1

Zθ
exp [Uθ(x′)] q(x(t−1)|x′)

1
Zθ

exp
[
Uθ(x(t−1))

]
q(x′|x(t−1))

in which the Zθ’s cancel. Hence, we can sample from pθ(x) even if the
normalizing constant Zθ is unknown.

Remarkably, the user is free to use any kind of proposal they want,
subject to some theoretical conditions. This makes MH quite a flexible
method. We introduce two special algorithms that are instances of the
general MH algorithm.

The Metropolis algorithm. If the proposal transition function is
symmetric, so q(x′|x) = q(x|x′), the acceptance probability is given by
the following formula:

r = min
{

1, pθ(x′)
pθ(x(t−1))

}
We see that if x′ is more probable than x, we definitely move there
(since pθ(x′)

pθ(x(t−1)) > 1), but if x′ is less probable, we may still move there
anyway, depending on the relative probabilities. So instead of greedily
moving to only more probable states, we occasionally allow “downhill”
moves to less probable states.
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Algorithm 2 Gibbs sampler
Input: A target distribution p(x) for x = (x1, · · · , xn)
1: Randomly initialize x(0) = (x(0)

1 , · · · , x(0)
n );

2: for t = 1 to T do
3: Pick x

(t)
1 from the distribution for x1 given

x
(t−1)
2 , x

(t−1)
3 , · · · , x(t−1)

n ;
4: Pick x(t)

2 from the distribution for x2 given x(t)
1 , x

(t−1)
3 , · · · , x(t−1)

n ;

5:
...

6: Pick x
(t)
i from the distribution for xi given

x
(t)
1 , · · · , x(t)

i−1, x
(t−1)
i+1 , · · · , x(t−1)

n ;

7:
...

8: Pick x(t)
n from the distribution for xn given x

(t)
1 , x

(t)
2 , · · · , x(t)

n−1;
9: end for

10: Return: {x(1), · · · , x(T )}

The Metropolis independence sampler (MIS). Another special choice
of the transition function is in the form of q(x′) = q(x′|x); that is, the
proposed move x′ is generated independent of the previous state x(t−1).
In MIS, the acceptance probability becomes:

r = min
{

1, w(x′)
w(x(t−1))

}
where w(x) = pθ(x)

q(x) is the usual importance weight.

Gibbs sampling

The Gibbs sampler is conceptually the simplest of the Markov chain
sampling method, and as we introduce below, could be viewed as the
MCMC analog of coordinate descent.

Suppose we wish to sample from the joint distribution for x =
(x1, · · · , xn) given by p(x1, · · · , xn), where the range of the xi may be
either continuous or discrete. The Gibbs sampler does this by repeatedly
replacing each component, say xi, with a value picked from the full
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conditional for variable xi, i.e., the distribution of xi conditional on the
current values of all other components (x1, · · · , xi−1, xi+1, · · · , xn) ≜ x\i.
This process can be seen as generating a realization of a Markov chain
that is built from a set of base transition probabilitiesBi, for i = 1, · · · , n.
Bi leaves all the components except xi unchanged, and draws a new xi

from its full conditional, which is assumed to be a feasible operation.
The Gibbs sampling algorithm can be described as simulating a

homogeneous Markov chain, x(0), x(1), x(2), · · · , with transition matrix
P = B1×B2× · · ·×Bn, as shown in Algorithm 2. Generating x(t) from
x(t−1), i.e., from Line 3 to Line 8, is called a sweep. Note that the new
value for xi−1 is used immediately when picking the new value for xi.

Starting from the Gibbs sampler, we provide three useful points.

• Constructing a Markov chain from base transitions. In
sampling application, our goal is to find an ergodic Markov chain
that converges to the target invariant distribution p(x), at as fast
a rate as possible. The Gibbs sampling embodies a useful, general
method to construct such a Markov chain, as described below.
Consider to construct the transition probabilities for such a chain
from a set of base transition probabilities, given by B1, · · · , Bs

11,
each of which leaves the target distribution invariant. It can be
shown that when the base transitions are applied in sequence, if
a distribution is invariant with respect to all the base transitions,
then it is also invariant with respect to P = B1 ×B2 × · · · ×Bs

[112]. We show in the next point that each base transition in
Gibbs sampler leaves the target distribution invariant, so that we
can understand why the Gibbs sampler works.

• Gibbs sampler is a special case of MH, and thus leaves
the target distribution invariant. Each base transition in Gibbs
sampler is equivalent to using MH with a proposal of the form

q(x′|x) = p(x′
i|x\i)1(x′

\i = x\i)
11Generally, the number of base transitions s is not necessarily equal to n, the

dimensionaliy of x.
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That is, we move to a new state where xi is sampled from its
full conditional, but x\i is left unchanged. It turns out that the
acceptance rate of such proposal is 1, because the MH ratio

p(x′)q(x|x′)
p(x)q(x′|x) =

p(x′
i|x′

\i)p(x′
\i)p(xi|x′

\i)
p(xi|x\i)p(x\i)p(x′

i|x\i)

=
p(x′

i|x\i)p(x\i)p(xi|x\i)
p(xi|x\i)p(x\i)p(x′

i|x\i)
= 1

where we exploited that fact that x′
\i = x\i, and that q(x′|x) =

p(x′
i|x\i). So every time the Gibbs sampler draws a new value

from the full conditional of a component and always accepts it.

• MH within Gibbs sampling. Gibbs sampling assumes that
drawing from the full conditional of each component is tractable.
When sampling from the full conditionals of a certain component
is intractable, we can replace the exact sampling of this compo-
nent by a MH sampling step, i.e., a single run of “propose” and
“accept/reject”. The resulting algorithm is thus called MH within
Gibbs sampling.

Gradient guided MCMC

For continuous distribution, MCMC samplers leveraging continuous dy-
namics (namely continuous-time Markov processes described by stochas-
tic differential equations), such as Langevin dynamics (LD) and Hamil-
tonian Monte Carlo (HMC) [113], are known to be efficient in exploring
the continuous state space. Simulating the continuous dynamics leads
to the target distribution as the stationary distribution. In practice, a
discretization of the continuous-time system is needed necessitating a
Metropolis-Hastings (MH) correction, though still with high acceptance
probability. Recently, stochastic gradient variants of continuous-dynamic
samplers have emerged, showing that adding the “right amount” of noise
to stochastic gradient ascent iterates leads to samples from the target
posterior as the step size is annealed [21], [190]. In either manner, the
Markov transition kernel defined by the continuous dynamical system
usually involves using the gradients of the target distribution w.r.t the
data vector x.
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Remarkably, the gradient of log-density of an EBM model w.r.t. the
data vector x is easy to calculate:

∇x log pθ(x) = ∇xUθ(x)−∇x logZ(θ)︸ ︷︷ ︸
=0

= ∇xUθ(x)

which does not require the calculation of the normalizing constant.
In the following, we mainly introduce LD and SGLD. For HMC and

stochastic gradient Hamiltonian Monte Carlo (SGHMC), readers can
refer to [21], [91], [113].

Langevin dynamics (LD) sampler. Given current sample x0, a new
observation is proposed as

x 1
2

= x0 + σ2

2 ∇xUθ(x0) + σε, (2.23)

where ε ∼ N (0, I) is a Gaussian noise, and σ is a step size. The next
sample x1 may directly be the proposal x 1

2
, in which case the Markov

transition from x0 to x1 does not strictly leave pθ invariant, but the
sampling bias may usually be small for σ ≈ 0. To allow large σ, a
correction can be achieved by accepting or rejecting the proposal x 1

2
,

i.e., setting x1 = x 1
2

or x0, with the Metropolis-Hastings probability.
Langevin sampling with rejection is known as the Metropolis-Adjusted
Langevin Algorithm (MALA) [13], [143].

Stochastic gradient Langevin dynamics (SGLD). Recently, stochas-
tic gradient samplers have emerged in simulating posterior samples
in large-scale Bayesian inference, such as SGLD (stochastic gradient
Langevin dynamics) [190] and SGHMC (Stochastic Gradient Hamil-
tonian Monte Carlo) [21]. To illustrate, consider the posterior p(θ|D)
of model parameters θ given the observed dataset D, with abuse of
notation. We have p(θ|D) ∝ exp [∑x∈D log pθ(x) + log p(θ)], which is
taken as the target distribution. Instead of using full-data gradients
∂
∂θ log p(θ|D), which needs a sweep over the entire dataset, these stochas-
tic gradient samplers subsample the dataset and use stochastic gradi-
ents ∂

∂θ

[
|D̃|
|D|
∑

x∈D̃ log pθ(x) + log p(θ)
]

in the dynamic simulation, where



2.3. Learning EBMs by Maximum Likelihood 41

D̃ ⊂ D is a subsampled data subset. In this manner, the computation
cost is significantly reduced in each iteration and such Bayesian inference
methods scale to large datasets.

In practice, sampling is based on a discretization of the continuous
dynamics. Despite the discretization error and the noise introduced by
the stochastic gradients, it can be shown that simulating the discretized
dynamics with stochastic gradients also leads to the target distribution
as the stationary distribution, when the step sizes are annealed to zero
at a certain rate12. The convergence of SGLD and SGHMC can be
obtained from [21], [91], [152]. We summarize in Theorem 2.1 for SGLD.

Theorem 2.1. Denote the target density as p(z;λ) with given λ. Assume
that one can compute a noisy, unbiased estimate ∆(z;λ) (a stochastic
gradient) to the gradient ∂

∂z log p(z;λ). For a sequence of asymptotically
vanishing time-steps {δl, l ≥ 1} (satisfying ∑∞

l=1 δl =∞ and ∑∞
l=1 δ

2
l <

∞), the SGLD algorithm iterates as follows, starting from z(0):

z(l) =z(l−1) + δl∆(z(l−1);λ) +
√

2δlη
(l),

η(l) ∼ N (0, I), l = 1, · · ·
(2.24)

The iterations of Eq. (2.24) lead to the target distribution p(z;λ) as
the stationary distribution.

2.3.2 Importance sampling

One of the principal reasons for wishing to sample from complicated
distributions is to be able to estimate expectations of the form Eq.
(2.20). The technique of importance sampling (IS) provides a framework
for approximating expectations directly.

Suppose, generally, one is interested in estimating

Epθ(x) [g(x)] =
∫
pθ(x)g(x)dx (2.25)

Importance sampling is based on the use of a proposal distribution q(x)
from which it is easy to draw samples, say, x(1), · · · , x(M) ∼ q(x). We

12A Metropolis-Hastings (MH) correction can be applied, when it is hard to check
the annealing condition is satisfied or not.
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can then express the expectation by Monte Carlo averaging, i.e., in the
form of a finite sum over samples {x(j)} drawn from q(x):

Epθ(x) [g(x)] =
∫
q(x)pθ(x)

q(x) g(x)dx

≈ 1
M

M∑
j=1

pθ(x(j))
q(x(j))

g(x(j)) (2.26)

which is an unbiased estimate of the expectation in Eq. (2.25). The
quantities w(j) = pθ(x(j))

q(x(j)) are known as importance weights, and they
correct the bias that {x(j)} are drawn from the proposal distribution
rather than from the target distribution.

It will often be the case that the distribution pθ(x) can only be
evaluated up to a normalization constant (e.g., in EBMs), so that
pθ(x) = p̃θ(x)/Zp where p̃θ(x) can be evaluated easily, whereas Zp

denotes the unknown normalizing constant. Generally, we may wish to
use a proposal q(x) = q̃(x)/Zq, which is also in the un-normalized form.
We then have

Epθ(x) [g(x)] = Zq

Zp

∫
q(x) p̃θ(x)

q̃(x) g(x)dx

≈ Zq

Zp

1
M

M∑
j=1

p̃θ(x(j))
q̃(x(j))

g(x(j)) (2.27)

We can use the same samples to evaluate the ratio Zq

Zp
with the result:

Zp

Zq
= 1
Zq

∫
p̃θ(x)dx =

∫
q(x) p̃θ(x)

q̃(x) dx

≈ 1
M

M∑
j=1

p̃θ(x(j))
q̃(x(j))

(2.28)

which is an unbiased estimate of Zp

Zq
. When q̃(x) is self-normalized (i.e.,

Zq = 1), Eq. (2.28) shows a way of using importance sampling to
estimate the normalizing constant Zp.

Combining Eq. (2.27) and Eq. (2.28) and letting w̃(j) = p̃θ(x(j))
q̃(x(j)) , we

can approximate the expectation by

Epθ(x) [g(x)] ≈ w̃(1)g(x(1)) + · · ·+ w̃(M)g(x(M))
w̃(1) + · · ·+ w̃(M) (2.29)
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which turns to be a biased estimate of the expectation in Eq. (2.25).
Further, by defining normalized importance weights ω(j) = w̃(j)∑M

j=1 w̃(j) ,

Eq. (2.29) can be re-written in a simpler form:

Epθ(x) [g(x)] ≈
M∑

j=1
ω(j)g(x(j)) (2.30)

which is often referred to as self-normalized importance sampling (SNIS),
for example, in [125]. A major advantage of using the biased estimate
Eq. (2.30) instead of the unbiased estimate Eq. (2.27) is that in using
the former (although biased), we need only to know the ratio pθ(x)

q(x) up
to a multiplicative constant; whereas in the latter, the ratio needs to
be known exactly.

Remarkably, the success of the importance sampling approach de-
pends crucially on how well the proposal distribution q(x) matches the
target distribution pθ(x).

2.3.3 Stochastic approximation methods

In the above, we introduce the basics of some classic Monte Carlo
methods and the general idea of applying them in maximum likelihood
learning of EBMs. We show in Eq. (2.19) that the log-likelihood gra-
dient for learning EBMs is equal to the difference between empirical
expectation and model expectation, and in Eq. (2.20), that the model
expectation is approximated by Monte Carlo sampling from EBM distri-
bution pθ(x). Combining Eq. (2.19), Eq. (2.20) and Eq. (2.21), we could
obtain a naive algorithm of learning EBMs by Monte Carlo methods,
as shown in Algorithm 3.

Typically we use MCMC to generate the samples x(1), · · · , x(M),
for each minibatch. For EBM distribution pθ(x), which can only be
evaluated up to a normalization constant, using the unbiased IS estimate
Eq. (2.27) is intractable. Using the biased IS estimate Eq. (2.30) will
produce biased gradient estimates, which were used in some prior studies
[125].

In learning EBMs by Monte Carlo methods, at first thought (as
shown in Algorithm 3), there are two loops. The outer loop iterates
over minibatches of training data. The inner loop iterates to generate
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Algorithm 3 A naive algorithm of learning EBMs by Monte Carlo
methods
Input: A target EBM distribution pθ(x)

for each minibatch of size B do
Obtain empirical expectations by Eq. (2.21);
for j = 1 to M do

Draw x(j) with pθ(x) as the target distribution;
end for
Obtain model expectations by Eq. (2.20);
Update parameter θ by gradient Eq. (2.19);

end for

samples via MCMC (e.g., MH), but running MCMC sufficiently long
(with large M) to approaching convergence at the inner loop would be
extremely slow. Fortunately, it was shown by [197] that we can start
the MCMC chain at its previous value from the outer loop, and just
take a few Markov moves in the inner loop (i.e., using small M). So
in this way, the Markov chain evolves persistently across outer loops.
This algorithm, called stochastic maximum likelihood (SML) [197], along
with its variants in the literature, turn out to be applications of the
more general stochastic approximation (SA) methodolgy to learning
EBMs. See further introduction in Section 2.3.3.

Note. The above cognition of the EBM learning by Monte Carlo
is very important. Many people may think that learning with Monte
Carlo methods is very slow. But since we do not need to run MCMC
to convergence at the inner loop, but just a few steps. Learning with
MCMC is not so expensive as people might think.

Introduction to stochastic approximation (SA) methodology

Stochastic approximation methods are an important family of iterative
stochastic optimization algorithms, introduced in [141] and extensively
studied [12], [19]. Basically, stochastic approximation provides a math-
ematical framework for stochastically solving a root finding problem,



2.3. Learning EBMs by Maximum Likelihood 45

Algorithm 4 The general stochastic approximation (SA) algorithm
for t = 1, 2, · · · do

Monte Carlo sampling: Draw a sample z(t) with a Markov transi-
tion kernel Kλ(t−1)(z(t−1), ·), which starts with z(t−1) and admits
pλ(t−1)(·) as the invariant distribution.
SA updating: Set λ(t) = λ(t−1) + γtFλ(t−1)(z(t)), where γt is the
learning rate.

end for

which has the form of expectations being equal to zeros. Suppose that
the objective is to find the solution λ∗ of f(λ) = 0 with

f(λ) = Ez∼pλ(·)[Fλ(z)], (2.31)

where λ is a d-dimensional parameter vector in Λ ⊂ Rd, and z is an obser-
vation from a probability distribution pλ(·) depending on λ. Fλ(z) ∈ Rd

is a function of z, providing d-dimensional stochastic measurements of
the so-called mean-field function f(λ). Intuitively, we solve a system of
simultaneous equations, f(λ) = 0, which consists of d constraints, for
determining d-dimensional λ.

Given some initialization λ(0) and z(0), a general SA algorithm
iterates Monte Carlo sampling and parameter updating, as shown in Al-
gorithm 4. The convergence of SA has been established under conditions
[5], [12], [161], including a few technical requirements for the mean-field
function f(λ), the Markov transition kernel Kλ(t−1)(z(t−1), ·) and the
learning rates. Particularly, when f(λ) corresponds to the gradient of
some objective function, then λ(t) will converge to local optimum, driven
by stochastic gradients Fλ(z). For completeness, we provide a short
summary on the convergence of {λt, t ≥ 1} in Algorithm 4, based on
Theorem 1 in [161].

Theorem 2.2. Let {γt} be a monotone non-increasing sequence of
positive numbers such that13 ∑∞

t=1 γt =∞ and ∑∞
t=1 γ

2
t <∞. Assume

that Λ is compact and the Lyapunov condition on f(λ) and the drift

13In practice, we can set a large learning rate at the early stage of learning and
decrease to 1/t for convergence.
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Algorithm 5 SA with multiple moves
for t = 1, 2, · · · do

1. Monte Carlo sampling: Set z(t,0) = z(t−1,K). For k from
1 to K, generate z(t,k) ∼ Kλ(t−1)(z(t,k−1), ·), where
Kλ(t−1)(z(t,k−1), ·) is a Markov transition kernel that admits
pλ(t−1)(·) as the invariant distribution.

2. SA updating: Set λ(t) = λ(t−1) + γt{ 1
K

∑
z∈B(t) Fλ(t−1)(z)},

where B(t) = {z(t,k)|k = 1, · · · ,K}.
end for

condition on the transition kernel Kλ(·|·) hold. Then we have: d(λt,L)→
0 almost surely as t → ∞, where L = {λ : f(λ) = 0} and d(λ,L) =
infλ′∈L ||λ− λ′||.

Remarkably, Algorithm 4 shows stochastic approximation with
Markovian perturbations [12]. It is more general than the non-Markovian
SA which requires exact sampling z(t) ∼ pλ(t−1)(·) at each iteration and
in some tasks can hardly be realized. In non-Markovian SA, we check
that Fλ(z) is unbiased estimates of f(λ), while in SA with Markovian
perturbations, we check the ergodicity property of the Markov transition
kernel.

To speed up convergence, during each SA iteration, it is possible
to generate a set of multiple observations z by performing the Markov
transition repeatedly and then use the average of the corresponding
values of Fλ(z) for updating λ, which is known as SA with multiple
moves [189], as shown in Algorithm 5.

Note I. Perhaps the most familiar application of SA in machine learn-
ing literature is the stochastic gradient descent (SGD) technique, partic-
ularly the minibatching technique. When the objective (and therefore its
gradient) is a sum of many terms that can be computed independently,
SGD samples one term at a time and follows one noisy estimate of
the gradient with a decreasing step size. Furthermore, it can be easily
seen that SGD training with minibatches is an application of SA with
multiple moves.
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Algorithm 6 Stochastic maximum likelihood for fitting an EBM
for t = 1, 2, · · · do

Sampling: Draw xκ from training data, and simulate a sample x(t)

with a Markov transition kernel Kθ(t−1)(x(t−1), ·), which starts with
x(t−1) and admits pθ(t−1)(·) as the invariant distribution.
Updating: Update θ by gradient ascent as:

θ(t) = θ(t−1) + γt{∇θUθ(xκ)−∇θUθ(x(t))}|θ=θ(t−1) (2.32)

end for

Note II. Generally, SA represents an iterative methodology to find the
root of an expectation. Each iteration consists of a sampling step and a
parameter updating step. Basically, we use MCMC to simulate the noisy
measurements to approximate the expectation. A keypoint is that we do
not need to wait the chain to converge, but use a decaying learning rate
to guarantee the convergence. Intuitively, as the learning rate becomes
sufficiently small compared to the mixing rate of the Markov chain, the
chain will stay close to the stationary distribution, even if it only runs
for one Markov move per parameter update.

Application of SA to learning EBMs

It can be easily seen that the EBM gradients ∇θL(θ) in Eq. (2.19)
exactly follows the form of Eq. (2.31), as summarized in Theorem 2.3.
So the problem of maximum likelihood estimate of EBM parameters
can then be solved by setting the gradients to zeros and applying the SA
algorithm to finding the root for the resulting system of simultaneous
equations.

Theorem 2.3. Consider an EBM distribution pθ(x) parameterized with
θ as shown in Eq. (2.13), and a training dataset consisting of IID data
points {x1, · · · , xN}. Introduce an index variable κ which is uniformly
distributed over {1, · · · , N}. The log-likelihood gradients w.r.t. θ as
shown in Eq. (2.19) can be recast in the expectation form of Eq. (2.31)
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(i.e. as expectation of stochastic gradients), by letting λ ≜ θ, z ≜ (κ, x)T ,
pλ(z) ≜ 1

N pθ(x), f(λ) ≜ ∇θL(θ), and

Fλ(z) ≜ ∇θUθ(xκ)−∇θUθ(x)

Proof. This can be readily seen by rewriting Eq. (2.19) as:

∇θL(θ) = Eκ∼Uni[1,N ],x∼pθ(x) [∇θUθ(xκ)−∇θUθ(x)]

and applying the independence between κ and x. ■

Combining Theorem 2.3 and general SA (Algorithm 4), the particu-
lar resulting pseudocode for learning EBMs is shown in Algorithm 6,
which is often known as stochastic maximum likelihood (SML) [197].
Algorithm 6 corresponds to SA with single move. Further, by ap-
plying SA with multiple moves (Algorithm 5), at each iteration, we
can draw a minibatch from training data (minibatching), say draw-
ing κ1, · · · , κB from {1, · · · , N}. At each iteration, we could directly
draw x(t,1), · · · , x(t,M) ∼ pθ(t−1)(x) when it is tractable, or run multiple
steps of a single chain, or multiple parallel chains, or a combination
of both, to draw multiple samples, say obtaining x(t,1), · · · , x(t,M) that
admit pθ(t−1)(x) as the invariant distribution. Then, at each iteration,
parameter updating in Eq. (2.32) can be replaced by:

θ(t) = θ(t−1) + γt

 1
B

B∑
j=1
∇θUθ(xκj )− 1

M

M∑
j=1
∇θUθ(x(t,j))


∣∣∣∣∣∣
θ=θ(t−1)

Historical comments. The general stochastic approximation methodol-
ogy was originally proposed in [141]. The stochastic maximum likelihood
method, proposed in [197], turns out to be application of the more gen-
eral SA methodology to learning EBMs. The same idea was applied to
training RBMs in [174], which is called persistent contrastive divergence
(PCD) to emphasize that the Markov chain is not reset between parame-
ter updates. The regular contrastive divergence (CD) method, proposed
in [61], restarts the Markov chain at the training data rather than at
the previous state. This will not converge to MLE. As commented in
[148], “Clearly, the widely used practice of CD1 learning is a rather
poor “substitute” for maximum likelihood learning.”
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2.3.4 Variational methods with auxiliary models

As introduced before, Monte Carlo sampler is a crucial component
which affects maximum likelihood learning of EBMs. A recent progress
as studied in [74], [78], [184], [194] is to pair the target EBM pθ(x) with
an auxiliary directed generative model (often called generator) qϕ(x)
parameterized by ϕ, which approximates sampling from the target EBM.
Learning is performed by maximizing the log-likelihood of training data
under pθ or some bound of the log-likelihood, and simultaneously mini-
mizing some divergence between the target EBM pθ and the auxiliary
generator qϕ

14:{
Maximize over θ the log-likelihood itself or some bound
Minimize over ϕ some divergence between pθ and qϕ.

Different learning methods mainly differ in the objective functions used
in the joint training of pθ and qϕ, and thus have different computational
and statistical properties. There are also other factors that distinguish
different studies in learning EBMs with auxiliary models, e.g. modeling
discrete or continuous data, different model choices of the target EBM
and the auxiliary generator.

Many methods in learning EBMs with auxiliary models are related
to variational methods. Variational methods provide an optimization-
based principle to inference and learning [42], [70]. A classic application
of variational methods is in Bayesian inference, called variational infer-
ence (VI). VI posits a family of approximating distributions q and then
finds the member of that family that is closest to the target posterior
distribution p, mostly by minimizing the exclusive-divergence KL(q||p).
Variational methods have also been widely used in the context of maxi-
mum likelihood parameter estimation, which is often called variational
learning. In particular, [114] shows a link between variational bound
and maximum likelihood parameter estimation via the Expectation-
Maximization (EM) algorithm. Variational learning in early days is
called variational EM [42].

14Such optimization using two objectives has also been employed in training other
types of models apart from learning EBMs, such as learning GAN with logD trick
[45], the wake-sleep algorithm [62] for learning Helmholtz Machines.
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Remarkably, classic variational methods mostly optimize the exclu-
sive divergence, and hence could be classified as the exclusive-variational
approach. Recently, there have emerged some variational methods that
optimize the inclusive divergence KL(p||q), which has good statistical
properties that make it more appropriate for certain inference and
learning problems. These studies include joint stochastic approxima-
tion (JSA) [122], [196], Markovian score climbing (MSC) [111], parallel
Markov chain score ascent (pMCSA) [73], and transport score climbing
(TSC) [202] for learning latent-variable models (belonging to directed
graphical models), AugSA plus JSA [184] and inclusive-NRF [162] for
learning EBMs (belonging to undirected graphical models). We could
refer to these studies collectively as the inclusive-variational approach.
See [121] for more introduction on variational methods and the two
approaches.

In practice, the performance of learning EBMs with auxiliary models
often performs better than without auxiliary models. In the following,
we first follow [162] to give a short literature review of this class of
studies, and then mainly detail the inclusive-variational approach for
learning EBMs.

Related work in MLE of EBMs with auxiliary models

Let pθ(x) denote the target EBM as defined in Eq. (2.13), qϕ(x) the
auxiliary generator which allows efficient sampling and approximates
sampling from the target EBM, and pemp(x) the empirical distribution
for training data.

• It is shown in [162] that we have the following evidence upper
bound (EUBO) w.r.t. θ for EBMs:

EUBO(x; θ, ϕ) = log pθ(x) +KL(qϕ(x)||pθ(x))
= Uθ(x)− logZ(θ)− (Eqϕ(x)[pθ(x)] +H[qϕ(x)])
= Uθ(x)− (Eqϕ(x)[Uθ(x)] +H[qϕ(x)])
≥ log pθ(x)
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It is further shown in [162] that learning in [74] amounts to maxi-
mizing the EUBO bound w.r.t. θ, while simultaneously minimizing
the gap, i.e., the exclusive-divergence KL[qϕ||pθ] w.r.t. ϕ:

max
θ
Ex∼pemp(x)EUBO(x; θ, ϕ)

min
ϕ
KL [qϕ(x)||pθ(x)]

(2.33)

Remarkably, the EUBO bound involves the intractable entropy
term H [qϕ] and tends to enforce the generator to seek modes,
yielding missing modes. In Eq. (2.33), we optimize the exclusive-
divergence w.r.t. an auxiliary distribution to approximate a target
distribution pθ(x). Hence we classify Eq. (2.33) as the exclusive-
variational approach, which is called exclusive-NRF in [162].

• Learning in [162], [184] minimizes the inclusive-divergence
KL[pθ||qϕ] w.r.t. ϕ, which could be classified as the inclusive-
variational approach for learning EBMs. The main idea is to
perform maximum likelihood learning of pθ and simultaneously
minimize the inclusive-divergence between the target EBM pθ and
the auxiliary generator qϕ by


min

θ
KL [pemp(x)||pθ(x)]

min
ϕ
KL [pθ(x)||qϕ(x)]

(2.34)

The first line of Eq. (2.34) is equivalent to maximum likelihood
fitting of the target EBM pθ under the empirical distribution pemp,
which requires sampling from pθ. Simultaneously, the second line
optimizes the generator qϕ to be close to pθ so that qϕ becomes a
good proposal for sampling from pθ.
Compared to the exclusive-variational approach, the inclusive-
variational approach shown in Eq. (2.34) has several advantages.
First, minimizing inclusive-divergence avoids the annoying entropy
term, which is suffered by minimizing the exclusive-divergence.
Second, inclusive-divergence minimization tends to drive the aux-
iliary generator, acting like an adaptive proposal in adaptive
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MCMC [6], [142], to cover modes of the target density pθ. Mode-
covering is a desirable property for proposal design in MCMC.
In contrast, minimizing exclusive-divergence leads to variational
approximations that seek modes and underestimate uncertainty.
The auxiliary model qϕ(x) and the sampler for pθ(x) can be very
flexibly designed, depending on the nature of data x, discrete or
continuous.

– [184] mainly studies neural random field language models, us-
ing LSTM generators (autoregressive with no latent variables)
and employing Metropolis independence sampler (MIS) - ap-
plicable for discrete data (natural sentences). The learning
algorithm proposed in [184], called AugSA plus JSA, is an
instance of the inclusive-variational approach for learning
EBMs over discrete data.

– [162] mainly designs neural random field models (NRFs) for
continuous data (e.g., images), choosing latent-variable gen-
erators and developing SGLD (stochastic gradient Langevin
dynamics)/SGHMC (stochastic gradient Hamiltonian Monte
Carlo) samplers to exploit noisy gradients in the continu-
ous space. The learning algorithm proposed in [162], called
inclusive-NRF , is an instance of the inclusive-variational
approach for learning EBMs over continuous data.

• In [194] (CoopNet), motivated by interweaving maximum like-
lihood training of the EBM pθ(x) and the latent-variable gen-
erator qϕ(h, x), a joint training method is introduced to train
EBMs. There are clear differences that distinguish the inclusive-
variational approach. First, CoopNet uses LD (Langevin dynamics)
sampling to generate samples, but two LD sampling steps are in-
tuitively interleaved according to ∂

∂x log pθ(x) (with Lx steps) and
∂

∂h log qϕ(h, x) (with Lh steps) separately, not aiming to draw sam-
ples from pθ(x)qϕ(h|x). This is different from the stochastic gradi-
ent sampler in the augmented space in inclusive-NRF, which moves
(x, h) jointly. Second, according to theoretical understanding in
[194], Coopnet considers the following joint optimization problem:
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
min

θ
{KL [pemp(x)||pθ(x)]−KL [r(h, x)||pθ(x)]}

min
ϕ
KL [r(h, x)||qϕ(h, x)]

where r(h, x) denotes the distribution of (x(Lx), h(Lh)), resulting
from the CoopNet sampler. This objective is also clearly differ-
ent from inclusive-NRF, which aims to minimize the inclusive-
divergence KL[pθ||qϕ] w.r.t. ϕ. It is found in [162] that inclusive-
NRF with SGLD outperforms CoopNet in image generation.

• Learning in [78] minimizes the χ2-divergence χ2[qϕ||pθ] ≜∫ (pθ−qϕ)2

qϕ
w.r.t. ϕ, which also tends to drive the generator to

cover modes. But this approach is severely limited by the high
variance of the gradient estimator w.r.t. ϕ, and is only tested on
the simpler MNIST and Omniglot.

• Learning in [58] further extends CoopNet and introduces an infer-
ence model, apart from the target EBM and the latent-variable
generator, and jointly optimizes the three models under a diver-
gence triangle.

The inclusive-variational approach for learning EBMs

The basic idea of using the inclusive-variational approach for learning
EBMs is described in Eq. (2.34). The auxiliary model qϕ(x) and the
sampler for pθ(x) can be very flexibly designed, depending on the nature
of data x, discrete or continuous. In the following, we mainly introduce
the inclusive-variational approach for learning EBMs for continuous
data, which is called inclusive-NRF in [162] and illustrated in Figure
2.10. The important features of inclusive-NRF is that the auxiliary
model qϕ(x) is a latent-variable model, and stochastic gradient guided
samplers (SGLG/SGHMC) are developed, which is particularly useful
for sampling from a continuous distribution pθ(x). For the inclusive-
variational approach for learning EBMs for discrete data, readers could
see [184].

The NRF model. EBMs parameterized by neural network, as defined
in Eq. (2.13), are called Neural random fields (NRFs) in [162], which are
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Figure 2.10: Overview of the inclusive-variational approach for learning EBMs
for continuous data. Two neural networks are used to define the EBM’s potential
function Uθ(x) and the auxiliary generator gϕ(h) respectively. The parameters of
both networks, θ and ϕ, are updated by using the revised samples (x, h) in the
augmented space, which are obtained by revising the samples (x′, h′) proposed by
the auxiliary generator, according to the stochastic gradients defined by both the
target EBM and the auxiliary generator. [162]

usually denoted by pθ(x). The potential Uθ(x) : Rdx → R is realized by
a neural network, which takes the multi-dimensional x ∈ Rdx as input
and outputting the scalar uθ(x) ∈ R.

An inclusive-divergence minimized auxiliary generator qϕ(x) is in-
troduced to approximate sampling from the target EBM, particularly
for fixed-dimensional continuous observations x ∈ Rdx (e.g. images).
We use a directed generative model, qϕ(x, h) ≜ q(h)qϕ(x|h), for the
auxiliary generator, which is defined as follows15:

h ∼ N (0, Ih),
x = gϕ(h) + ϵ, ϵ ∼ N (0, σ2Iϵ).

(2.35)

Here gϕ(h) : Rdh → Rdx is implemented as a neural network with
parameter ϕ, which maps the latent code h to the observation space.
Ih and Iϵ denote the identity matrices, with dimensionality implied by
h and ϵ respectively. Drawing samples from the generator qϕ(x, h) is

15Note that during training, σ2 is absorbed into the learning rates and does not
need to be estimated.
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Algorithm 7 The inclusive-NRF algorithm for learning EBMs for
continuous data with latent-variable auxiliary models

repeat
Sampling: Draw a minibatch M =

{
(x̃i, xi, hi), i = 1, · · · |M|

}
from pemp(x̃)pθ(x)qϕ(h|x) (see Algorithm 8);
Updating:
Update θ by ascending: 1

|M|
∑

(x̃,x,h)∼M [∇θuθ(x̃)−∇θuθ(x)];
Update ϕ by ascending: 1

|M|
∑

(x̃,x,h)∼M∇ϕ log qϕ(x, h);
until convergence

simple as it is just ancestral sampling [110] from a 2-variable directed
graphical model.

By using Fisher equality (Appendix B), we have the following gradi-
ents for θ and ϕ respectively, where in the first equation, we use x̃ and
x to differentiate samples from the empirical distribution pemp(x) and
those from the model distribution pθ(x).

Proposition 1. The gradients for optimizing the two objectives in Eq.
(2.34) can be derived as follows:
− ∂

∂θ
KL [pemp(x)||pθ(x)] = Epemp(x̃) [∇θuθ(x̃)]− Epθ(x) [∇θuθ(x)]

− ∂

∂ϕ
KL [pθ(x)||qϕ(x)] = Epθ(x)qϕ(h|x) [∇ϕlogqϕ(x, h)]

(2.36)

By Proposition 1, we can obtain the gradients w.r.t. θ and ϕ (to be
ascended). In practice, we apply minibatch based stochastic gradient
descent (SGD) to solve the optimization problem Eq. (2.34), as shown
in Algorithm 7.

Ideally, the learning of θ could be conducted without ϕ, by using an
MCMC sampler (e.g. LD) to draw samples from pθ(x). But the chain
often mixes between modes so inefficiently that severely slow down the
learning of θ especially when the target density pθ(x) is multimodal.
This is the main difficulty that hinders the effective training of NRFs.
Introducing auxiliary generator qϕ to approximate the target NRF pθ
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is inspired by and related to two advanced MCMC ideas - auxiliary
variable MCMC [113] and adaptive MCMC [6], [142].

• The classic example of adaptive MCMC is adaptive scaling of
the variance of the step-size in random-walk Metropolis [142].
In inclusive-NRF, the auxiliary generator acts like an adaptive
proposal, updated by using samples from the target density16.

• Further to be detailed next, the target density is extended to
be pθ(x)qϕ(h|x), which leaves the original target as the marginal,
but sampling in the augmented space (x, h) can be easier (more
efficiently), with the help of the adaptive proposal qϕ(x, h). This
follows the basic idea of auxiliary variable MCMC [113] - sampling
in an augmented space could be more efficient.

Developing stochastic gradient samplers for EBMs for continuous
data. In Algorithm 7, we need to draw samples (x, h) ∈ Rdx+dh in the
augmented space defined by the target joint distribution pθ(x)qϕ(h|x)
given current θ and ϕ. Gradient guided samplers (Section 2.3.1), such as
Langevin dynamics (LD) and Hamiltonian Monte Carlo (HMC) [113],
are known to be efficient in exploring the continuous state space. The
gradients of the target distribution can be derived as follows:

∂

∂x
log [pθ(x)qϕ(h|x)] = ∂

∂x
[log pθ(x) + log qϕ(h, x)− log qϕ(x)]

∂

∂h
log [pθ(x)qϕ(h|x)] = ∂

∂h
log qϕ(h, x)

(2.37)
It can be seen that it is straightforward to obtain the gradient w.r.t. h
and the first two terms in the gradient w.r.t. x. However, calculating the
third term ∂

∂x log qϕ(x) in the gradient w.r.t. x is intractable. Therefore
we are interested in developing stochastic gradient variants of those
samplers, which rely on using noisy estimate of ∂

∂x log qϕ(x).
By considering z ≜ (x, h), p(z;λ) ≜ pθ(x)qϕ(h|x), λ ≜ (θ, ϕ)T , and

Eq. (2.37), we can use Theorem 2.1 to develop the sampling step for
16Minimizing the inclusive-divergence tends to drive the generator (the proposal)

to have higher entropy than the target density, which is a desirable property for
proposal design in MCMC.
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Algorithm 7, as presented in Algorithm 8. For the gradient w.r.t. x, the
intractable term ∂

∂x log qϕ(x) is estimated by a stochastic gradient.

Proposition 2. Given qϕ(h, x), we have

∂

∂x
log qϕ(x) = Eh∗∼qϕ(h∗|x)

[
∂

∂x
log qϕ(h∗, x)

]
. (2.38)

Proof. By using Fisher equality (Appendix B). ■

Motivated by Proposition 2, ideally we draw h∗ ∼ qϕ(h∗|x) and
then use ∂

∂x log qϕ(h∗, x) as an unbiased estimator of ∂
∂x log qϕ(x). In

practice, at step l, given x(l−1) and starting from h(l−1), we run one
step of LD sampling over h targeting qϕ(h|x(l−1)), to obtain h(l−1)∗ and
calculate ∂

∂x(l−1) log qϕ(h(l−1)∗, x(l−1)). This gives a biased but tractable
estimator to ∂

∂x log qϕ(x). It is empirically found in experiments in [162]
that more steps of this inner LD sampling do not significantly improve
the performance for NRF learning.

So instead of using the exact gradient ∂
∂z log p(z;λ) as shown in Eq.

(2.37), [162] developed a tractable biased stochastic gradient ∆(z;λ) as
follows:

∆(z;λ) ≜
(

∂
∂x [log pθ(x) + log qϕ(h, x)− log qϕ(h∗, x)]

∂
∂h log qϕ(h, x)

)
, (2.39)

where h∗ is an approximate sample from qϕ(h∗|x) obtained by running
one step of LD from (h, x). Remarkably, as shown in Algorithm 8, the
starting point (h(0), x(0)) for the SGLD/SGHMC recursions is obtained
from an ancestral sampling from qϕ(h, x). Thus at step l = 1, h(0) is
already a sample from qϕ(h|x(0)) given x(0), and we can directly use h(0)

as h(0)∗ without running the inner LD sampling. Afterwards, for l > 1,
the conditional distribution of h(l−1) given x(l−1) is close to qϕ(h|x(l−1)),
though strictly not. One or more steps of LD could be run to obtain
h(l−1)∗ to reduce the bias in the stochastic gradient estimator.

With the above stochastic gradients in Eq. (2.39), the sampling
step in Algorithm 7 can be performed by running |M| parallel chains,
each chain being executed by running finite steps of SGLD/SGHMC
with tractable gradients w.r.t. both x and h, as shown in Algorithm 8.
Intuitively, the auxiliary generator first gives a proposal (x′, h′), and
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Algorithm 8 Sampling in the augmented space defined by pθ(x)qϕ(h|x)
1. Conduct ancestral sampling from the auxiliary generator qϕ(x, h),
i.e. first draw h′ ∼ q(h′), and then draw x′ ∼ qϕ(x′|h′);
2. Starting from (x′, h′) = z(0), run finite steps of SGLD (l = 1, · · · , L)
to obtain (x, h) = z(L), which we call sample revision, according to
Eq. (2.24).
In particular, the SGLD recursions are conducted as follows:

x(l) = x(l−1) + δl
∂

∂x(l−1)

[
log pθ(x(l−1)) + log qϕ(h(l−1), x(l−1))

− log qϕ(h(l−1)∗, x(l−1))
]

+
√

2δlη
(l)
x ,

h(l) = h(l−1) + δl
∂

∂h(l−1) log qϕ(h(l−1), x(l−1)) +
√

2δlη
(l)
h ,

η(l) ≜ (η(l)
x , η

(l)
h )T ∼ N (0, I)

(2.40)
where, for l > 1, h(l−1)∗, which is an approximate sample from
qϕ(h|x(l−1)) given x(l−1), is obtained from running one step of LD as
follows, starting from h(l−1):

h(l−1)∗ = h(l−1) + δ∗
l

∂

∂h(l−1) log qϕ(h(l−1), x(l−1)) +
√

2δ∗
l η

(l)∗
h ,

η
(l)∗
h ∼ N (0, I);

(2.41)

for l = 1, we directly use h(0) as h(0)∗, since, by initialization, h(0) is
an exact sample from qϕ(h|x(0)) given x(0).
Return (x, h), i.e. z(L).

then the system follows the gradients of pθ(x) and qϕ(h, x) (w.r.t. x
and h respectively) to revise (x′, h′) to (x, h). The gradient terms pull
samples moving to low energy region of the random field and adjust the
latent code of the generator, while the noise term brings randomness. In
this manner, we obtain Markov chain samples in the augmented space
defined by pθ(x)qϕ(h|x).
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2.3.5 Non-MLE methods for learning EBMs

Maximum likelihood estimation (MLE) has been the most widely used
objective for learning probabilistic models. When training an EBM
with MLE, we need to sample from the EBM per training iteration.
The training efficiency of the MLE method highly depends on the
mixing efficiency of the Markov chain. In high-dimensional problems,
it is very challenging to design Markov chains with fast mixing rates.
Thus, MLE training of EBMs may converge slowly. As alternatives
to MLE training, non-MLE methods for learning EBMs (as a kind of
unnormalized models) have been explored, such as noise-contrastive
estimation [55], [56] and score matching [68].

Another motivation to pursue non-MLE methods is that the op-
timization criterion used has profound effect on the behavior of the
optimized model [173]. Maximizing likelihood is equivalent to minimizing
the KL divergence between pora(x) and pθ(x), because

KL[pora(x)||pθ(x)] = −Ex∼pora(x)[log pθ(x)] + Ex∼pora(x)[log pora(x)]
= −Ex∼pora(x)[log pθ(x)] + constant
≈ −Ex∼pemp(x)[log pθ(x)] + constant (2.42)
= −L(θ) + constant

where pora(x) denote the the underlying (oracle) data distribution, and
L(θ) is the log-likelihood in Eq. (2.17). Eq. (2.42) is an unbiased Monte
Carlo integration since the expectation under pora(x) is approximated
by empirical samples {xi}Ni=1.

It is known that the KL divergence is asymmetric, and optimizing
which direction of the KL divergence leads to different trade-offs. The
KL approximation covers the data distribution while reverse-KL has
more of a mode-seeking behavior [104]. The basic score matching (SM)
objective minimizes a discrepancy between two distributions called the
Fisher divergence:

DF (pora(x)||pθ(x)) = Ex∼pora(x)

[1
2 ||∇x log pora(x)−∇x log pθ(x)||2

]
Learning under most criteria is provably consistent given infinite

model capacity and data. Most of the methods are firstly examined over
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continuous data, with few on discrete data. The score matching method
is based on minimizing the expected squared distance of the score
function17 of the data distribution and the score function given by the
model, and thus is not applicable to training EBMs over discrete data
such as natural languages. In contrast, the noise-contrastive estimation
method has no such limitation, which will be detailed below.

2.4 Learning EBMs by Noise-contrastive Estimation (NCE)

Noise-contrastive estimation (NCE) is proposed in [55], [56], as a typ-
ical non-MLE method, for learning unnormalized statistical models.
Its basic idea is “learning by comparison”, i.e. to perform nonlinear
logistic regression to discriminate between data samples drawn from
the data distribution pora(x) and noise samples drawn from a known
noise distribution q(x). An advantage of NCE is that the normalizing
constant can be treated as a normal parameter and updated together
with the model parameters.

Denote the target unnormalized model by:

pθ(x) = 1
Zθ
p̃θ(x) (2.43)

where we highlight that the model, parameterized by θ, is unnormalized,
and the normalizing constant Zθ =

∫
p̃θ(x)dx. To apply NCE, we

treat logZθ as an additional parameter ζ and rewrite Eq. (2.43) in the
following form:

pθ,ζ(x) = exp [−ζ + log p̃θ(x)] (2.44)

As shown below, model parameters (θ, ζ) will be jointly estimated in
NCE.

Introduce a fixed, known noise distribution denoted by q(x), and
consider a binary classification. There are two classes of samples, with
prior probabilities P (C = +) and P (C = −). For class +, the sample
is drawn from the data distribution pora; for class −, the sample is
drawn from the noise distribution q. This defines a generation process
of samples in NCE.

17The gradient of log-density with respect to the data vector x is called the score
function.
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Given a sample x from such a generation process, the class posterior
probabilities are defined as follows:

p(C = +|x) = p(C = +)p(x|C = +)
p(C = +)p(x|C = +) + p(C = −)p(x|C = −)

p(C = −|x) = 1− p(C = +|x)

By our design of the binary classification experiment, p(x|C = −) is
the noise distribution q(x). The (unknown) class-conditional density for
class + is assumed to be modeled by the target model pθ,ζ(x). Let the
ratio between the prior probabilities p(C=−)

p(C=+) be ν (i.e., the ratio of noise
sample size to real sample size). Then the posterior probabilities can
be parameterized as follows:

p(C = +|x; θ, ζ) = pθ,ζ(x)
pθ,ζ(x) + νq(x)

p(C = −|x; θ, ζ) = 1− p(C = +|x; θ, ζ)
(2.45)

NCE estimates the model parameters (θ, ζ) by optimizing the two-
class classification through maximizing the following conditional log-
likelihood:

JNCE(θ, ζ) = Ex∼pora(x) [log p(C = +|x; θ, ζ)] + νEx∼q(x) [log p(C = −|x; θ, ζ)]
(2.46)

The objective function J(θ, ζ) is a sum of two expectations. The first
is the expectation w.r.t. the data distribution pora(x), which can be
approximated by randomly drawing samples from training data, namely
approximating pora(x) by pemp(x). The second is the expectation w.r.t.
the noise distribution q(x), which can be approximated by drawing
samples from the noise distribution.

Setting to zeros the gradients of J(θ, ζ) w.r.t. (θ, ζ), we can apply the
SA algorithm to find its root and thus solve the optimization problem
in Eq. (2.46). The pseudocode of NCE is shown in Algorithm 9. The
relevant gradients can be further simplified as follows:

∇θ,ζ log p(C = +|x; θ, ζ) = p(C = −|x; θ, ζ)∇θ,ζ log pθ,ζ(x)
∇θ,ζ log p(C = −|x; θ, ζ) = −p(C = +|x; θ, ζ)∇θ,ζ log pθ,ζ(x)

(2.47)

It is shown in [56] that under the ideal situation of infinite amount
of data and infinite model capacity, we have the following theorem
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Algorithm 9 NCE for fitting an unnormalized model
repeat

Sampling: Draw an empirical minibatch D ∼ pora(x) and a noise
minibatch B ∼ q(x), satisfying ν = |B|/|D|;
Updating: Update (θ, ζ) by ascending:

1
|D|

∑
x∼D
∇θ,ζ log p(C = +|x; θ, ζ)+ ν

|B|
∑
x∼B
∇θ,ζ log p(C = −|x; θ, ζ)

until convergence

(nonparametric estimation). It is further shown [56] that the NCE
estimator is consistent.

Theorem 2.4 (Nonparametric estimation). JNCE(θ, ζ) attains its maxi-
mum at pθ,ζ(x) = pora(x). There are no other extrema if the noise density
q(x) is chosen such that it is nonzero whenever pora(x) is nonzero.

The noise distribution q and the ratio ν have an influence on the
accuracy of the NCE estimate of model parameters (θ, ζ). A natural
question to ask in applying NCE is what, from a statistical standpoint,
the best choice of q and ν is, to get estimates with a small estimation
error. This question is discussed in the original paper of NCE [56], which
give the following suggestions:

1. Choose noise for which an analytical expression for log q is avail-
able.

2. Choose noise that can be sampled easily.

3. Choose noise that is in some aspect, for example with respect to
its covariance structure, similar to the data.

4. Make the noise sample size as large as computationally possible.

2.4.1 Dynamic noise-contrastive estimation (DNCE)

Remarkably, there exist two problems in applying NCE learning. First,
reliable NCE needs a large ν, especially when the noise distribution is
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not close to the data distribution. And the time and memory cost for
gradient calculation are almost linearly increased with ν. Second, the
expectation w.r.t. the data distribution pora in Eq. (2.46) is approxi-
mated by the expectation w.r.t. the empirical distribution pemp (namely
the training data), which is rather sparse for high-dimensionality data
modeling. The model estimated by NCE is thus easily overfitted to the
empirical distribution. Dynamic noise-contrastive estimation (DNCE)
was proposed in [185] to address the above problems, with two modifi-
cations.

First, instead of using a fixed noise distribution, a dynamic noise
distribution qϕ(x) with parameter ϕ is introduced in DNCE. In addi-
tion to maximizing w.r.t. (θ, ζ) the NCE objective function JNCE(θ, ζ),
DNCE simultaneously performs maximum likelihood optimization of ϕ
over training data:

max
ϕ

Ex∼pora(x) [log qϕ(x)]

The motivation is to push the noise distribution to be close to the data
distribution, so that we can achieve reliable model estimation even
using a small ν. Theoretically, one can optimize the noise distribution
beforehand and then use a fixed noise density in NCE. It is found that
dynamic noise distribution helps optimization, by gradually increasing
the difficulty of the two-class discrimination task [185]. If the noise
distribution qϕ is too different from the data distribution pora, the two-
class discrimination problem might be too easy and would not require
the system to learn much about the structure of the data. But if qϕ is
too close to pori from the beginning, the discrimination problem might
be too difficult to proceed.

Second, instead of using the standard NCE objective function
JNCE(θ, ζ) in Eq. (2.46), a modified objective function is proposed
as follows18:

JDNCE(θ, ζ) = Ex∼pint(x) [log p(C = +|x; θ, ζ)] + νEx∼qϕ(x) [log p(C = −|x; θ, ζ)]
(2.48)

where
pint(x) = αpora(x) + (1− α)qϕ(x)

18In JDNCE(θ, ζ) and pint(x), we suppress their dependency on ϕ, since, as will be
shown later, the optimization of JDNCE(θ, ζ) is taken only over (θ, ζ) while fixing ϕ.
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denotes an interpolation of the data distribution and the noise distri-
bution, and 0 < α < 1 is the interpolating factor. p(C = +|x; θ, ζ) and
p(C = −|x; θ, ζ) are defined the same as in Eq. (2.45), except that the
fixed noise distribution q(x) is replaced by the dynamic noise distribu-
tion qϕ(x). Intuitively, as the noise distribution qϕ converges to the data
distribution, using the interpolated distribution pint will increase the
number of data-like samples by adding samples drawn from the noise
distribution. This could avoid the model to be overfitted to the sparse
training set.

Putting the two modifications together, DNCE conducts the follow-
ing joint optimization,

max
θ,ζ

JDNCE(θ, ζ)

max
ϕ

Ex∼pora(x) [log qϕ(x)]

which can be solved by applying minibatch-based stochastic gradient
ascent.

At each iteration, a set of data samples, denoted by D, is sampled
from pora, with the number of samples in D denoted as |D|. Additionally,
two sets of noise samples are drawn from the noise distribution qϕ,
denoted by B1 and B2, whose sizes satisfy |B1| = 1−α

α |D| and |B2| = ν
α |D|

respectively. As a result, the union of D and B1 can be viewed as samples
drawn from the interpolated distribution pint, with |D∪B1| = |D|

α . Model
parameters (θ, ζ) are updated by ascending the following stochastic
gradients:

α

|D|
∑

x∈D∪B1

p(C = −|x; θ, ζ)∇θ,ζ log pθ,ζ(x)

− α

|D|
∑

x∈B2

p(C = +|x; θ, ζ)∇θ,ζ log pθ,ζ(x)

Noise model parameter ϕ are updated by ascending the following stochas-
tic gradient:

1
|D|

∑
x∈D
∇ϕ log qϕ(x)

A final remark is that the theoretical consistency of DNCE learning
in the nonparametric limit can be shown by the following theorem.
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Theorem 2.5. Suppose that an arbitrarily large number of data samples
can be drawn from pora, and the model distribution pθ(x) and the noise
distribution qϕ(x) have infinite capacity. Then we have

(i) The KL divergence KL(pora||qϕ) can be minimized to attain zero;

(ii) IfKL(pori||qϕ) attains zero at ϕ∗, and the conditional log-likelihood
Eq. (2.48) attains a maximum at (θ∗, ζ∗), then we have

pθ∗(x) = qϕ∗(x) = pora(x)

Proof. (i) This conclusion can be easily seen by consistencey of MLE,
since minimizing KL(pora||qϕ) is equivalent to MLE of qϕ.

(ii) From KL(pori||qϕ∗) = 0, we have qϕ∗ = pora.
By Theorem 2.4, with fixed ϕ∗, Eq. (2.48) has the only extremum
at pθ∗(x) = pint(x)|ϕ=ϕ∗ = αpora(x) + (1− α)qϕ∗(x).

The conclusion is clear from combining the above two equations. ■

2.5 Generation From EBMs

Given an EBM, an important inference task is sampling from the model,
i.e., drawing or generating samples from the model. Sampling is not only
a critical step in maximum likelihood learning of EBMs (as we introduce
in Section 2.3), but also itself forms an important class of applications.
Generating text, images, speech, or other media has received increasing
interest, and recently has been collectively referred to as generative
AI.19

Transformer-based [179] autoregressive language models (ALMs),
generating text sequentially from left to right, have been the dominant
approach for text generation [134]. Key to their success is local normal-
ization, i.e. they are defined in terms of a product of conditional distri-
butions, one for each token in the sequence. These models can be trained
efficiently via maximum likelihood teacher-forcing, and sampling from
ALMs is straightforward by ancestral sampling. Unfortunately, local
normalization also brings some drawbacks for these locally-normalized

19https://en.wikipedia.org/wiki/Generative_artificial_intelligence

https://en.wikipedia.org/wiki/Generative_artificial_intelligence
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sequence models, when compared to globally-normalized sequence models
(namely EBM based sequence models).20 As will be detailed in Section
4.1.2 and Section 4.4.1, the drawbacks include:

• Discrepancy between training and inference (related to exposure
bias);

• Limitation in long-range coherency due to only left-to-right mod-
eling and decoding (related to label bias);

• Inflexibility in controlled generation (e.g., satisfying hard lexical
constraints and/or soft topical constraints in text generation).

There are similar concerns for generating other sequence media (e.g.,
speech). There have been studies for speech synthesis by EBMs [167]
and also by some non-autoregressive models, such as FastSpeech 2 [140]
and diffusion models [130].

Remarkably, given a learned EBM, some applications need likelihood
evaluation (e.g., in language modeling for speech recognition), while
other tasks require generation from the learned generative model (e.g.,
in many NLP tasks such as summarization, dialog, and machine trans-
lation). Generation from generative models basically is sampling from
them. In practice, generating from locally-normalized sequence models,
sometimes also referred to as decoding, can be readily realized by greedy
decoding (beam search) or nucleus sampling [64] as engineering variants
of ancestral sampling. There is no easy method for sampling from EBMs.
Basically we have to resort to Monte Carlo methods, such as MCMC
and importance sampling (IS), which is usually not as computational
efficient as ancestral sampling. Perhaps this is the most challenging
practical limitation of EBMs for their applications in generation, and
the dominant approach to text generation is still based on large neural
auto-regressive models.

20There are some studies which do not involve EBM modeling, but use a masked
language modeling objective to train the model. This approach, referred to as
non-autoregressive generation, performs iterative decoding, i.e., generating non-
autoregressively, then masking out and regenerating, and so cycles for a number of
iterations [44].
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Table 2.1: A survey of different sampling methods used in generating text from
EBMs. The target model is the EBM, while a proposal is required for both MCMC
and IS. Different proposals are used in different applications. Shorthands: ALMs (au-
toregressive language model), MLM (masked language model), SNIS (self-normalized
importance sampling), ASR (automatic speech recognition), CTG (controlled text
generation), CTGAP (conditional text generation after prefix).

Sampling method Proposal Application
MH within
Gibbs sampling

Conditional of word
class

ASR [188], [189]

ALM ASR [184]
MLM CTG [47], [99], [105]

(see Section 4.4.2)
SNIS ALM CTG [72], [125];

CTGAP [39] (see
Section 4.4.1)

Langevin dynamics - CTG [132]

Theoretically, sampling from EBMs can be performed by the MCMC
and importance sampling methods, which are introduced in Section 2.3.1
and Section 2.3.2 respectively. Gradient-based MCMC methods (Section
2.3.1), such as Langevin dynamics, are good choices for sampling for
continuous data (e.g., images), by using the gradient of the potential
∇xUθ(x). However, since text is discrete, the gradient is not well-defined,
making it non-trivial to apply gradient-based MCMC methods for
sampling text from EBMs.

Various MCMC and IS methods have been explored in applications
of EBMs for generating text. In Table 2.1, we survey some recent
studies, which provide concrete examples. Remarkably, both MCMC
and IS methods need proposal distributions, and the design of proposal
distributions heavily depends on specific applications. We comment on
the particular proposal distributions used in different applications in
Table 2.1. some further discussions are as follows.

MH within Gibbs sampling. Suppose we use Gibbs sampling to gener-
ate a sequence of n tokens, x = (x1, · · · , xn), from an EBM distribution
p(x1, · · · , xn). Exact Gibbs sampling needs to calculate the conditional
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distribution p(xi|x\i) of token xi for each position i, given all the other
tokens x\i ≜ (x1, · · · , xi−1, xi+1, · · · , xn). For modern EBMs developed
for text, such as in [184], [188], [189] and so on, this is computational ex-
pensive, because calculating p(xi|x\i) needs to enumerate all possible val-
ues of xi from V and to compute the joint probability p(xi, x\i) for each
possible value, where V denotes the vocabulary. Metropolis-Hastings
(MH) within Gibbs sampling has been explored, with a proposal, to
draw MCMC samples from p(xi|x\i).

In [188], [189], word classing is introduced to accelerate sampling,
which means that each word is assigned to a single class. Through
applying MH within Gibbs sampling, we first sample the class by using
a reduced model as the proposal, which includes only the features that
depend on xi through its class21, and then sample the word. This reduces
the computational cost from |V| to |C|+ |V|/|C| on average, where |C|
denotes the number of classes.

The computation reduction in using word classing in EBMs with
neural features (i.e., parameterized by neural networks) is not as signifi-
cant as in EBMs with discrete features, because EBMs parameterized
by neural networks involve a much larger context, which makes the
sampling computation with the reduced model still expensive. In later
work in [184], an ALM (autoregressive language model) is introduced to
propose for p(xi|x\i), and in [47], [99], [105], a MLM (masked language
models) is used as the proposal. The proposal model can be jointly
trained with the EBM, as in [184], or pre-trained language models can
be directly used for the proposal [47], [99], [105].

Self-normalized importance sampling (SNIS). The basics are intro-
duced in Section 2.3.2. See Section 4.4.1 for details in applications.

Langevin dynamics. The basics are introduced in Section 2.3.1. See
Section 4.4.2 for details in applications.

21This is possible, since features used in [188], [189] are discrete features (n-gram
features) (see introduction in Section 3.3.1).



3
EBMs for Sequential Data With Applications in

Language Modeling

In this section, we are mainly concerned with learning the (marginal)
distribution of observation x itself by EBMs. Considering the sequential
nature of speech and language, we show how to develop EBMs for
sequential data, or more generally, for trans-dimensional data.

EBMs are mostly developed in fixed-dimensional settings, for ex-
ample, in the modeling of fixed-size images. Trans-dimensional setting
means that the observations can be of different dimensions. A familiar
case is temporal modeling of sequential data, where each observation is
a sequence of a random length. Language modeling falls exactly in this
trans-dimensional setting, where an observation sequence x is a natural
language sentence (i.e., a token sequence).

3.1 Autoregressive Language Model (ALM)

Language modeling involves determining the joint probability p(x) of a
sentence x, which can be denoted as a pair x = (l, xl), where l is the
length and xl = (x1, . . . , xl) is a sequence of l tokens. Currently, the
dominant approach to language modeling is the locally-normalized or
conditional modeling, which decomposes the joint probability of xl into
a product of conditional probabilities by using the chain rule,

69



70 EBMs for Sequential Data With Applications in Language Modeling

p(x1, . . . , xl) =
l∏

i=1
p(xi|x1, . . . , xi−1). (3.1)

Language models (LMs) in the form of Eq. (3.1) is known as autoregres-
sive language models (ALMs). Remarkably, for an ALM to make the
sum of the probabilities of all sequences equal to 1, it is necessary to
place a special token ⟨EOS⟩ at the end of sentences and to include this
in the product of Eq. (3.1) [20]. Otherwise, the sum of the probabilities
of all sequences of a given length is 1, and the sum of the probabilities
of all sequences is then infinite.

In early days before the deep learning era, the history of xi, denoted
as (x1, · · · , xi−1), is often reduced to equivalence classes through a
mapping ϕ(x1, · · · , xi−1) with the assumption

p(xi|x1, · · · , xi−1) ≈ p(xi|ϕ(x1, · · · , xi−1)).
A classic example is the traditional n-gram language models (LMs) with

ϕ(x1, · · · , xi−1) = (xi−n+1, . . . , xi−1),
assuming that current token xi depends on history only through the
previous n−1 tokens, i.e., the (n−1)-order Markov assumption. Various
smoothing techniques have been used for parameter estimation, and
particularly, the modified Kneser-Ney (KN) smoothed n-gram LMs are
still widely used because of its simplicity and good performance [20].

Recently, neural network LMs have begun to surpass the traditional
n-gram LMs, and also follow the locally-normalized approach. The
mapping ϕ(x1, · · · , xi−1) condenses the history into a hidden vector
hi ∈ RD through a neural network (NN), which can be a feedforward
NN [156], a recurrent NN [101], [168], or more recently, a Transformer
NN [179]. Specifically, in either manner, the neural network calculates
the conditional probability at each position as follows:

p(xi = k|x1, · · · , xi−1) = exp(zk)∑|V|
j=1 exp(zj)

(3.2)

which is in the form of a multi-class logistic regression, as introduced in
Eq. (2.3). The logits zk = wT

k hi + bk, k = 1, · · · ,K are calculated from
a linear layer on top of hidden vector hi. wk ∈ RD, bk ∈ R denote the
weight vector and bias of the linear layer, respectively. V denotes the
vocabulary of all possible tokens.
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Drawbacks of ALMs. Both the classic n-gram LMs and the recent
neural network LMs are autoregressive language models, which are
locally normalized. Unfortunately, local normalization in ALMs brings
some drawbacks. As will be detailed in Section 4.1.2, ALMs are prone
to exposure bias [138], [192] and label bias [4], [79].

3.2 Energy-based Language Model (ELM)

3.2.1 Globally-normalized ELM (GN-ELM)

Energy-based language models (ELMs) parameterize an unnormalized
distribution for natural sentences and are radically different from au-
toregressive language models. Let x be a natural sentence (i.e., a token
sequence). An energy-based language model (ELM) is defined as follows

pθ(x) = exp(Uθ(x))
Z(θ) (3.3)

where Uθ(x) denotes the potential function with parameter θ, Z(θ) =∑
x exp(Uθ(x)) is the normalizing constant, and pθ(x) is the probability

of sentence x. For reasons to be clear below (mainly to be differentiated
from TRF-LM), the model in Eq. (3.3) is called globally-normalized
ELM (GN-ELM).

ELMs potentially address the drawbacks of ALMs introduced above,
as they do not require any local normalization. Early attempts on
building energy-based language models are GN-ELMs and date back
to [144], which proposes whole-sentence maximum entropy (WSME)
language models1. Specifically, a WSME model has the log-linear form

p(x;λ) = 1
Z(λ)e

λT f(x). (3.4)

Here f(x) is a vector of features, which are computable functions of x
such as n-grams conventionally used, λ is the corresponding parameter
vector, and Z(λ) = ∑

x e
λT f(x) is the global normalizing constant.

There has been little work on WSME-LMs, mainly in [1], [144], [145].
Although the whole-sentence approach has the potential advantage of

1Due to the connection between log-linear model and maxent model as we
introduced before in Section 2.1.2, this model is called WSME.
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being able to flexibly integrate a richer set of features, the empirical
results of previous WSME-LMs are not satisfactory, almost the same
as traditional n-gram LMs. After incorporating lexical and syntactic
information, a mere relative improvement of 1% and 0.4% respectively
in perplexity and in WER (word error rate) was reported for the
resulting WSME-LM [144]. Subsequent studies of using WSME LMs
with grammatical features, as in [1] and [145], reported perplexity
improvement above 10% but no WER improvement when using WSME
LMs alone.

In recent years, there is encouraging progress in both the theories
and applications of ELMs. A new class of ELMs called trans-dimensional
random fields (TRFs) have been developed, which are different from
GN-ELMs and present the first strong empirical evidence supporting the
power of using energy-based approach to language modeling [188], [189].
Applications of ELMs have covered computation of sentence likelihoods
(up to a constant) for speech recognition [43], [184]–[186], [188], [189] (to
be introduced in the next section), text generation [39] (to be covered in
Section 4.4.1), language model pre-training [27] (to be covered in Section
3.4), calibrated natural language understanding [60] (to be covered in
Section 5.5), and so on.

3.2.2 Trans-dimensional random field (TRF) LMs

To describe trans-dimensional observations in general, a new energy-
based probabilistic model, called the trans-dimensional random field
(TRF) model, has been proposed in [188], [189], which explicitly mixes
a collection of random fields in sample spaces of different dimensions.
A GN-ELM is globally-normalized over all sequences of all lengths. In
contrast, a TRF-LM is a collection of random fields, each normalized
on subspaces of different lengths separately and weighted by empirical
length probabilities.

Suppose that it is of interest to build random field models for
multiple sets of observations of different dimensions, such as images
of different sizes or sentences of different lengths. Denote by xj an
observation in a sample space X j of dimension j, ranging from 1 to
m. The space of all observations is then the union X = ∪m

j=1X j . To
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emphasize the dimensionality, each observation in X can be represented
as a pair x = (j, xj), even though j is identified as the dimension of xj .
By abuse of notation, write f(x) = f(xj) for features of x.

For j = 1, . . . ,m, assume that the observations xj are distributed
from a random field in the form

pj(xj ;λ) = 1
Zj(λ)e

Uθ(xj),

Uθ(xj) : X j → R denotes the potential function which assigns a scalar
value to each configuration of x in X and can be very flexibly param-
eterized through linear functions or nonlinear functions with neural
networks of different architectures, to be explained in Section 3.3.1. θ
denotes the set of parameters, and Zj(θ) is the normalizing constant:

Zj(θ) =
∑
xj

eUθ(xj), j = 1, . . . ,m.

Moreover, assume that dimension j is associated with a probability πj

for j = 1, . . . ,m with ∑m
j=1 πj = 1. Therefore, the pair (j, xj) is jointly

distributed as

p(j, xj ;π, θ) = πj pj(xj ; θ) = πj

Zj(θ)e
Uθ(xj), (3.5)

where π = (π1, . . . , πm)T .
Here we actually define a mixture of random fields for joint modeling

sentences of different dimensions (namely lengths). There is a random
field for each length. By maximum likelihood, the mixture weights can
be estimated to be the empirical length probabilities.

As outlined in Table 3.1, there are a series of works in the de-
velopment of TRF-LMs, each with its own contribution in different
parameterizations of potential functions and model training methods.
Before expanding introductions around Table 3.1, let us first recognize
the differences between GN-ELM and TRF-LM.

3.2.3 Comparison between GN-ELM and TRF-LM

The following comment on the connection and difference between GN-
ELM and TRF-LM models is adapted from the comparison between
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Table 3.1: The development of TRF-LMs.

Work Contribution

[188], [189] • Discrete features
• Augmented stochastic approximation (AugSA)
for model training

[184] • Potential function as a deep CNN
• Model training by AugSA plus JSA (joint
stochastic approximation)

[186]
• Potential function in the form of exponential
tilting, revisited in residual EBMs [39]
• Use LSTM on top of CNN
• NCE is introduced to train TRF-LMs

[185] • Simplify the potential definition by using only
bidirectional LSTM
• Propose Dynamic NCE for improved model
training

[43] • Mixed-feature TRFs, by integrating discrete
and neural features

[86] • Pre-trained language models (PLMs) are used
as the backbones of energy functions, noise dis-
tributions in NCE and proposal distributions in
Monte Carlo

WSME and TRF models in [189]. Suppose that we add the dimension
features in the GN-ELM model Eq. (3.3) and obtain

p(j, xj ;λ, ν) = 1
Z(θ, ν)e

νT δ(j)+Uθ(xj), (3.6)

where δ(j) = (δ1(j), · · · , δm(j))T denotes the dimension features such
that δl(j) = 1(j = l). ν = (ν1, . . . , νm)T denotes the corresponding
parameter vector, and Z(θ, ν) is the global normalizing constant

Z(θ, ν) =
m∑

j=1

∑
xj∈X j

eνT δ(j)+Uθ(xj) =
m∑

j=1
eνjZj(θ). (3.7)
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Similar to Proposition 1 in [189], it can be seen that when both
fitted by maximum likelihood estimation, model Eq. (3.6) is equivalent
to model Eq. (3.5) but with different parameterization. The parameters
in model Eq. (3.6) are (θ, ν), whereas the parameters in model Eq.
(3.5) are (π, θ). Therefore, an important distinction of TRF-LM from
GN-ELM lies in the use of dimension features, which has significant
consequences in both model definition and model learning.

First, it is clear that model Eq. (3.5) is a mixture of random fields on
subspaces of different dimensions, with mixture weights explicitly as free
parameters. Hence model Eq. (3.5) will be called a trans-dimensional
random field (TRF). Moreover, by maximum likelihood, the mixture
weights can be estimated to be the empirical dimension probabilities.

Second, it is instructive to point out that model Eq. (3.3) is essen-
tially also a mixture of random fields, but the mixture weights implied
are fixed to be proportional to the normalizing constants Zj(θ):

p(j, xj ; θ) = Zj(θ)
Z(λ) ·

1
Zj(θ)e

Uθ(xj), (3.8)

where Z(θ) = ∑
x e

Uθ(x) = ∑m
j=1 Zj(θ). Typically the unknown mixture

weights in Eq. (3.8) may differ from the empirical length probabilities
and also from each other by orders of magnitudes, e.g. 1040 or more in
the experiments of [189]. As a result, it is very difficult to efficiently
sample from model Eq. (3.3), in addition to the fact that the length
probabilities are poorly fitted for model Eq. (3.3). Setting mixture
weights to the known, empirical length probabilities enables us to
develop an effective learning algorithm, as introduced in [189]. Basically,
the empirical weights serve as a control device to improve sampling
from multiple distributions [83], [171].

3.3 ELMs for Speech Recognition

As an important application, ELMs have been successfully used as a
means for calculating sentence scores in automatic speech recognition
(ASR). The design of energy function and the optimization of parameters
are central research questions in applying ELMs, which are introduced
in the following two subsections respectively.
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3.3.1 Architectures of energy functions

One is generally free to choose the energy function in ELMs, as long as
it assigns a scalar energy to every sentence, no matter for TRF-LMs
or GN-ELMs. A subtle difference between defining the energy function
−Uθ(x) in Eq. (3.3) for GN-ELMs and defining −Uθ(xj) in Eq. (3.5)
for TRF-LMs is whether to include the special token ⟨EOS⟩ or not. We
do not need to include ⟨EOS⟩ at the end of xj in calculating Uθ(xj) for
TRF-LMs. For GN-ELMs, we often include ⟨EOS⟩ at the end of x in
calculating Uθ(x), hoping to help modeling of sentence lengths. Except
for this difference, the architectures of energy functions for TRF-LMs
can be readily used for GN-ELMs, and vise versa.

Broadly speaking, there are three types of energy functions.

• Early ELMs are log-linear models using discrete features, including
[144] (WSME-LM) and [188], [189] (TRF-LM). These ELMs could
thus be referred to as discrete ELMs.

• Later, based on CNN and LSTM networks, ELMs using neural
network based energy functions (neural ELMs) have been devel-
oped [184]–[186], outperforming neural ALMs with similar model
sizes. ELMs using neural network based energy functions could
be regarded as using neural features, by following the discussion
in Section 2.1.2.

• By integrating discrete and neural features, mixed-feature TRFs
have also been proposed [43], demonstrating the advantage of
energy-based models in integrating discrete and neural features.

Recently, based on Transformer networks [179] and large pre-trained
lanugage models (PLMs) such as BERT [40] and GPT2 [135], neural
ELMs have been further advanced [86]. Extensive experiments are
conducted on two datasets, AISHELL-1 [16] and WenetSpeech [201].
The results show that the best ELM achieves competitive results with
the finetuned GPT2 and performs significantly better than the finetuned
BERT. Further analysis show that the ELM obtains better confidence
estimate performance than the finetuned GPT2.
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Figure 3.1: Example of discrete features.

In the following, we summarize the architectures used to define Uθ(x)
in the literature, in roughly chronological order. We first introduce the
classic log-linear energy function using discrete features. Then, a suite of
nonlinear energy functions are shown, which are called Hidden2Scalar,
SumInnerProduct, SumTargetLogit, SumMaskedLogit and SumToken-
Logit, respectively.

Notably, although one energy architecture is proposed in one context
of either TRF-LMs or GN-ELMs, it can be applied in both TRF-LMs
and GN-ELMs. Let x = {xi}i=1...|x|, where xi ∈ {1, · · · , V } is the i-th
token in x. |x| denotes the length of sentence x in tokens. V denotes
the size of token vocabulary.

Linear energy using discrete features

Linear energy functions using discrete features basically corresponds to
log-linear models, as illustrated in Example 2.1, i.e., defining

Uλ(x) = λT f(x) (3.9)

Here we follow the notations in [189], where f(x) = (f1(x), f2(x), . . . ,
fd(x))T is a feature vector, λ = (λ1, λ2, . . . , λd)T is the corresponding
parameter vector (instead of using θ).

A feature fi(x), i = 1, . . . , d, can be any computable function of
the input x. For various applications such as language modeling, the
parameters of local potential functions across locations are often tied
together [129]. Each feature fi(x) is often defined in the form fi(x) =∑

k fi(x, k), where fi(x, k) is a binary function of x evaluated at position
k. In a trigram example, fi(x, k) equals to 1 if three specific words
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Table 3.2: Feature definition in TRF LMs [189]

Type Features
w (w−3w−2w−1w0)(w−2w−1w0)(w−1w0)(w0)
c (c−3c−2c−1c0)(c−2c−1c0)(c−1c0)(c0)

ws (w−3w0)(w−3w−2w0)(w−3w−1w0)(w−2w0)
cs (c−3c0)(c−3c−2c0)(c−3c−1c0)(c−2c0)

wsh (w−4w0) (w−5w0)
csh (c−4c0) (c−5c0)
cpw (c−3c−2c−1w0) (c−2c−1w0)(c−1w0)
tied (c−9:−6, c0) (w−9:−6, w0)

appear at positions k to k+2 and k ≤ j−2. The binary features fi(x, k)
share the same parameter λi for different positions k and dimensions
j, so called position-independent and dimension-independent. Hence,
the feature fi(x) indicates the count of nonzero fi(x, k) over k in the
observation xj and takes values as non-negative integers. Intuitively,
fi(x) returns the count of a specific phrase (often called a n-gram
feature) observed in the input sentence x, as shown in Figure 3.1.

The energy-based language modeling approach allows a very flexible
use of features, not limited to ordinary n-gram features. In [189], a
variety of features as shown in Table 3.2 are used, mainly based on
word and class information. Each word is deterministically assigned to
a single class, by running the automatic clustering algorithm proposed
in [96] on the training dataset. In Table 3.2, wi, ci, i = 0,−1, . . . ,−5,
denote the word and its class at different position offset i, e.g., w0, c0
denotes the current word and its class. The word/class n-gram features
“w”/“c”, skipping n-gram features “ws”/“cs” [46], higher-order skipping
features “wsh”/“csh”, and the crossing features “cpw” (meaning class-
predict-word) are introduced in [188]. In [189], the tied long-skip-bigram
features “tied” [158] are further introduced, in which the skip-bigrams
with skipping distances from 6 to 9 share the same parameter. In this
way we can leverage long distance contexts without increasing the model
size. All the features f(x) in model Eq. (3.9) are constructed from Table
3.2 in a position-independent and dimension-independent manner, and
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only the features observed in the training data are used. It is shown in
[189] that the TRF-LM using features “w+c+ws+cs+wsh+csh+tied”
outperforms the KN 5-gram LM significantly with 10% relative error
reduction.

Non-linear energy: Hidden2Scalar

Generally speaking, like in [39], [60], [184], [186], we can use a text
encoder to encode x and denote the encoder output (hidden vectors) by
encθ(x). At position i, we have encθ(x)[i]. Then, the potential function
can be defined as

Uθ(x) = Linear

 |x|∑
i=1

encθ(x)[i]

 (3.10)

where Linear(·) denotes a trainable linear layer whose output is a scalar.
This energy function is obtained by transforming neural hidden vectors
into a scalar, hence it is named by Hidden2Scalar.

The text encoder can be based on a fully CNN architecture [184] as
shown in Figure 3.2, or a bidirectional LSTM (BLSTM) stacked on top
of CNN as shown in Figure 3.3. Recently, BERT based text encoders
have been used in [39], [60], [86]. In [39], in the final layer of RoBERTa
[88], the mean-pooled hidden states are projected to a scalar energy
value. In [60], three variants of energy functions (scalar, hidden, and
sharp-hidden) are defined on top of a RoBERTa based text encoder,
which will be detailed in Section 5.5.

Non-linear energy: SumInnerProduct

In [185], a bidirectional LSTM based potential function is defined as
follows, illustrated in Figure 3.4. First, each word xi (i = 1, . . . , |x|) in
a sentence is mapped to an embedded vector ei ∈ Rd. Then the word
embedding vectors are fed into a bidirectional LSTM to extract the
long-range sequential features from the forward and backward contexts.
Denote by hf,i, hb,i ∈ Rd the hidden vectors of the forward and backward
LSTMs respectively at position i. Finally, we calculate the inner product
of the hidden vector of the forward LSTM at current position and the
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Figure 3.2: Hidden2Scalar: a deep CNN architecture used to define the potential
function Uθ(x). Shadow areas denote the padded zeros. [184]
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Figure 3.3: Hidden2Scalar: a bidirectional LSTM on top of CNN used to define the
potential function Uθ(x). [186]

Figure 3.4: SumInnerProduct: a bidirectional LSTM used to define the potential
function Uθ(x). [185]
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embedding vector at the next position, and calculate the inner product
of the hidden vector of the backward LSTM at current position and
the embedding vector at the previous position (dash line in Figure 3.4).
The potential function ϕ(xl; θ) is computed by summing all the inner
products, hence named by SumInnerProduct,

Uθ(x) =
|x|−1∑
i=1

hT
f,iei+1 +

|x|∑
i=2

hT
b,iei−1 (3.11)

where θ denotes all the parameters in the neural network. The SumInner-
Product energy provides a theoretical-solid framework to incorporate
the bidirectional LSTM features.

Non-linear energy: SumTargetLogit

The SumInnerProduct energy uses a bidirectional network. In order
to exploit pre-trained language models, which mostly are ALMs and
unidirectional, we could consider energy definition tailored to ALMs
[86]. Given history x1:i−1, let the output logits to predict the next token
be denoted by zθ(x1:i−1), whose dimension is equal to V . The k-th logit
is denoted by zθ(x1:i−1)[k]. Then, the potential is defined as

Uθ(x) =
|x|∑
i=1

zθ(x1:i−1)[xi] (3.12)

This potential function sums the logits corresponding to the target token
(next token) at each position, hence it is named by SumTargetLogit. In
contrast, the ALM applies local normalization (softmax) to the logits
zθ(x1:i−1) to obtain the conditional probability of xi given history x1:i−1.

Non-linear energy: SumMaskedLogit

For masked language model (MLM), e.g., BERT, pseudo-log-likelihood
(PLL) is introduced for scoring sentences [181]. Inspired by this, we can
define the potential function as follows [86]:

Uθ(x) =
|x|∑
i=1

gθ(mask(x, i))[i][xi] (3.13)
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where gθ denotes the MLM, whose output, at each position, is the
logits before softmax. gθ(mask(x, i)) means masking the i-th token
in x and sending the masked sequence into the MLM for a forward
pass. At position i, the logit corresponding to the masked token xi is
denoted as gθ(mask(x, i))[i][xi]. In Eq. (3.13), the potential is defined by
summing the logits corresponding to masked tokens, hence it is named
by SumMaskedLogit. Notably, this architecture is much time-consuming
than others, since it requires |x| forward passes to calculate the energy
of one sentence, therefore this architecture is primarily for stimulating
ideas rather than conducting experiments.

Non-linear energy: SumTokenLogit

To overcome the deficiency of SumMaskedLogit, a simplication is pro-
posed [86], i.e., omitting the masking step and feeding x directly to the
MLM, so that the logits at all positions can be calculated in parallel.
The potential is defined as:

Uθ(x) =
|x|∑
i=1

gθ(x)[i][xi] (3.14)

Comparison of non-linear energy architectures

For comparing the different non-linear energy architectures, experi-
ments in [86] find that the bi-directional architectures (Hidden2Scalar
and SumTokenLogit) based on BERT are generally better than the
unidirectional architecture (SumTargetLogit).

3.3.2 Integrating discrete and neural features

There has been a long recognition that discrete features (n-gram fea-
tures) and neural network based features have complementary strengths
for language models (LMs). Generally, LMs with neural features (e.g.
neural ALMs, neural TRF-LMs) outperform LMs with discrete features
(e.g. KN n-gram LMs, discrete TRF-LMs), but interpolation between
them usually gives further improvement. This suggests that discrete
and neural features have complementary strengths. Presumably, the
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n-gram features mainly capture local lower-order interactions between
words, while the neural features particularly defined by LSTMs can
learn higher-order interactions. Additionally, by embedding words into
continuous vector spaces, neural LMs are good at learning smoothed
regularities, while discrete LMs may be better suited to handling sym-
bolic knowledges or idiosyncrasies in human language, as noted in [120].
Currently, model interpolation, either linear or log-linear [23], [187], is
often a second step, after the discrete and neural models are separately
trained beforehand. The interpolation weights are ad-hoc fixed or esti-
mated over held-out data (different from the training data in the first
step). This two-step integration is sub-optimal.

The ELM approach can provide a unified and simplified approach
in integrating both discrete and neural features, based on its capability
in flexibly integrating a rich set of features. Basically, with the ELM
approach, one is free to define the potential function in any sensible way
with much flexibility. It is straightforward to define a mixed-feature TRF-
LM [43], in which the potential function is a sum of a linear potential
using discrete features and a nonlinear potential using neural features.
Mixed-feature TRF-LMs can be trained by applying the dynamic noise-
contrastive estimation (DNCE) method [185], as introduced in Section
2.4.1.

Mixed-feature TRF-LMs represent the first single LM model that
incorporates both discrete and neural features without relying on a
second-step interpolation. Apart from naturally integrating discrete
and neural features, another bonus from using mixed-feature TRF-LMs
is that faster training convergence and shorter training time can be
achieved, using only 58% training epochs when compared to training
neural TRF-LMs alone (see Figure 3.5). Notably, the log-likelihood of the
training data with respect to (w.r.t.) the parameters of discrete features
is concave. This helps to reduce the non-convexity of the optimization
problem for maximum likelihood training. Also, after incorporating
the linear potential, the nonlinear potential only needs to capture the
residual interactions between tokens. This may also explain the faster
training convergence of mixed-feature TRF models.

In [43], various LMs are trained over the Wall Street Journal (WSJ)
portion of Penn Treebank (PTB) [95] and Google one-billion-word
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Figure 3.5: The WER curves of the three TRF-LMs during the first 100 training
epochs are plotted. [43]

corpus2, and evaluated in N-best list rescoring experiments for speech
recognition. Among all single LMs (i.e. without model interpolation), the
mixed-feature TRF-LMs perform the best, improving over both discrete
TRF-LMs and neural TRF-LMs alone, and also being significantly better
than LSTM ALMs. Compared to interpolating two separately trained
models with discrete and neural features respectively, the performance
of mixed-feature TRF-LMs matches the best interpolated model, and
with simplified one-step training process and reduced training time.

3.3.3 Residual ELMs

As mentioned previously in this section, there are three types of energy
functions based on discrete, neural and mixed features, respectively.
Orthogonal to this3, there is another architecture for EBMs, i.e., in the
form of exponential tilting of a reference distribution. In the fields of
lanugage modeling, this model formulation dates back to [144], [186],

2https://github.com/ciprian-chelba/1-billion-word-language-modeling-
benchmark

3It means that the energy architectures described previously can be applied to
Uθ(x) in residual ELMs.

https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
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and recently [39]. Specifically, the probability of a sentence x is defined
as follows:

pθ(x) = 1
Z(θ)q(x)eUθ(x) (3.15)

where a reference distribution q(x) is introduced as the baseline distri-
bution; Uθ(x) denotes the residual potential function with parameter
θ; Z(θ) = ∑

x q(x) exp(Uθ(x)) is the normalizing constant. Hence, Eq.
(3.15) is called a residual ELM , after [39].

The role of residual energy −Uθ(x) is to fit the difference between
the data distribution and the reference distribution. If q(x) is a good
approximation of the data distribution, such as the LSTM based ALMs
used in [186], the Transformer based ALMs in [39], fitting the difference
between the data distribution and the reference distribution q(x) shall
be much simpler than fitting the data distribution directly. Moreover,
when the reference distribution q(x) is used as the proposal distribution
in Monte Carlo methods for learning a residual EBM, we have the
importance weight in the following simple form:

pθ(x)
q(x) ∝ e

Uθ(x)

Similarly, when the reference distribution q(x) is used as the noise
distribution in NCE methods for learning a residual EBM, we will have
a simple form of Eq. (2.45).

3.3.4 Training methods

Different types of ELMs, including GN-ELMs Eq. (3.3), TRF-LMs Eq.
(3.5) and residual ELMs Eq. (3.15), all obeys the general from of general
EBMs Eq. (2.13). Basically, we can use the methods introduced in
Section 2.3 (MLE) and Section 2.4 (NCE) for learning general EBMs
to train ELMs. A GN-ELM Eq. (3.3) has the same form as a EBM Eq.
(2.13), so those methods can be seamlessly applied. In TRF-LMs Eq.
(3.5), length probabilities are introduced and normalization is conducted
for each length separately, some special care is needed.

For more details about MLE for learning TRF-LMs, refer to [184],
[189]. For more details about DNCE for learning TRF-LMs, refer to
[43], [185].
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3.4 Energy-based Cloze Models for Representation Learning Over
Text

Motivation

In this section, we show the capability of EBMs for representation
learning over text [27]. The cloze task of predicting the identity of
a token given its surrounding context has proven highly effective for
representation learning over text. BERT [40], as a representative masked
language model (MLM), implements the cloze task by replacing input
tokens with a special placeholder token [MASK], but there are some
drawbacks with the BERT approach:

• It suffers from the drawback in efficiency (only 15% of tokens are
masked out at a time);

• It introduces a pre-train/fine-tune mismatch where BERT sees
[MASK] tokens in training but not in fine-tuning;

• In principle, it does not produce log-likelihoods for sentences (even
up to an additive constant) and, in this sense, does not define
a language model. The pseudo-log-likelihood (PLL) has been
introduced for scoring sentences by BERT [181], but calculating
the PLL for a sentence x requires |x| passes of the transformer
(once with each token masked out), and is thus computationally
expensive.

Some details are as follows. BERT and related masked language
models [40], [88] train a large neural network to perform the cloze
task. In contrast to the standard language modeling task to learn the
joint probability pora(x), these models try to learn the conditional
probabilities of masked tokens occurring in their surrounding context.
Specifically, multiple positions (e.g., 15%) in the input sentence x =
(x1, · · · , xl) are randomly drawn, denoted by R = {t1, · · · , tk}, 1 ≤
tj ≤ l, j = 1, · · · , k, and those positions are replaced by [MASK] (i.e.,
masked). The masked sentence, denoted by mask(x,R), is encoded
into vector representations by a Transformer network [179]. Then the
vector representation at position tj is passed into a softmax layer to
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Figure 3.6: Comparison of BERT and Electric. Both model the conditional probabil-
ity of a token given its surrounding context. BERT produces normalized conditional
distribution for masked positions, while Electric calculates unnormalized conditional
probabilities for all input tokens. [27]

calculate a distribution over the vocabulary for position tj , j = 1, · · · , k.
The conditional probabilities are maximized for learning the model
parameters θ:

k∑
j=1

log pθ(xtj |mask(x,R))

The Electric model

The new model proposed in [27], called Electric, is closely related to the
Electra pre-training method [26], and implements the cloze task based
on using conditional EBMs.

Specifically, Electric does not use masking or a softmax layer. Elec-
tric first maps the unmasked input x = (x1, · · · , xl) into contextualized
vector representations h(x) = (h1, · · · , hl) using a Transformer net-
work. Then, the conditional probability of a token xt occurring in the
surrounding context x\t = (x1, · · · , xt−1, xt+1, · · · , xl) is modeled by a
conditional EBM :

pθ(xt|x\t) = 1
Zθ(x\t)

exp(−wTht), 1 ≤ t ≤ l (3.16)

where w is learnable weight vector, and ht is the vector representation at
position t. A comparison of BERT and Electric is illustrated in Figure
3.6.
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Training of the Electric model

The conditional EBMs defined in Eq. (3.16) can be trained using NCE
(Section 2.4), and more specifically its conditional version (Section 4.1.3).
First, we define the un-normalized output

p̂θ(xt|x\t) = exp(−wTht)
Denote the training dataset by D. In NCE, a binary classifier is trained
to distinguish positive token xt vs negative token x̂t, with k negatives
and l positives (e.g., k = ⌈0.15l⌉) for a sentence x of length l. Denote
the random positions by R = {t1, · · · , tk}, 1 ≤ tj ≤ l, j = 1, · · · , k.
Formally, referring to Eq. (2.46), the NCE loss L(θ) is as follows:

l · Ex∼D,t∼Uni(1,l)

[
− log

l · p̂θ(xt|x\t)
l · p̂θ(xt|x\t) + k · q(xt|x\t)

]

+k · Ex∼D,t∼R,
x̂t∼q(x̂t|x\t)

[
− log

k · q(x̂t|x\t)
l · p̂θ(x̂t|x\t) + k · q(x̂t|x\t)

] (3.17)

where q(xt|x\t) denotes the noise distribution, which was realized by
a two-tower cloze model [27]. Specifically, the noise model runs two
transformers TLTR and TRTL over the input sequence. These transformers
apply causal masking so one processes the sequence left-to-right (LTR)
and the other operates right-to-left (RTL). The model’s predictions
come from a softmax layer applied to the concatenated states of the
two transformers:

−→
h = TLTR(x),←−h = TRTL(x)

q(xt|x\t) = softmax(W [−→h t−1,
←−
h t+1])xt

The noise distribution is trained simultaneously with Electric using
standard maximum likelihood estimation over the data. Thus, the
training method used by Electric is in fact DNCE (Section 2.4.1).

Note that the NCE loss Eq. (3.17) does not introduce additional
parameters for normalizing constants Zθ(x\t). In the setting of non-
parametric estimation (Theorem 2.4), the NCE loss is minimized when
p̂θ(xt|x\t) matches the oracle density. Thus, we assume that the model
is of sufficient capacity and the model can learn to be self-normalized
such that Zθ(x\t) = 1.
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A further examination of Eq. (3.17) reveals that its optimization
is computationally expensive to run. It requires k + 1 forward passes
through the Transformer to compute the p̂θ’s, once for the positive
samples xt|x\t and once for every negative sample x̂t|x\t. So a modified
algorithm, allowing more efficient calculation, is to replace the k random
positions simultaneously by negative tokens x̂t ∼ q(xt|x\t). The resulting
noised sequence is denoted by

xnoised = replace(x,R, (x̂t1 , · · · , x̂tk
))

To apply this efficiency trick, Electric assumes p̂θ(·|x\t) = p̂θ(·|xnoised
\t ),

for “·” taking xt or x̂t, i.e., assuming that extra noise replacing does
not change the conditional distribution much, for both positive and
negative tokens. The modified loss for a sentence x of length l becomes
as follows4:

l · Ex∼D,t∼Uni(1,l)

[
− log

(l − k) · p̂θ(xt|xnoised
\t )

(l − k) · p̂θ(xt|xnoised
\t ) + k · q(xt|x\t)

]

+k · Ex∼D,t∼R,
x̂t∼q(x̂t|x\t)

[
− log

k · q(x̂t|x\t)
(l − k) · p̂θ(x̂t|xnoised

\t ) + k · q(x̂t|x\t)

] (3.18)

Calculating Eq. (3.18) requires just one pass through the Transformer
for k noise sample and l − k data samples. This brings significant
computation reduction.

Performance of the Electric model

Experiments in [27] on GLUE natural language understanding bench-
mark [182] and SQuAD question answering dataset [137] show that
Electric substantially outperforms BERT but slightly under-performs
ELECTRA. However, Electric is particularly useful in its ability to effi-
ciently produce pseudo-log-likelihood (PLL) scores for text, as defined
below.

PLL(x) =
l∑

t=1
log p̂θ(xt|x\t) =

l∑
t=1
−wTht (3.19)

4To compare with Eq. (3.17), this modified loss is written for l − k positives and
k negatives, while Eq. (3.17) is for l positives and k negatives.
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Experiments on the 960-hour LibriSpeech corpus [124] show Electric
is better at re-ranking the outputs of a speech recognition system than
GPT2 [135] and is much faster at re-ranking than BERT because it
scores all input tokens simultaneously rather than having to be run
multiple times with different tokens masked out. It appears that EBMs
are a promising alternative to the standard ALMs and MLMs currently
used for language representation learning.



4
Conditional EBMs With Applications

In Section 3, we mainly introduce EBMs for modeling the marginal
distribution of natural language sentences, with applications to language
modeling for speech recognition and language representation learning.

In this section, we introduce EBMs for modeling conditional dis-
tributions, i.e., using EBMs for conditional models (Section 1.1.2). In
Section 4.1, we present basics for conditional EBMs, or equivalently,
conditional random fields (CRFs). In the following sections, we show
how they can be applied in not only discriminative tasks such as speech
recognition (Section 4.2) and natural language labeling (Section 4.3)
but also conditional text generation tasks (Section 4.4).

4.1 CRFs as Conditional EBMs

As introduced in (Section 1.1.2), many real-world applications are solved
by conditional models. Conditional random fields (CRFs) [79], [170]
have been known to be one of the most successful conditional mod-
els, especially for sequence labeling. A CRF is basically a conditional
distribution p(y|x) defined as a random field, or equivalently, an undi-
rected graphical model. A formal definition is as follows. Similar to the
equivalent meaning of random fields and EBMs in unconditional set-

92
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Figure 4.1: Graphical model representation of a conditional random field (CRF).

ting, conditional random fields and conditional EBMs are exchangeable
terms.

Definition 4.1 (Conditional random field). Consider probability distribu-
tions p(y|x), where x represents an observation corresponding to the
input variable, and y is the output variable that we wish to predict. A
variable can either be scalar- or vector-valued. Suppose y = y1, · · · , yT .
In an undirected graph consisting of x and (y1, · · · , yT ) (e.g., as shown
in Figure 4.1), let C denote the set of cliques in the subgraph induced
by y. Associated with each clique C ∈ C, let ϕC(yC , x) denote a (log)
potential function. An conditional random field (CRF) in terms of this
undirected graph consists of a family of distributions that factorize as:

p(y|x) = 1
Z(x)

∏
C∈C

ϕC(yC , x) (4.1)

where Z(x) is the normalizing constant given by

Z(x) =
∑

y

∏
C∈C

ϕC(yC , x) (4.2)

Eq. (4.1) actually means that for every assignment x, p(y|x) fac-
torizes according to the subgraph induced by y. Since x is given, x is
treated as a constant, and included in the definition of potentials.

4.1.1 Linear-chain CRFs

Linear-chain CRFs are a class of CRFs, particularly useful for sequence
labeling in the area of natural language processing (NLP), such as part-
of-speech (POS) tagging [30], named entity recognition (NER) [81], [92],
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chunking [159] and syntactic parsing [41], and also in other areas such
as bioinformatics [127], [153]. Formally, in sequence labeling, the input
x is a sequence with the same length of the output y. Thus, given a
sequence of observations x = (x1, · · · xT ) = x1:T , the task of sequence
labeling is to predict a sequence of labels y = (y1, · · · yT ) = y1:T , with
one label for one observation in each position. yi ∈ {1, · · · ,K} denotes
the label at position i.

A linear-chain CRF defines a conditional distribution for label
sequence y given observation sequence x in the following form:

p(y|x) ∝ exp
{

T∑
t=1

ϕt(yt, x) +
T∑

t=1
ψt(yt−1, yt, x)

}
. (4.3)

Here the labels yt’s are structured to form a chain, giving the term
linear-chain. Over the linear-chain, we define node potentials and edge
potentials.

• ϕt(yt, x) is often called the node potential at position t. Tradition-
ally, people use discrete features, as introduced in Example 2.1 and
Section 3.3.1, to define node potentials. The feature functions (or
simply, the features) are usually hand-crafted indicator functions,
which we think are useful for labeling, as shown below.

f1(yt, x) =δ(yt = prep, xt = on)
f2(yt, x) =δ(yt = adv, xt ends in ly)

· · ·

Then, the potential function at position t can be defined as follows:

ϕt(yt, x) =
∑

i

λifi(yt, x) (4.4)

where i indexes the different features. Notably, the potential
functions ϕt(·, x) defined above at different positions take identical
forms, i.e., position-independent.

• A recent progress is the development of Neural CRFs (NCRFs),
which combines the sequence-level discriminative ability of CRFs
and the representation ability of neural networks (NNs). In dif-
ferent studies, these models are called conditional neural field
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[127], neural CRF [8], recurrent CRF [98], and LSTM-CRF [81],
[92]. Though there are detailed differences between these existing
models, generally they are all defined by using NNs (of different
network architectures) to implement the non-linear node poten-
tials in CRFs, while still keeping the linear-chain hidden structure,
i.e., using a bigram table as the edge potential (to be detailed
below). Suppose that the input sequence x1:T is transformed into
vector representations h1:T = (h1, · · · hT ) ∈ RT ×D via an appro-
priate neural network. The vector representations h1:T can be
viewed as features, and the neural network is referred as a feature
extractor , as discussed previously in Section 2.1.1. Then, the node
potential can be calculated via a linear layer on top of the vector
representations:

ϕt(yt = k, x) = wT
k ht + bk ≜ ϕk

t , k = 1, · · · ,K (4.5)

where wk ∈ RD, bk ∈ R denote the weight vector and bias of the
linear layer, independent of t. ϕk

t denotes the potential value at
positon t for label k.

• ψt(yt−1, yt, x) is the edge potential defined on the edge connecting
yt−1 and yt. It is mostly implemented as a transition matrix A:

ψt(yt−1 = j, yt = k, x) = Aj,k (4.6)

4.1.2 Label bias and exposure bias

It is known that locally-normalized sequence models are prone to label
bias [4], [79] and exposure bias [138], [192]. Depending on locally-
normalized or globally-normalized, unconditional or conditional, there
are four classes of models, as overviewed in Table 4.1.

• The label bias problem was raised initially in the conditional
setting [79]. Later in this section, we will show that the label bias
problem also exists in the unconditional setting.

• The exposure bias is related to the manner of model training,
rather than caused by the model itself; so it exists in both uncon-
ditional and conditional settings.
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Table 4.1: A general classification of sequence models, with some common examples.

Unconditional Conditional
Locally-normalized ALM seq2seq
Globally-normalized ELM CRF/Conditional EBM

In summary, the problems of label bias and exposure bias exist in
both unconditional and conditional settings. An advantage of globally-
normalized sequence models is that they avoid the problems of label
bias and exposure bias, as explained below.

The label bias problem

Conditional, locally-normalized sequence models such as maximum
entropy Markov models (MEMMs) [97] and sequence-to-sequence models
(seq2seq) [169] are potential victims of the label bias problem. In general,
a conditional, locally-normalized sequence model is described by the
conditional probability p(y|x) with the following decomposition, where
x = (x1, · · · xT ) = x1:T is an input sequence and y = (y1, · · · yL) = y1:L
is its corresponding output sequence whose length L may differ from T .

p(y1:L|x1:T ) =
L∏

i=1
p(yi|x1:T , y1, · · · , yi−1). (4.7)

The ouput probabilities at each time-step, p(yi|x1:T , y1, · · · , yi−1), are
locally normalized, so successors of incorrect histories receive the same
mass as do the successors of the true history [192]. So locally normalized
sequence models often have a very weak ability to revise earlier decisions
[4]. This problem has been called the label bias problem.

The label bias problem is more severe when the output probability of
yi can only depend on a partial input sequence x1:t(i), where t(i) denotes
the available length of the partial input when producing yi. For example,
in streaming speech recognition, each token yi must be recognized shortly
after it was spoken. It is found in [178] that by switching from a locally
normalized model to a globally normalized model, the streaming speech
recognition performance can be significantly improved.
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In the case of using p(yi|x1:t(i), y1, · · · , yi−1), the model becomes:

p(y1:L|x1:T ) =
L∏

i=1
p(yi|x1:t(i), y1, · · · , yi−1). (4.8)

The label bias problem can be understood by considering the in-
dependence assumption made by the model. In this case, we have
y1:i ⊥ xt(i)+1:T |x1:t(i), i.e.,

p(y1:i|x1:T ) = p(y1:i|x1:t(i))

Thus, observations from later in the input sequence xt(i)+1:T has no
effect on the posterior probability of history input y1:i. Intuitively, we
would like the model to be able to revise an earlier decision made during
search, when later evidence becomes available that rules out the earlier
decision as incorrect [4].

The above discussion of the label bias problem is for conditional,
locally-normalized sequence models. In the following, we will show,
through an empirical example1, that the label bias problem causes
trouble not only in conditional, locally-normalized sequence models, but
also in unconditional, locally-normalized sequence models; and can be
naturally overcome in globally-normalized sequence models. Suppose
that we would like to build a model for sentences with the following
training data, which consists of three sentences:

Tom likes tea
John likes tea
Alice like tea

Since the training data are often noisy, there exist some samples with
some incorrect, infrequent patterns such as in “Alice like tea”. We
estimate different models over these training data, apply them to score
test data:

1This English example is adapted from a Chinese example in Section 3.4.1 of
[183].
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Alice likes tea
Tom like tea

and examine the performance of different models.
Let us first consider an autoregressive language model (ALM), which

is a typical unconditional, locally-normalized sequence model, trained
over these training data. We estimate a smoothed bi-gram ALM, i.e., we
smooth the transition probabilities for unseen bi-grams. The resulting
ALM with estimated transition probabilities are shown in Figure 4.2. We
can see that transitions from the wrong history (“like”) and the correct
history (“likes”) to “tea” get the same score, due to local normalization
of conditional probabilities. Consequently, when scoring test data -
“Alice likes tea” and “Tom like tea”, the bi-gram ALM cannot score
them correctly - the two test samples are scored as being of the same
probability:

P (Alice likes tea) = P (Alice|⟨s⟩)P (likes|Alice)P (tea|likes)P (⟨s⟩|tea)
= 0.33× ϵ× 1.0× 1.0 = 0.33ϵ

P (Tom like tea) = P (Tom|⟨s⟩)P (like|Tom)P (tea|like)P (⟨s⟩|tea)
= 0.33× ϵ× 1.0× 1.0 = 0.33ϵ

In fact, “Alice likes tea” should be more likely than “Tom like tea”,
considering that the correct form of verb appears more often than
the incorrect form in the training data. We can see that the bi-gram
ALM seems not to be a good model choice for this example, due to
local normalization. To be more precise, this label bias problem is
caused by the improper local normalization following incorrect histories.
Incorrect histories occur in training data, as part of noise. Successors
after incorrect histories are in fact biased labels, even if they appear in
training data. This issue should be somehow fixed in order to better
model the regularities in the data2. However, it is worthwhile to remark
that how adverse this label bias issue will cause depends on the particular

2We usually do not assume that the data generating distribution is exactly the
same as the empirical distribution, but rather the modeling task is to seek a smoothed
distribution based on the empirical distribution (See discussion of the concept of
learning in Section 1.1).
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Figure 4.2: State transitions resulting from estimating an autoregressive language
model from training data - “Tom likes tea”, “John likes tea”, and “Alice like tea”.
For some transitions not appeared in the training data, the transition probabilities
are smoothed to take small values ϵ. We pad the beginning and the end of a sentence
with special tokens, ⟨s⟩ and ⟨/s⟩, respectively [20].

data and model under investigation. Further theoretical analysis will
be interesting future work.

Next, let us consider a globally-normalized energy-based language
model (GN-ELM) (Section 3.2.1), trained over the same training data,
but with a different model assumption from ALMs. The globally-
normalized model, which is defined as follows, also uses the bi-gram
features, similar to those used in the bi-gram ALM:

P (x1, x2, x3) = 1
Z

exp
( 9∑

k=1
λkfk(x1, x2, x3)

)
(4.9)

where the bi-gram features are indicator functions as follows:

f1 = δ(x1 = Tom),
f2 = δ(x1 = John),
f3 = δ(x1 = Alice),
f4 = δ(x1 = Tom, x2 = likes)),
f5 = δ(x1 = John, x2 = likes),
f6 = δ(x1 = Alice, x2 = like),
f7 = δ(x2 = likes, x3 = tea),
f8 = δ(x2 = like, x3 = tea),
f9 = δ(x3 = tea).
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Maximum likelihood estimate (MLE) of Eq. (4.9) can be performed by
the stochastic approximation (SA) method or the improved iterative
scaling (IIS) method, as introduced in [189]. The estimated parameters,
{λk, k = 1, · · · , 9}, are shown in Figure 4.3. We show the parameters
over the edges, which represent the corresponding bi-gram features. The
estimated ELM model can be used to score test data - “Alice likes tea”
and “Tom like tea”:

logP (Alice likes tea) = 2.53 + 5.21 + 5.18− logZ = −7.06
logP (Tom like tea) = 2.88 + 4.12 + 5.18− logZ = −7.79

where the log normalizing constant, in this simple example, can be
directly calculated as follows:

logZ = log
∑

x1∈{Tom,John,Alice},
x2∈{likes, like},x3=tea

exp
( 9∑

k=1
λkfk(x1, x2, x3)

)
= 19.98

Interestingly, according to the ELM modeling, “Alice likes tea” is nat-
urally scored as being more probable than “Tom like tea”, without
relying on any other ad-hoc tricks. It seems that the ELM model is
smoothed more correctly (not disturbed by the noise in the training
data) - this is a desirable result. Compared to the ALM modeling, the
ELM modeling abstains from using local normalization. There is no
improper local normalization following incorrect histories. In this sense,
we could say that the label bias issue is avoided.

The exposure bias problem

Locally-normalized sequence models, whether conditional or uncon-
ditional, suffers from the exposure bias problem. Locally-normalized
sequence models are usually trained in a manner called teacher forcing
[191]. Take the training of a ALM as an example.

• In training, the model maximizes the likelihood of each successive
target word, conditioned on the gold history of the target word.
As shown in Figure 4.4, in training, the model is only exposed
to real data, which predicts ŷi given the real data of the history,
y1, · · · , yi−1.
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Figure 4.3: Estimating a globally-normalized energy-based language model (ELM)
from training data - “Tom likes tea”, “John likes tea”, and “Alice like tea”. The
bi-gram features used by the ELM are similar to those used in the bigram ALM, and
so can also be illustrated by a graph. The estimated parameters are shown over the
edges, which represent the corresponding bi-gram features.

Figure 4.4: Illustration of exposure bias. y: real, ŷ: predicted.

• In testing, the model predicts the next step ŷi, using its own
predicted words in testing, i.e., ŷ1, · · · , ŷi−1.

Such mismatch between training (teacher forcing) and testing (predic-
tion) of locally-normalized sequence models has been called the exposure
bias problem. The model is never exposed to its own errors during
training, and so the inferred histories at test-time do not resemble the
gold training histories [192].
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Remarkably, exposure bias results from training in a certain way,
which may be alleviated by some ad-hoc methods such as scheduled
sampling [11]. In contrast, label bias results from properties of the model
itself. Thus, it may be more difficult to overcome label bias than to
avoid exposure bias.

4.1.3 Training of CRFs

To introduce the training methods for CRFs/conditional EBMs, we
write the model in Definition 4.1 in a simpler form, with input x and
output y:

pθ(y|x) = 1
Zθ(x) exp [Uθ(x, y)] (4.10)

Uθ(x, y) : X ×Y → R denotes the (log) potential function, which assigns
a scalar value to each combined configuration of x in X and y in Y , and
can be very flexibly parameterized through neural networks of different
architectures. X and Y denotes the space of all possible values of x and
y, respectively. Normalizing is taken only over Y, and Zθ(x) denotes
the normalizing constant:

Zθ(x) =
∑
y∈Y

exp [Uθ(x, y)] (4.11)

Learning CRFs by conditional maximum likelihood (CML)

Suppose we have a training dataset consisting of N independent and
identically distributed (IID) data points D = {(xi, yi), i = 1, · · · , N}.
We can fit pθ(x) to data by maximizing the log conditional likelihood
of training data, defined by

L(θ) ≜ 1
N

N∑
i=1

log pθ(yi|xi) = 1
N

N∑
i=1
{Uθ(xi, yi)− logZθ(xi)} (4.12)

as a function of θ.
Taking the derivative of the log conditional likelihood with respect

to θ and making use of Eq. (2.18) about the derivative of the log
normalizing constant, we obtain the core formula in learning conditional
EBMs:
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∇θL(θ) = 1
N

N∑
i=1

{
∇θUθ(xi, yi)− Epθ(y|xi) [∇θUθ(xi, y)]

}
(4.13)

The maximum likelihood estimate of θ is obtained as a solution to
∇θL(θ) = 0. It can be easily seen that the gradients ∇θL(θ) in Eq. (4.13)
in learning conditional EBMs exactly follows the form of Eq. (2.31),
as summarized in Theorem 2.3. So the problem of learning conditional
EBMs by conditional maximum likelihood (CML) can then be solved by
setting the gradients to zeros and applying the SA algorithm to finding
the root for the resulting system of simultaneous equations. Techniques
in learning (unconditional) EBMs are applicable in learning conditional
EBMs here. See Section 2.3.3 for details. For example:

• Minibatching from training data when N is large;

• When calculating the model expectation Epθ(y|xi) [∇θUθ(xi, y)] is
intractable, we can resort to Monte Carlo methods and conduct
Monte Carlo averaging.

• The model expectation can be exactly calculated under some
limited circumstances, mostly in low tree-width3 random fields
(e.g., chain-structured) with moderately sized state spaces4.

CML training of neural linear-chain CRFs

Here we provide more details about CML training of a neural linear-
chain CRF, for which the model expectation can be exactly calculated.
Continue with the notations in Section 4.1.1, and consider a neural
linear-chain CRF as follows, with input x = (x1, · · · xT ) = x1:T , output
y = (y1, · · · yT ) = y1:T . Combining Eq. (4.3), Eq. (4.5) and Eq. (4.6),
we obtain:

3The tree-width of a graph is defined as the minimum width over all possible
tree decompositions of the graph, which measures roughly how close the graph is to
a tree. The tree-width of a tree is 1.

4The state space of a multivariate model is the set of all possible values for each
coordinate of a multivariate observation.
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pθ(y|x) = 1
Zθ(x) exp [Uθ(x, y)]

Uθ(x, y) =
T∑

t=1

[
ϕyt

t +Ayt−1,yt

]
(4.14)

where the parameters θ consists of the network parameters and the
transition matrix A.

Suppose the state space of y1:T is {1, · · · ,K}, i.e., yi ∈ {1, · · · ,K}.
Thus, at each position t = 1, · · · , T , there are K node potential values,
ϕk

t , k = 1, · · · ,K, which are calculated by a neural network, as defined
in Eq. (4.5). The network is trained to optimize the log conditional
likelihood Eq. (4.12). The gradient of the log conditional likelihood
w.r.t. θ for a single data point (xi, yi) is:

∂ log pθ(yi|xi)
∂θ

= ∂Uθ(xi, yi)
∂θ

− Epθ(y|xi)

[
∂Uθ(xi, y)

∂θ

]
(4.15)

Note that log pθ(yi|xi) depends on the network parameters through
ϕyt

t . Thus, an important quantity in calculating Eq. (4.15) for the
network parameters is the gradient w.r.t. to the potential values, which
can be derived from Eq. (4.14) as follows:

∂ log pθ(yi|xi)
∂ϕk

t

= δ(yt = k)− Epθ(y|xi) [δ(yt = k)]

= δ(yt = k)− p(yt = k)

This difference between the empirical count and the expected count
is the error signal received by the NN based feature extractor during
training. The expected count p(yt = k) is often known as the posterior
state occupation probability, which can be calculated using the alpha-
beta variables from the forward-backward algorithm [133]. The gradients
for the network parameters can be calculated from the gradient w.r.t.
to the potential values based on the back-propagation procedure.

Learning CRFs by conditional NCE

A theoretical analysis of NCE in the estimation of conditional unnor-
malized models in the form of Eq. (4.10) has been given in [93]. A subtle
but important question when generalizing NCE to the conditional case
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is raised, i.e., the unconditional EBM in Eq. (2.13) has a single partition
function, which is estimated as a parameter of the model, whereas the
conditional model in Eq. (4.10) has a separate partition function Zθ(x)
for each value of x.

Introduce the unnormalized density p̃θ(y|x) = exp [Uθ(x, y)] and
rewrite Eq. (4.10) as follows:

pθ(y|x) = 1
Zθ(x) p̃θ(y|x) (4.16)

where, for each value of x, the partition function is defined by

Zθ(x) =
∑
y∈Y

p̃θ(y|x)

Applying NCE in estimating conditional unnormalized models yields
the conditional NCE method. Suppose we have a training dataset
consisting of N independent and identically distributed (IID) data
points D = {(xi, yi), i = 1, · · · , N}. The basic idea of NCE is to perform
nonlinear logistic regression to discriminate between data samples drawn
from the data and noise samples drawn from a known noise distribution
q(x|y). Formally, referring to Eq. (2.46), conditional NCE estimates the
model parameters θ by maximizing the following objective function:

J(θ) = Eκ∼Uni(1,N)

{
log p̃θ(yκ|xκ)

p̃θ(yκ|xκ) + νq(yκ|xκ)

+ νEy∼q(y|xκ)

(
log νq(y|xκ)

p̃θ(y|xκ) + νq(y|xκ)

)}
where ν represents the ratio of noise sample size to real sample size.

It is shown in [93] that the conditional NCE method gives consistent
parameter estimates under the assumption that Zθ(x) is constant with
respect to x. Equivalently, the conditional NCE method is consistent
under the assumption that the function p̃θ(y|x) is powerful enough to
incorporate Zθ(x). Thus, under the assumption that the model is of
sufficient capacity, the model can learn to be self-normalized such that
Zθ(x) = 1. Remarkably, the discussion in [93] is in line with Theorem
2.4 about NCE (nonparametric estimation), since in the setting of
nonparametric estimation, the NCE loss is minimized when p̃θ(y|x)
matches the oracle density and thus is self-normalized.
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Figure 4.5: Different units of labels can be used in speech recognition.

As a final note, it can be easily seen that training of the Electric
model in Section 3.4 is exactly an instance of the conditional NCE
method.

4.2 CRFs for Speech Recognition

In this section, we show the development of CRFs for automatic speech
recognition (ASR). First, we introduce some background knowledge
in ASR, particularly the connectionist temporal classification (CTC)
method for recent end-to-end ASR. Then, we elaborate on the recently
developed approach of CRF-based single-stage acoustic modeling with
CTC topology [2], [193].

ASR basically is a sequence discriminative problem. Given acoustic
observations x = (x1, · · · xT ) = x1:T , the task of ASR is to find the most
likely labels y = (y1, · · · yL) = y1:L. Acoustic observations are usually
spectral feature vectors. Different units can be used for labels, such as
phone (namely monophone), triphone, character, wordpiece and word,
as shown in Figure 4.5.
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4.2.1 Connectionist Temporal Classification (CTC)

The DNN-HMM hybrid approach

The history of speech recognition dates back to the 1970s [69] and even
earlier. The classic model for speech recognition is HMMs, as we review
in Section 2.1.1. In building an HMM for speech recognition, consisting
of acoustic sequence x = (x1, · · · xT ) = x1:T and state sequence π =
(π1, · · · πT ) = π1:T , we need to specify two distributions, the state-
transition distribution and the state-output distribution.

The state sequence π forms a Markov chain. In terminology of
Markov chains, state transitions in a Markov chain are determined by
its state topology, or say, its state transition graph. The state transition
graph is determined by combining some knowledge sources, as illustrated
in Figure 4.6. For example, we need a language model to model how
words are connected to form a sentence. We need a lexicon to model
how phones are connected to form a word. Depending on left and right
phonetic contexts, we can define different context-dependent phones,
e.g., triphones. Each context-dependent phone can be decomposed into
several phonetic states, which intuitively correspond to the beginning,
steady, closing phases of a phone. The resulting state transition graph,
often represented by a weighted finite-state transducer (WFST), encodes
common constraints in human speech5. In practice, each knowledge
source can be represented by a component WFST, and the combination
of several knowledge sources can be easily realized by applying the
composition and some compression operations to the component WFSTs
and producing a single integrated WFST [107].

Formally, a WFST represents a weighted relation between sequences
of input symbols and sequences of output symbols [107]. A state sequence
π for an utterance of T frames can be seen as a path traversing in
the integrated WFST for T steps, with π = (π1, · · · πT ) matching
the input symbols and the emitted output symbols corresponding to
y = (y1, · · · yL). It can be seen that in this way, a path π uniquely
determines a label sequence y, but not vice versa. Thus, based on the

5For subtle differences between the two graphs (WFSTs and state transition
graphs), readers can refer to [123].
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Figure 4.6: State transitions in HMMs for speech recognition are constrained by a
number of knowledge sources.

integrated WFST, a many-to-one mapping, BHMM : π → y, is defined.
The state topology basically determines the mapping. We also say that
the mapping represents the state topology.

For state-output distribution p(xt|πt), Gaussian mixture models
(GMMs) were commonly used in the so-called GMM-HMM approach,
before the deep learning era. Recently, deep neural networks (DNNs) of
various architectures have become dominantly used for modeling the
state-output distributions. Based on the following Bayesian formula,
the state likelihood p(xt|πt) can be calculated from the state posteriori
p(πt|xt), divided by the state prior p(πt), while the marginal likelihood
p(xt), being a constant, can be ignored.

p(xt|πt) = p(πt|xt)p(xt)
p(πt)

State prior probabilities are estimated from the training data. State
posterior probabilities are calculated from the DNN, but we need frame-
level alignments in training of the DNN.

In summary, the approach described above is often referred to as
the DNN-HMM hybrid approach for ASR [35]. It is featured by using
the frame-level loss (cross-entropy) to train the DNN to estimate the
posterior probabilities of HMM states.

End-to-end ASR

Notably, building DNN-HMM systems for ASR runs in multi-stages. A
GMM-HMM training is firstly needed to obtain frame-level alignments
and then the DNN-HMM is trained. The hybrid approach usually
consists of an DNN-HMM based acoustic model (AM), a state-tying
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decision tree for context-dependent phone modeling, a pronunciation
lexicon and a language model (LM), which can be compactly combined
into a weighted finite-state transducer (WFST). The WFST not only
operationally represents the state topology, but also is useful as a
compact data structure for efficient decoding.

A recent trend in ASR is to develop end-to-end ASR models [25], [50],
[51], [100]. The end-to-end approach is characterized by eliminating the
construction of GMM-HMMs and phonetic decision-trees, training the
DNN from scratch (in single-stage) and, even ambitiously, removing the
need for a pronunciation lexicon and training the acoustic and language
models jointly rather than separately. For developing end-to-end ASR
models, there are two main issues.

• The first is how to handle alignment between x and y, since the
two sequences generally differ in length (T ̸= L).

• The second is how to obtain p(y|x), the posteriori probability of
the label sequence y given the acoustic sequence x. To be end-to-
end, we need a differentiable sequence-level loss of mapping the
acoustic sequence x to the label sequence y.

Three widely-used end-to-end models are based on connectionist
temporal classification (CTC) [51], RNN-transducer (RNN-T) [50],
and attention based encoder-decoder (AED) [25] respectively. The
three models are featured by different losses. In CTC and RNN-T, the
alignment is handled explicitly by introducing hidden state sequence
π, while AED implements implicit, soft alignment via the attention
mechanism.

Remarkably, all three models are (conditional) locally normalized
sequence models, according to the classification of sequence models
as shown in Table 4.1. In Section 4.2.2, we will introduce a recently
developed (conditional) globally normalized sequence model, called
CTC-CRF, for end-to-end ASR.

The CTC method

The motivation of CTC [51] is to enable the training of p(y|x) without
requiring the frame-level alignments between the acoustics x and the
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Figure 4.7: Overview of CTC architecture.

transcripts y. To this end, CTC introduces a blank symbol <b> in
addition to the ordinary labels, and further introduces a state sequence
π = (π1, · · · πT ) = π1:T , which aids the aligning between x1:T and y1:L.
See Figure 4.7 for an overview of CTC architecture.

Handle alignment. Given acoustic sequence x1:T , at each frame t, the
possible values that πt can freely take is Y ∪ <b>, where Y denotes
the the alphabet of ordinary labels. Suppose the alphabet size is K,
then number of possible values that πt can freely take is K + 1. When
given y1:L, the state transitions followed by π is constrained by the state
topology, so that the output sequence is y1:L. CTC defines a special
state topology, which is enforced by a special many-to-one mapping
BCTC : π1:T → y1:L. The mapping BCTC is defined by reducing repetitive
symbols in π to a single symbol, and removing all blank symbols, e.g.,

BCTC(−CC−−AA− T−) = CAT

It can be seen that for given acoustic sequence x1:T and label sequence
y1:L, all possible alignments between them can be organized in a lattice,
as shown in Figure 4.8. A path from the top left to the bottom right in the
lattice represents an alignment between x and y, which, in terminology
of CTC [51], is denoted by π1:T ∈ {Y ∪<b>}T .

Obtain p(y|x). We can use any kind of neural network (NN) to
calculate the high-level feature vectors h1:T = (h1, · · · hT ) ∈ RD×T

from the raw spectral features x1:T , or simply say, we encode x into
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Figure 4.8: Illustration of the lattice, which contains all the possible alignments
between the acoustic sequence and the label sequence ‘CAT’. Also illustration of
the forward-backward algorithm. Black circles represent ordinary labels, and white
circles represent blanks. Arrows signify allowed transitions. [51]

h. For each frame t, we obtain ht. The vector representations h1:T can
be viewed as features, and the neural network is referred as a feature
extractor as discussed previously in Section 2.1.1, or an acoustic encoder
in the context of ASR.

Then, we can apply a linear layer followed by a softmax layer to
calculate the posteriori distribution of πt, as follows:

zt = W Tht + b ∈ RK+1

p(πt = k|x) = exp(zk
t )∑K

j=1 exp(zj
t )

≜ pk
t , k = 1, · · · ,K + 1

where W ∈ R(K+1)×D, b ∈ RK+1 denote the weight matrix and bias
vector of the linear layer, respectively. pk

t represents the the probability
of observing label k at time t. The un-normalized outputs zt are often
called logits, and zk

t denotes the k-th logit corresponding to label k.
CTC assumes the conditional independence between states in a path

π1:T , and defines the path posteriori as follows:

p(π|x) =
T∏

t=1
p(πt|x) (4.17)
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Finally, we use the CTC topology to calculate the posteriori probability
of the label sequence y, by summing over all possible paths, which map
to y:

p(y|x) =
∑

π:BCTC(π)=y

p(π|x) (4.18)

CTC model training. In the previous introduction of the CTC model,
we suppress the model parameters in formula. In the following, we make
explicit of the model parameters θ, which parameterizes the acoustic
encoder network.

The network is trained to optimize the log conditional likelihood
Eq. (4.18). According to Fisher equality Eq. (B.8), the gradient of the
log conditional likelihood w.r.t. θ for a single data point (x, y) is:

∂ log pθ(y|x)
∂θ

= Epθ(π|x,y)

[
∂ log pθ(π, y|x)

∂θ

]
= Epθ(π|x,y)

[
∂ log pθ(π|x)

∂θ

] (4.19)

where the second line holds because π deterministically determines y
with BCTC.

Note that log pθ(y|x) depends on the network parameters through
logits zk

t ’s. Thus, an important quantity in calculating Eq. (4.19) for
the network parameters is the gradient w.r.t. to the logits, which can
be derived as follows:

∂ log pθ(y|x)
∂zk

t

= Epθ(π|x,y)

[
log pθ(π|x)

∂zk
t

]
(∵ Fisher equality Eq.(B.8))

= Epθ(π|x,y)

[
log pπt

t

∂zk
t

]
(∵ Eq. (4.17))

= Epθ(π|x,y)
[
δ(πt = k)− pk

t

]
= pθ(πt = k|x, y)− pk

t (4.20)

This difference between the posteriori probability and the prior probabil-
ity pk

t (without observing y) is the error signal received by the NN based
feature extractor during training. pθ(πt = k|x, y) is often known as the
posterior state occupation probability, which can be calculated using
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the alpha-beta variables from the forward-backward algorithm [133].
The gradients for the network parameters can be calculated from the
gradient w.r.t. to the logits based on the back-propagation procedure.

4.2.2 CRF-based acoustic modeling with CTC topology

Motivation

From Eq. (4.17), we see that the CTC model assumes the conditional
independence between states in a path. To overcome this drawback, the
RNN-T model (RNN-transducer) and the CTC-CRF model (CRF with
CTC topology) have been developed in [50] and [193], respectively.

A second motivation is that we are interested in bridging the hybrid
and the end-to-end approaches for ASR, trying to inherit the data-
efficiency of the hybrid approach and the simplicity of the end-to-
end approach. Remarkably, when comparing the hybrid and end-to-
end approaches (modularity versus a single neural network, separate
optimization versus joint optimization), it is worthwhile to note the
pros and cons of each approach.

• The end-to-end approach aims to subsume the acoustic, pronun-
ciation, and language models into a single neural network and
perform joint optimization. This appealing feature comes at a cost,
i.e. the end-to-end ASR systems are data hungry, which require
above thousands of hours of labeled speech to be competitive with
the hybrid systems [24], [90], [177].

• In contrast, the modularity of the hybrid approach permits training
the AM and LM independently and on different data sets. A decent
acoustic model can be trained with around 100 hours of labeled
speech, whereas the LM can be trained on text-only data, which
is available in vast amounts for many languages. In this sense,
modularity promotes data efficiency. Due to the lack of modularity,
it is difficult for an end-to-end model to exploit the text-only data,
though there are recent efforts to alleviate this drawback [175],
[209].
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The CTC-CRF model

The CTC-CRF approach consists of separable AM and LM, which meets
the principle to be data efficient by keeping necessary modularity. In
the following, we mainly describe the CTC-CRF based AM. Different
types of LMs, whether autoregressive LMs or energy-based LMs, can
be used with the CTC-CRF based AM. Different schemes are available
for decoding, such as WFST based decoding with n-gram LMs, one-
pass decoding with shallow fusion of AM and LM scores, or two-pass
decoding with LM rescoring. More details can be found in the toolkit
[2].

Continue with the notations in CTC, and note that the core formula
in establishing the CTC model is Eq. (4.17) and Eq. (4.18), while Eq.
(4.17) makes the conditional independence assumption. The main idea
of CTC-CRF is that we can still use the CTC topology to define the
posteriori probability of the label sequence y, pθ(y|x), from the path
posteriori pθ(π|x), as defined in Eq. (4.18), but we define the path
posteriori as a globally normalized sequence model, or say, a condition
random field (CRF), as follows:

pθ(π|x) = exp(ϕθ(π, x))∑
π′ exp(ϕθ(π′, x)) (4.21)

Here ϕθ(π, x) denotes the potential function of the CRF, defined as:

ϕθ(π, x) = log p(B(π)) +
T∑

t=1
log pθ(πt|x) (4.22)

∑T
t=1 log pθ(πt|x) defines the node potential, which is calculated from

the acoustic encoder network with parameters θ. log p(B(π)) defines the
edge potential, realized by an n-gram LM of labels.

Remarkably, regular CTC suffers from the conditional independence
between the states in π. In contrast, by incorporating log p(B(π)) into
the potential function in CTC-CRF, this drawback is naturally avoided.
The difference between the CTC model and the CTC-CRF model can
be clearly seen from their graphical model representations, as shown
in Figure 4.9. Note that the n-gram LM of labels means the transition
structure between labels is of (n-1)-th order. The transition structure
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Figure 4.9: Graphical model representation of the CTC model (a) and the CTC-
CTF model (b). Note that the edge potential does not involve exactly n consecutive
nodes for a n-gram LM of labels, as detailed in the text of Section 4.2.2.

between πt’s, when represented by a WFST, is determined by the
composition of two component WFSTs, i.e., the WFST representation
of the CTC topology and the WFST representation of the n-gram LM
of labels. For reasons to be clear in the following, the resulting WFST is
referred to as the denominator WFST. Due to the composition operation,
the order of the transition structure between states (πt’s) is larger than
(n-1)-th order. Thus, as a reminder for reading Figure 4.9(b), the edge
potential does not involve exactly n consecutive nodes for a n-gram LM
of labels. The graphical model representation of CTC-CRF in Figure
4.9(b) is mainly for concept illustration. In practice, in training of a
CTC-CRF model, the forward-backward algorithm involving log p(B(π))
can be conducted in the denominator WFST (to be detailed in the
following).

Finally, note that we may use a n-gram LM of words in decoding. It
is reminded not to confuse the n-gram LM of labels used in defining the
potential in CTC-CRF and the n-gram LM of words used in decoding.

Training of the CTC-CRF model

Note that only the parameters from the acoustic encoder network,
denoted by θ, need to be trained in the CTC-CRF model, since the
n-gram LM of labels is estimated from the training transcripts and
fixed in estimating θ.

The network is trained to optimize the log conditional likelihood Eq.
(4.18). Making use of the Fisher equality Eq. (B.8) and the gradient of
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CRF’s log conditional likelihood Eq. (4.13), the gradient of CTC-CRF’s
log conditional likelihood w.r.t. θ for a single data point (x, y) is:

∂ log pθ(y|x)
∂θ

= Epθ(π|x,y)

[ log pθ(π|x)
∂θ

]
(∵ Eq.(B.8), similar to CTC)

= Epθ(π|x,y)

[
∂ϕθ(π, x)

∂θ
− Epθ(π′|x)

[
∂ϕθ(π′, x)

∂θ

]]
= Epθ(π|x,y)

[
∂ϕθ(π, x)

∂θ

]
− Epθ(π′|x)

[
∂ϕθ(π′, x)

∂θ

]
(4.23)

where the second term in the last line does not depend on π and thus
can be moved out of the expectation w.r.t. π. Notably, pθ(π′|x) denotes
the model distribution, as defined in Eq. (4.21) but with π′ to represent
the path. As commonly found in estimating CRFs, the above gradient
is the difference between empirical expectation and model expectation.
The two expectations are similar to the calculations using the numerator
graph and denominator graph in LF-MMI respectively [131].

Remarkably, Eq. (4.23) can be derived in another way, which reveals
the concept of numerator and denominator. Combining Eq. (4.18) and
Eq. (4.21) yields CTC-CRF’s log conditional likelihood:

log pθ(y|x) = log
∑

π:BCTC(π)=y exp(ϕθ(π, x))∑
π′ exp(ϕθ(π′, x)) (4.24)

It can be easily seen that the gradient of the above objective function
involves two gradients calculated from the numerator and denominator
respectively, which can be shown to be equal to the two terms in Eq.
(4.23).

Denote log p(πt = k|x) = ϕk
t , and note that log pθ(y|x) depends on

the network parameters through potential values ϕk
t , 1 ≤ t ≤ T, 1 ≤

k ≤ K + 1. Thus, an important quantity in calculating Eq. (4.23) for
the network parameters θ is the gradient w.r.t. to the potential values,
which can be derived as follows:

∂ log pθ(y|x)
∂ϕk

t

= Epθ(π|x,y)

[
∂ϕθ(π, x)
∂ϕk

t

]
− Epθ(π′|x)

[
∂ϕθ(π′, x)

∂ϕk
t

]
= Epθ(π|x,y) [δ(πt = k)]− Epθ(π′|x)

[
δ(π′

t = k)
]

(4.25)
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This difference is the error signal received by the NN based feature
extractor during training. The gradients for the network parameters θ
can be calculated from the gradient w.r.t. to the potential values based
on the back-propagation procedure.

Both terms in Eq. (4.25) can be obtained via the forward-backward
(FB) algorithm.

• Calculating the first term, often referred to the numerator cal-
culation, amounts to running the FB algorithm over the WFST
determined by y, which is similar to conducting the FB algorithm
in calculating the first term of Eq. (4.20) in CTC.

• Calculating the second term, often referred to the denominator
calculation, involves running the forward-backward algorithm over
the denominator WFST Tden. Tden is a composition of the CTC
topology WFST and the WFST representation of the n-gram
LM of labels. The n-gram LM of labels is thus often called the
denominator n-gram LM, to be differentiated from the word-level
LM in decoding.

Related work

In Table 4.2, we give a brief review of existing models in ASR, de-
pending on state topologies, training objectives and whether the model
distribution is locally or globally normalized. We differentiate HMM
topology and CTC topology, though the later may be interpreted as
a special HMM topology [200]. The two differ not only in the state
transition structure but also in the label inventory used (which affects
not only the definition of the whole state space but also the estimation
of the denominator LM).

Further, graphical model representations of existing ASR models
are plotted in Figure 4.10, which clearly show the differences between
those models. An ASR model involves an acoustic observations x =
(x1, · · · xT ) = x1:T and a label sequence y = (y1, · · · yL) = y1:L. HMM,
CTC and CTC-CRF are defined in Eq. (2.2), Eq. (4.17), and Eq. (4.21),
respectively. RNN-transducer (RNN-T) [50] is defined by
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Table 4.2: Comparison of different models for ASR. HMM topology denotes that
labels (including silence) are modeled by multiple states with left-to-right transitions,
possible self-loops and skips. CTC topology denotes the special state transitions used
in CTC (including blank). Locally/globally normalized denotes the formulation of the
model distribution. In defining the joint distribution of a model, locally normalized
models use conditional probability functions, while globally normalized models use
un-normalized potential functions. SS-LF-MMI is classified as globally normalized,
though it is cast as MMI-based discriminative training of a pseudo HMM and the
HMM model is locally normalized. AED does not use states to align label sequence
y and observation sequence x.

Model State Training Locally/globally
topology objective normalized

HMM HMM p(x|y) local
CTC CTC p(y|x) local
SS-LF-MMI HMM p(y|x) global
CTC-CRF CTC p(y|x) global
RNN-T RNN-T p(y|x) local
AED - p(y|x) local

p(π1:T +L|x1:T ) =
T +L∏
j=1

p(πj |π1:j−1) (4.26)

Here π1:T +L = (π1, · · · πT +L) denote the state sequences, or say, the
path with T blanks and L labels in RNN-T, such that removing the
blanks in π1:T +L yields y1:L (see Section 4.3.1 for details). Attention
based encoder-decoder (AED) [25] is defined by

p(y1:L|x1:T ) =
L∏

i=1
p(yi|x, y1, · · · , yi−1) (4.27)

In summary, from Table 4.2 and Figure 4.10, we can clearly see that CTC-
CRF is fundamentally different from those prior models. For comparison
between CTC-CRF and single-stage (SS) lattice-free maximum-mutual-
information (LF-MMI) [57], readers can refer to [193].

Relation to CRF-based acoustic models. ASR is a sequence transduc-
tion problem in that the input and output sequences differ in lengths,
and both lengths are variable. An idea in applying CRFs to ASR is
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Figure 4.10: Graphical model representations of different ASR models: (a) HMM,
defined in Eq. (2.2), (b) CTC, defined in Eq. (4.17), (c) RNN-T, (d) AED, (e)
CTC-CRF, defined in Eq. (4.21).

to introduce a (hidden) state sequence π to align the label sequence
y and observation sequence x, and define a CRF p(π|x) over the (hid-
den) state sequence π. As shown in Eq. (4.18), deriving p(y|x) based
on p(π|x) depends on the mapping between π and y, which is deter-
mined by the state topology that allows for different choices, e.g., CTC
topology or HMM topology. This kind of hidden CRFs was explored in
[52] for phone classification, using zero, first and second order features.
Generally speaking, (hidden) CRFs using neural features for ASR are
underappreciated. The CTC-CRF model proposed in [193] represents
the first exploration of CRFs with CTC topology and advances the
CRF-based approach with strong empirical results. Segmental CRFs
[89] provide another solution to the alignment problem.

Performance of the CTC-CRF model

The CTC-CRF model inherits the data-efficiency of the hybrid approach
and the simplicity of the end-to-end approach. CTC-CRF eliminates the
conditional independence assumption in CTC and performs significantly
better than CTC on a wide range of benchmarks, including WSJ (80-h),
AISHELL (170-h Chinese), Switchboard (260-h), Librispeech (1000-h),
and Fisher-Switchboard (2300-h) (the numbers in the parentheses are
the size of training data in hours) [2], [193]. It has been also shown [2],
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[193] that CTC-CRF is on par with other state-of-the-art end-to-end
models, like RNN-T and AED.

The CTC-CRF models have also been used in a variety of tasks in
ASR, which show their great potential.

• Streaming ASR, particularly the Chunking, Simulating Future
Context and Decoding (CUSIDE) approach [3];

• Neural architecture search [208];

• Children Speech Recognition [198];

• Modeling with wordpieces and Conformer architectures [210];

• Multilingual and crosslingual speech recognition, particularly the
JoinAP (Joining of Acoustics and Phonology) approach [211].

4.3 CRFs for Sequence Labeling in NLP

Conditional random fields (CRFs) have been shown to be one of the most
successful approaches to sequence labeling. Various linear-chain neural
CRFs (NCRFs) have been developed, as introduced in Section 4.1.1. The
node potential modeling is improved by using NNs, but the linear-chain
structure is still kept, i.e., using a bigram table as the edge potential.
NCRFs represent an extension from conventional CRFs, where both
node potentials and edge potentials are implemented as linear functions
using discrete indicator features. However, linear-chain NCRFs capture
only first-order6 interactions and neglect higher-order dependencies
between labels, which can be potentially useful in real-world sequence
labeling applications, e.g., as shown in [205] for chunking and NER.
How can we improve CRFs to capture long-range dependencies in the
label sequence (preferably non-Markovian)?

Related work. Extending CRFs to model higher-order interactions
than pairwise relationships between labels is an important research
problem for sequence labeling. There are some prior studies, e.g. higher-
order CRFs [17], semi-Markov CRFs [150] and latent-dynamic CRFs

6Fixed n-th order can be cast as first-order.
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[108], but not using NNs. Using NNs to enhance the modeling of long-
range dependencies in CRFs is under-appreciated in the literature. A
related work is structured prediction energy networks (SPENs) [10],
which use neural networks to define energy functions that potentially
can capture long-range dependencies between structured outputs/labels.
SPENs depend on relaxing labels from discrete to continuous and
use gradient descent for test-time inference, which is time-consuming.
Training and inference with SPENs are still challenging, though with
progress [176].

Outside of the globally normalized sequence models, where CRFs
represent a typical class, attention-based encoder-decoder (AED) and
RNN-T exploit non-Markovian dependences between labels, but both
are locally normalized sequence models and thus suffer from the label
bias and exposure bias problems, as described in Section 4.1.2. The
work in [192] extends AED, by removing the final softmax in the RNN
decoder to learn global sequence scores, but cast as a non-probabilistic
variant of the sequence-to-sequence model. A recent work in [34] aims
to reducing exposure bias in training RNN-T.

In this section, we mainly introduce progress made by CRF trans-
ducers [65]7, which introduce a LSTM-RNN to implement a new edge
potential so that long-range dependencies in the label sequence are
captured and modeled in CRFs. So there are two LSTM-RNNs in a
CRF transducer, one extracting features from observations to define
the node potential and the other capturing (theoretically infinite) long-
range dependencies between labels to define the edge potential. In this
view, a CRF transducer is similar to a RNN-transducer (RNN-T) [50],
which also uses two LSTM-RNNs.

In the following, we firstly briefly introduce RNN-T, and then
describe CRF transducer in details. We continue with the notations in
Section 4.1.1 for sequence labeling. Given a sequence of observations
x = (x1, · · · xT ) = x1:T , the task of sequence labeling is to predict
a sequence of labels y = (y1, · · · yT ) = y1:T , with one label for one
observation in each position. yi ∈ {1, · · · ,K} denotes the label at
position i.

7Reproducible code is at https://github.com/thu-spmi/SPMISeq.

https://github.com/thu-spmi/SPMISeq
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4.3.1 RNN-Transducer (RNN-T)

RNN Transducers (RNN-T) are originally developed for general
sequence-to-sequence learning [50], which do not assume that the input
and output sequences are of equal lengths and aligned, e.g., in speech
recognition. In the following, we introduce RNN transducers in a simple
form for applications in sequence labeling, i.e., for the aligned setting -
one label for one observation at each position. To this end, we define

p(y|x) =
T∏

i=1
p(yi|y0:i−1, x) (4.28)

and implement p(yi|y0:i−1, x) through two networks - transcription
network F and prediction network G as follows:

p(yi = k|y0:i−1, x) = exp(fk
i + gk

i )∑K
k′=1 exp(fk′

i + gk′
i )

(4.29)

Here F scans the observation sequence x and outputs the transcription
vector sequence f = (f1, · · · fT ) = f1:T . G scans the label sequence
y0:T −1 and outputs the prediction vector sequence g = (g1, · · · gT ) =
g1:T . y0 denotes the beginning symbol (<bos>) of the label sequence.
For a sequence labeling task with K possible labels, fi and gi are K
dimensional vectors. Superscript k is used to denote the k-th element of
the vectors. Remarkably, the prediction network G can be viewed as a
language model of labels, capable of modeling long-range dependencies in
y, which is exactly the motivation to introducing G in RNN transducers.

To ease comparison, we will also refer to the network below the
CRF layer in linear-chain NCRFs as a transcription network, which also
implement ϕt(yt = k, x) as fk

t .

4.3.2 From RNN-T to CRF transducer

In the following, we introduce CRF transducers, which combine the
advantages of linear-chain NCRFs (globally normalized, using LSTM-
RNNs to implement node potentials) and of RNN transducers (capable
of capturing long-range dependencies in labels), and meanwhile overcome
their drawbacks, as illustrated in Table 4.3. Further, graphical model
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Table 4.3: Model comparison and connection.

Model Globally Long-range dependencies
normalized between labels

Linear-chain CRF
√

×
RNN Transducer ×

√

CRF transducer
√ √

Figure 4.11: Graphical model representations of (a) a linear-chain CRF, (b) a
RNN-T for the aligned setting, and (c) a CRF transducer. Notably, the graphical
representation of the RNN-T for the aligned setting, as defined in Eq. (4.28), is
different from that of the usual RNN-T as shown in Figure 4.10(c).

representations of different models are plotted in Figure 4.11, which
clearly show the differences between those models.

Model definition. A CRF transducer defines a globally normalized,
conditional distribution p(y|x; θ) as follows:

p(y|x; θ) = exp {u(y, x; θ)}
Z(x; θ) .

where Z(x; θ) = ∑
y′∈DT

exp {u(y′, x; θ)} is the global normalizing term
and DT is the set of allowed label sequences of length T . The total
potential u(y, x; θ) is decomposed as follows:

u(y, x; θ) =
T∑

i=1
{ϕi(yi, x; θ) + ψi(y0:i−1, yi; θ)} .

where ϕi(yi, x; θ) is the node potential at position i, ψi(y0:i−1, yi; θ) is
the clique potential involving labels from the beginning up to position
i. Thus the underlying undirected graph for the label sequence y is
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Figure 4.12: The architecture of a CRF transducer.

fully-connected, which potentially can capture long-range dependencies
from the beginning up to each current position.

Neural network architectures. Like in RNN transducers, we introduce
two networks in CRF transducers, as shown in Figure 4.12. The tran-
scription network F implements the node potential ϕi(yi, x; θ), which
represents the score for yi based on observations x. In the experiments
on NLP sequence labeling, each word xi is represented by a concatena-
tion of a pre-trained word embedding vector and another embedding
vector obtained from a character-level CNN [65]. The transcription
network F is a bidirectional RNN (Rf ) that scans the sequence of the
concatenated vectors for words to generate hidden vectors hf

i = [
−→
hf

i ;
←−
hf

i ],
which are then fed to a linear layer with output size of K to generate
fi ∈ RK .

The prediction network G implements the clique potential ψi(y0:i−1,

yi; θ), which represents the score for yi by taking account of dependencies
between yi and previous labels y0:i−1. In the experiments, each label
yi is represented by a label embedding vector, initialized randomly. G
is a unidirectional RNN (Rg) that accepts the label sequence y and
generates hidden vectors hg

i =
−→
hg

i , which are then fed to a linear layer
with output size of K to generate gi ∈ RK .
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It can be seen from above that a CRF transducer is similar to a RNN
transducer. The difference is that a RNN transducer is locally normalized
through softmax calculations as shown in Eq. (4.29), while a CRF
transducer is globally normalized, locally producing (un-normalized)
potential scores.

Potential design. Based on fi and gi, there are two possible designs
to implement the potentials ϕi and ψi, which can be chosen empirically
in the experiments. The first design is:

ϕi(yi = k, x; θ) = fk
i

ψi(y0:i−1, yi = k; θ) = gk
i

(4.30)

The second design is:

ϕi(yi = k, x; θ) = log exp(fk
i )∑K

k′=1 exp(fk′
i )

ψi(y0:i−1, yi = k; θ) = log exp(gk
i )∑K

k′=1 exp(gk′
i )

(4.31)

Decoding and training. CRF transducers break the first-order Markov
assumption in the label sequence as in linear-chain NCRFs and thus do
not admit dynamic programming for decoding. Instead, beam search
can be used to approximately find the most probable label sequence:

ŷ = arg max
y′∈DT

p(y′|x; θ) = arg max
y′∈DT

u(y′, x; θ).

Training data consists of inputs x paired with oracle label sequences
y∗. Stochastic gradient descent (SGD) on the negative log-likelihood of
the training data is conducted:

L(y∗; θ) = −u(y∗, x; θ) + logZ(x; θ).

It is easy to calculate the gradient of the first term. However, the
gradient of the log normalizing term involves model expectation:

∇θ logZ(x; θ) = Ep(y′|x;θ)
[
∇θu(y′, x; θ)

]
The calculations of the normalizing term and the model expectation
can be exactly performed for linear-chain NCRFs (via the forward and
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backward algorithm), but are intractable for CRF transducers. It is
empirically found in the experiments [65] that the method of beam
search with early updates [29] marginally outperforms Monte Carlo
based methods for training CRF transducers.

The basic idea is that we run beam search and approximate the
normalizing term by summing over the paths in the beam. Early updates
refer to that as the training sequence is being decoded, we keep track
of the location of the oracle path in the beam; If the oracle path falls
out of the beam at step j, a stochastic gradient step is taken on the
following objective:

L(y∗
1:j ; θ) = −u(y∗

1:j ; θ) + log
∑

y′∈Bj

exp
{
u(y′

1:j ; θ)
}

where u(y1:j ; θ) = ∑j
i=1 {ϕi(yi, x; θ) + ψi(y0:i−1, yi; θ)} denotes the par-

tial potential (with abuse of the notation of u). The set Bj contains all
paths in the beam at step j, together with the oracle path prefix y∗

1:j .

Performance of CRF transducers. Different sequence labeling meth-
ods are evaluated over POS tagging, chunking and NER (English, Dutch)
in [65]. Experiment results show that CRF transducers achieve con-
sistent improvements over linear-chain NCRFs and RNN transducers
across all the four tasks, and can improve state-of-the-art results.

4.4 EBMs for Conditional Text Generation

4.4.1 Residual Energy-based Models

Motivation

Text generation is ubiquitous in many NLP tasks, from summarization,
to dialogue and machine translation. In this section, we will further
introduce residual energy-based language models, as briefly covered in
Section 3.3.3, and show their application in (conditional) text generation.
The dominant approach to text generation is based on autoregressive
language models (ALMs), especially recent large ALMs parameterized by
large neural networks [134], which are locally-normalized. Unfortunately,
local normalization also brings some drawbacks, as described in [39]
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and listed below. First, the designer of the model needs to specify
the order in which tokens are generated. Second, at training time the
model is conditioned on ground truth context while at test time it is
conditioned on its own generations, a discrepancy referred to as exposure
bias (Section 4.1.2). Finally, while heuristics like beam search somewhat
help rescore at the sequence level, generation generally lacks long-range
coherency because it is produced by the greedy selection of one token
at a time without lookahead8.

In principle, EBMs potentially address all these issues, as they do not
require any local normalization. EBMs are not prone to exposure bias
and label bias, and they can score the whole input at once. EBMs may
enable generation of large chunks of text, which should help improve
coherency. However, a difficulty of applying EBMs in text generation
is that sampling from EBMs is intractable, and so is maximum likeli-
hood training. A recent work in [39] develops residual EBMs for text
generation and shows impressive results, which will be detailed below.

The residual EBM model

The formulation of residual EBMs, as introduced in Section 3.3.3, has
multi-fold benefits for text generation [39]. First, by incorporating an
autoregressive language model in the residual formulation, we can lever-
age recent advancements in autoregressive language modeling. Second,
the autoregressive language model provides a natural proposal distri-
bution for training of residual EBMs, and the training can be made
efficient by using the conditional noise contrastive estimation objective
(Section 4.1.3). Lastly, this formulation enables efficient evaluation and
generation via importance sampling, as we shall detail in the following.
In some sense, this last point is perhaps the central contribution of [39],
as it allows estimating perplexity of the residual EBM, and thus allows
these EBMs to be compared in a standard way to other models.

[39] investigates an EBM trained on the residual of a pre-trained
autoregressive LM, particularly for conditional generation of discrete

8This drawback of generation without lookahead is related to the label bias
problem of locally-normalized sequence models, namely being weak in revising earlier
decisions (Section 4.1.2).
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sequences. Given a conditioning prefix x1, · · · , xc with xj ∈ V where
V is the vocabulary, the probability of generating a sequence of total
length T > c is defined as follows:

pθ(xc+1, · · · , xT |x1, · · · , xc)

=pLM(xc+1, · · · , xT |x1, · · · , xc) exp(−Eθ(x1, · · · , xc, xc+1, · · · , xT ))
Zθ(x1, · · · , xc)

= p̃θ(xc+1, · · · , xT |x1, · · · , xc)
Zθ(x1, · · · , xc)

(4.32)

where pLM denotes the pre-trained autoregressive LM and is fixed
throughout training, Eθ(·) is the residual energy function parameterized
by θ. In the experiment of [39], Eθ is initialized with BERT/RoBERTa;
in the final layer the mean-pooled hidden states are projected to a
scalar energy value. pθ is called the joint model. Zθ(x1, · · · , xc) is the
normalizing factor known as partition function. p̃θ denotes the un-
normalized probability.

Training of the residual EBM

The conditional EBMs defined in Eq. (4.32) can be trained using NCE
(Section 2.4), and more specifically its conditional version (Section
4.1.3). For the sake of reducing clutter in the notation, we will drop
the conditioning variables x1, · · · , xc and use x to denote a target token
sequence (namely xc+1, · · · , xT ) in the following discussion. Denote the
training dataset by D.

NCE requires two distributions: the model distribution and a noise
distribution. Here the model distribution is the joint model of Eq. (4.32),
pθ, while the noise distribution is the pre-trained LM, pLM. NCE then
trains a binary classifier on the difference of log-probability scores of
these two models. Since the joint model is the product of the energy
function (whose parameters we want to learn) with the pre-trained
LM, the difference reduces to: log p̃θ− log pLM = −Eθ. Therefore, under
these modeling assumptions of residual learning and noise model, the
NCE objective function becomes:
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Algorithm 10 Top-k sampling for the residual EBM
Input: Number of samples n drawn from pLM, value of k in top-k

// Get a set of samples from pLM
Sample n samples {x1, ..., xn} from pLM with top-k sampling
Calculate energies si = Eθ(xi) for each xi ∈ {x1, ..., xn}
// Resample from the set of LM samples
Sample x = xi with probability exp(−si)∑n

j=1 exp(−sj)
Return: x

Jθ = E
x+∼D

log p̃θ(x+)
p̃θ(x+) + pLM(x+) + E

x−∼pLM
log pLM(x−)

p̃θ(x−) + pLM(x−)

= E
x+∼D

log 1
1 + exp(Eθ(x+)) + E

x−∼pLM
log 1

1 + exp(−Eθ(x−))
(4.33)

where x+ denotes the positive sequence taken from the human generated
training set, and x− the negative sequence drawn from the pre-trained
LM (for a given ground truth prefix). Again, we see that NCE training of
the energy function reduces to training a binary classifier to discriminate
between real text and text generated by a pre-trained autoregressive
language model. The experiment of [39] uses a prefix of size 120 tokens
and generates the following 40 tokens; with the notation of Eq. (4.32),
c = 120 and T = 160. For NCE training, for efficiency 16 samples per
prefix for CC-News [9] were generated offline, and sampled uniformly
from those samples at training time.

Generation from the residual EBM

In order to generate from the residual EBM model Eq. (4.32) efficiently,
[39] uses self-normalized importance sampling (SNIS) (Section 2.3.2).
Under the assumptions that the model from which we wish to draw
samples is the joint model, which is the product of the autoregressive
model and the energy function, and that the proposal distribution is the
autoregressive model itself, sampling proceeds simply by: a) sampling
from the autoregressive language model, followed by b) resampling
according to the energy function. The algorithm is shown in Algorithm
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10, where a top-k constraint on the pre-trained language model is
introduced to improve the quality of samples in the set. Without the
top-k constraint, as the number of samples goes to infinity, we would
recover exact samples from the joint model distribution.

Evaluation of the residual EBM

A commonly used protocol for evaluating generative sequence models,
especially language models, is perplexity (PPL), which is equal to

PPL = 2− 1
T −c

∑T

i=c+1 log2 pθ(xi|x1,··· ,xi−1)

PPL can be interpreted as the average number of tokens the model
is uncertain of at every time step. For the residual EBM model, the
log-likelihood required by PPL relies on estimating the partition function

Zθ =
∑

x

pLM(x) exp(−Eθ(x)) = Ex∼pLM exp(−Eθ(x)).

Based on [118], two estimators are derived in [39] for the lower and
upper bounds of the partition function respectively, as shown in the
following theorem.

Theorem 4.1. Denote Tn as the empirical estimate of logEx∼pLM

exp(−Eθ(x)) with n samples xi ∼ PLM, i = 1, · · · , n: Tn = log 1
n∑n

i=1 exp(−E(xi)), then ∀ϵ > 0,∃N > 0 such that ∀n > N we have

Zθ − ϵ < E[Tn] < Zθ < E[(2n− 1)Tn − 2(n− 1)Tn−1] < Zθ + ϵ. (4.34)

Similarly to locally normalized models, we can also factorize the
probabilities of an entire sequence step by step, pθ(x) = ∏T

t=1 pθ(xt|x<t).
By marginalizing over the future, the following step-wise probabilities
are derived in [39]:

pθ(xt|x<t) = pLM(xt|x<t)
Ex′

t+1:T ∼pLM(·|x≤t)[exp(−Eθ(x≤t, x
′
t+1:T ))]

Ex′
t:T ∼pLM(·|x≤t−1)[exp(−Eθ(x≤t−1, x′

t:T ))]
(4.35)

Note that both the numerator and the denominator in Eq. (4.35) take
the same form as the partition function, we can also use Eq. (4.34) to
estimate the upper and lower bounds. For example, the lower bound of



4.4. EBMs for Conditional Text Generation 131

log pθ(xt|x<t) can be obtained by using the lower bound of the numerator
and the upper bound of the denominator. Remarkably, for t = T , we
can calculate the log probability by exhaustive enumeration. This gives
us an idea of the true performance of the model at the last step, and it
also provides a sanity-check of the tightness of the estimators.

Performance of the residual EBM

In [39], experiments on two datasets, CC-News [9] and the Toronto
Book Corpus [213] show that residual EBMs demonstrated improved
generation ability against strong autoregressive baselines, both in terms
of estimated perplexity and through human evaluation.

4.4.2 Controlled text generation from pre-trained language models

Motivation

While large transformer-based autoregressive language models trained
on massive amounts of data exhibit exceptional capabilities to generate
natural language text, effective methods for generating text that satisfy
global constraints and possess holistic desired attributes remains an ac-
tive area of research [72], [105]. For instance, we may want to avoid toxic
content; or steer generations towards a certain topic or style. Much of
the prior work has approached controlled generation via either training
domain-conditioned neural language models or finetuning/modifying
an underlying large pre-trained base model for attribute sensitive gen-
eration (see references in [105]). Not only do these approaches involve
computational overhead and estimation errors associated with the train-
ing of language models, but they are also dependent on access to a large
amount of attribute-specific language data which can be impractical in
many scenarios and exacerbate privacy concerns.

In order to address these limitations, the study in [105] thus aims to
eschew training and focuses on generation-time control from pre-trained
modules. The mix-and-match method proposed in [105], as shown in
Figure 4.13, draws samples from a test-time combination of pre-trained
black-box experts that each scores a desired property of output text -
for example, fluency, attribute sensitivity, or faithfulness to the context.
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Figure 4.13: Overview of mix-and-match LM. The Lego pieces show different
experts that can be used to form the energy LM and help control different features
in the generated text. The right side shows the i-th step in the the Gibbs sampling
chain, where a proposal is made by the MLM, and then it is accepted/rejected based
on the energy score. [105]

Specifically, the product of these black-box experts is viewed as a EBM,
and sampling is performed (without further training or fine-tuning),
using a specialized Gibbs sampler with a Metropolis-Hastings (MH)
correction step [47], which is basically MH within Gibbs sampling, as
introduced in Section 2.3.1.

A related work in [72] proposes a distributional approach for address-
ing controlled text generation from pre-trained language models (PLMs).
Both “pointwise” constraints (hard requirements on each individual)
and “distributional” constraints (collective statistical requirements such
as moment constraints) are permitted to added in the target LM, while
minimizing KL divergence from the initial pre-trained LM distribution.
The optimal target distribution is also uniquely determined as a residual
EBM model and can be trained through a variant of policy gradient
based on importance sampling.

Also for controlled text generation, the work in [132] is motivated
by the need to enrich decoding algorithms that can work directly with
pre-trained language models (PLMs) without task-specific fine-tuning,
and support complex combinations of hard and soft constraints to
control the generated text on the fly. Previous studies use MH within
Gibbs sampling or SNIS, as surveyed in Table 2.1. A new decoding
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method, called Constrained decoding with Langevin dynamics (COLD),
is developed in [132], which introduces Langevin dynamics to text-based
EBMs for efficient gradient-based sampling. Specifically, the COLD
based text generation performs sampling by iteratively updating a
continuous relaxation of text using gradients of the energy function.
The resulting continuous text samples are then mapped back to the
discrete space with a simple guided discretization approach, yielding text
sequences that are fluent and adhere to the constraints. Experiments are
conducted in three text generation applications - lexically-constrained
generation, abductive reasoning, and counterfactual reasoning and show
the effectiveness of the COLD approach, both in terms of automatic
and human evaluation.

The mix-and-match language model

In [105], the problem of performing controlled generation is framed
as a problem of sampling from a specialized energy based (or globally
normalized) sequence model that defines a probability distribution that
satisfies the desired constraints we wish to impose in the controlled
generation setting.

As described below, this energy based model is composed of pre-
trained components and does not require any further optimization.
Specifically, an energy-based sequence model defines the probability
distribution over the space of possible sequences X as:

pθ(X) = e−Eθ(X)∑
X′∈X e−Eθ(X′)

where Eθ(X) refers to the scalar energy of a sequence X that is
parametrized by θ. Lower energy corresponds to the higher likelihood
of X. In contrast to the common autoregressive sequence models, ex-
act likelihood computation and efficient sampling from EBM models
is challenging. Despite these challenges, the EBM paradigm offers in-
creased flexibility via sequence-level features and constraints. As we
discuss next, this capability lets us easily define expressive functions for
controlled generation of sequences which is not readily offered by the
autoregressive modeling paradigm.
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Note that the task of controlled generation requires concentrating
probability mass over a small subspace of sequences in X that satisfies
various constraints pertaining to fluency, target attributes, and other
control variables. The EBM based mix-and-match language model, as
defined below, involves a linear combination of various black-box experts
in order to obtain a distribution whose samples satisfy the requirements
of a desired controlled generation task:

EM&M(X) =
k∑

i=1
αiEi(X) (4.36)

where the mix-and-match (M&M) energy is composed of k expert
energy components, which are weighted by scalar hyperparameters α.
The following black-box experts are used in [105]:

• Emlm(X): Masked language models (MLMs) like BERT [40] are
used as a black-box to model the form and fluency of sentences.
Particularly, Emlm(X) is defined as the negative of the sum of
unnormalized logits iteratively computed at each position obtained
via the forward pass of the MLM after masking the corresponding
position [47].

• Edisc(X): This particular expert refers to the energy obtained
via the discriminator for the attributes of interest. What this
module returns is the raw logits of the discriminator, for the target
attribute. For instance, if we have a sentiment classifier, and want
to produce positive sentiment, then Edisc(X) = − log p(+|X).

• Ehamm(X,X ′): For a given sequence X ′, this quantity refers to the
hamming distance between the sequence X and X ′. This penalizes
token level deviation from X ′ which is useful if we are interested
in only making minor edits to X ′.

• Efuzzy(X,X ′): Similar to the hamming distance, this quantity
refers to the BertScore [203] computed between X and X ′ which
can be viewed as a fuzzy hamming distance that takes semantic
similarity into account.
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Sampling from the mix-and-match model

In [105], Metropolis-Hastings (MH) based MCMC scheme (Section 2.3.1)
is used to sample from the M&M model. The proposal distribution is
implemented by a masked language model (MLM) like BERT. At each
MH step, we mask out a token at a random position i in current sequence
X, propose a new token by sampling from the MLM conditional softmax
at the masked position9, and obtain the new sequence X. The new
sequence is accepted with the probability

min
{

1,
exp(−EM&M(X))pmlm(Xi|X\i)
exp(−EM&M(X))pmlm(Xi|X\i)

}

In experiments in [105], a MCMC chain is run for sentence generation
for more than 8 epochs, where an epoch refers to one masking cycle
over all positions of the sequence.

The performance of the mix-and-match model

Two kinds of controlled generation tasks are performed in [105].

Prompted generation. This task focuses on generating well-formed
sentences that start with a specified prompt and also satisfy a target
attribute for which we have access to a discriminator. An example task
would be to generate positive sentiment sequences starting with This
movie. The energy function takes the form:

E(X) = Emlm(X) + αEdisc(X)

where α is a hyperparameter that controls the tradeoff between the
MLM score and the discriminator’s influence.

Controlled text revision. This task aims to edit a source sequence
X ′ to generate sequence X to satisfy the desired target attributes. The
energy function for this task is:

E(X) = Emlm(X) + αEdisc(X) + βEhamm(X,X ′) + γEfuzzy(X,X ′)
9Note that the proposed move Xi is generated independent of the previous state

Xi, thus the sampling algorithm used here is in fact MIS with Gibbs sampling.
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This energy function, in addition to valuing well-formedness and satis-
fying target attribute requirements, also focuses on maintaining faith-
fulness to the source sequence X ′.

In [105], the effectiveness of the mix-and-match approach has been
shown on controlled generation tasks (with sentiment or topic) and
style-based text revision tasks (controllable debiasing, style transfer), by
outperforming recently proposed methods that involve extra training,
fine-tuning, or restrictive assumptions over the form of models.

Constrained decoding with Langevin dynamics (COLD)

Constrained text generation aims to produce text samples y that satisfy
a set of constraints (usually conditioned on an input x omitted for
brevity). Let y = (y1, · · · , yT ) denote a discrete sequence where each yt

is a token from a vocabulary V . Assume each constraint can be captured
by a constraint function fi(y) ∈ R, where higher values of fi mean that
the text y better satisfies the constraint. Generating text under the
constraints can be seen as sampling from a energy-based distribution
y ∼ p(y):

p(y) ∝ exp {U(y)} , U(y) =
∑

i

λifi(y)

EBMs are flexible - any differentiable function that outputs a goodness
score of text can be used as a constraint function, as long as it reflects the
requirements of the target task. Three example constraints are shown
in [132]: soft fluency constraint, future-token prediction constraint, and
N-gram similarity constraint.

For efficient sampling from p(y), we want to use Langevin dynamics,
which makes use of the gradient ∇y log p(y) = ∇yU(y). However, in
text generation, y is a discrete sequence and the gradient ∇y log p(y)
is not well-defined. To address this problem, [132] proposed a new
sampling/decoding method, called Constrained decoding with Langevin
dynamics (COLD), which consists of three steps - continuous relax-
ation of text, performing Langevin dynamics with an energy defined
on a sequence of continuous “soft” token vectors, and finally, guided
discretization.
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Continuous relaxation of text. Instead of defining the energy function
on discrete tokens, the energy function is defined on a sequence of
continuous vectors ỹ = (ỹ1, · · · , ỹT ), which is called a soft sequence.
Each position in the soft sequence is a vector of logits ỹt ∈ R|V|, each
element corresponding to the logit of a word in the vocabulary. Taking
the softmax of ỹt yields a distribution over the vocabulary for position
t. An EBM model can be defined on the soft sequence ỹ as follows:

p(ỹ) ∝ exp {U(ỹ)} (4.37)

Langevin dynamics over soft tokens. In the continuous space, we
can perform gradient guided MCMC (Section 2.3.1) such as Langevin
dynamics to generate samples ỹ(1), ỹ(2), · · · , which ends up generating
samples from the distribution induced by the energy function Eq. (4.37).

From soft tokens to discrete text. After receiving a soft sequence
sample ỹ from running Langevin dynamics, we map the soft sequence
to a discrete text sequence, which we consider as the output of COLD
decoding. A simple method would be selecting the most-likely token at
each position t,

yt = arg max
v∈V

ỹt(v)

However, the resulting text suffers from fluency issues even if the soft
fluency constraint is used, due to competing constraints that sacrifice
fluency. To overcome this, COLD uses the underlying pre-trained lan-
guage model (PLM) as a “guardian” for obtaining the discrete sequence.
Specifically, at each position t, we first use the PLM to produce the
top-k most-likely candidate tokens based on its generation distribution
conditioning on preceding tokens, which we denote as Vk

t . We then
select from the top-k candidates the most likely token based on the soft
sample ỹ:

yt = arg max
v∈Vk

t

ỹt(v)

We refer to this method as “top-k filtering”. The resulting text tends to
be fluent because each token is among the top-k most probable tokens
from the PLM.



5
Joint EBMs With Applications

In this section, we introduce EBMs for modeling joint distributions for
both fixed-dimensional and sequential data, with the applications for
semi-supervised learning, training more calibrated models, and improved
language modeling with additional relevant linguistic tags (e.g., part-of-
speech tags). First, we present the basics for semi-supervised learning.
Then, we introduce the fixed-dimensional case of joint EBMs (Section
5.2), then move on to the sequential case (Section 5.3). Finally, we
present the application of EBM-based joint modeling for semi-supervised
learning and calibrated natural language understanding in Section 5.4
and Section 5.5, respectively.

5.1 Basics for Semi-supervised Learning

As we have witnessed, supervised learning from large amounts of la-
beled data, particularly with deep neural networks (DNNs), has achieved
tremendous success in various intelligence tasks, spanning speech process-
ing, computer vision, and natural language processing (NLP). However,
collecting labeled data is difficult and expensive, but there are often
easily-available unlabeled data. This has motivated the community to
develop semi-supervised learning (SSL). SSL aims to leverage both la-

138
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beled and unlabeled data to train a conditional model for inference (for
either discriminative or generation tasks), which, basically, is to find the
posteriori of label y given observation x. A plethora of semi-supervised
learning methods have emerged to train deep neural networks (DNNs)
[22], [28], [80], [106], [160], [172], spanning over various domains such as
image classification, natural language labeling and so on. People may
wonder how unlabeled observations x’s may help finding the posterior.
A common belief is that the the information contained in the unlabeled
observations can provide some kind of priors, or alternatively say, some
regularizations or inductive biases, for finding the posterior p(y|x).

Roughly speaking, recent SSL methods with DNNs can be distin-
guished by the priors they adopt, and, can be divided into two classes1

- based on generative models or discriminative models, which are re-
ferred to as generative SSL and discriminative SSL respectively. An
intuitive way to differentiate between generative and discriminative
SSL is that generative SSL typically requires modeling the marginal
distribution of the data, while discriminative SSL only involves modeling
the conditional distribution.

5.1.1 Discriminative SSL

Discriminative SSL methods often assume that the outputs from the
discriminative classifier are smooth with respect to local and ran-
dom perturbations of the inputs. Examples include virtual adversarial
training (VAT) [106] and a number of recently developed consistency-
regularization based methods such as temporal ensembling [80], mean
teachers [172], FixMatch [160] and contrastive learning based methods
such as SimCLR [22].

Discriminative SSL methods thus heavily rely on domain-specific
data augmentations, e.g., RandAugment [33], which are tuned intensively
for images and lead to impressive performance in some image domains.
But discriminative SSL is often less successful for other domains, where
these augmentations are less effective (e.g., medical images and text).
For instance, random input perturbations are more difficult to apply

1We mainly discuss the SSL methods for using DNNs. General discussion of SSL
can be referred to [212].
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to discrete data like text [28]. Although there are some efforts to use
data-independent model noises, e.g., by dropout [166], domain-specific
data augmentation is indispensable.

5.1.2 Generative SSL

Generative SSL methods exploit unsupervised learning of generative
models over unlabeled data, which inherently does not require data
augmentations and generally can be applied to a wider range of do-
mains. Generative SSL usually involves blending unsupervised learning
and supervised learning. These methods make fewer domain-specific
assumptions and tend to be domain-agnostic. The performance compar-
isons between generative and discriminative SSL methods are mixed.
It is found that consistency based discriminative SSL methods often
outperform generative SSL methods in image domain. However, in text
domain, the generative SSL methods such as those based on pre-trained
word vectors [102], [128] and pre-trained language models (PLMs) [135],
[136] are more successful and widely used.

Considering observation x and label y, there exist two different
methods for the generative SSL approach - joint-training [76], [82] and
pre-training [63].

• In joint-training, a joint model of p(x, y) is defined. When we have
label y, we maximize p(y|x) (the supervised objective), and when
the label is unobserved, we marginalize it out and maximize p(x)
(the unsupervised objective). Semi-supervised learning over a mix
of labeled and unlabeled data is formulated as maximizing the
(weighted) sum of log p(y|x) and log p(x). Given infinite model
capacity and data, the joint-learning based SSL is consistent and
can find the oracle p(y|x)2.

• In pre-training, we perform unsupervised representation learn-
ing on unlabeled data, which is followed by supervised training
(called fine-tuning) on labeled data. Thus, pre-training is usually

2This is because that the maximum likelihood estimator is consistent.
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Figure 5.1: An overview of SSL and a general categorization of generative SSL
methods. Examples are mainly chosen from NLP.

based on a model that only defines the marginal distribution p(x)
without the need to involve y. Its empirical effectiveness is mostly
understood from the perspective of representation learning. There
is no theoretical guarantee that this kind of pre-training will lead
to finding the oracle p(y|x). This method of pre-training followed
by fine-tuning has been widely used in natural language processing
[134]3.

A categorization of generative SSL methods is shown in Figure
5.1. For either of joint-training and pre-training, we can use directed
models (locally-normalized) or undirected models (globally-normalized).
So there are four main classes for generative SSL. The models used in
joint-training could be latent-variable model (LVM) such as in LABES
[206], or JRF [163] or say JEM [207]. Pre-training could be based on
masked language models [40], autoregressive language models [134], or
random-field language models [189]. Further, two approaches of pre-
training and joint-training could be combined or compared to each

3But, more recently in NLP, an approach of jointly modeling the input, the
output, and the task description, has emerged to gain more attention and achieved
superior performances [135]. The input, the output, and the task description can all
be specified as a sequence of tokens, and a language model is trained for estimating
natural language sequences so that p(task, input, output) for various tasks, inputs
and outputs are implicitly trained.
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other. So there are many open questions in designing semi-supervised
methods for particular tasks.

EBM based SSL. Among existing generative SSL methods, energy-
based models (EBMs), as an important class of generative models, have
been shown with promising results for semi-supervised learning across
various domains. Early studies date back to the pre-training of restricted
Boltzmann machines (RBMs) [63] (which are a simple type of EBMs)
and the joint-training with classification RBMs [82].

Recently, it is shown in [162] that joint-training via EBMs produces
state-of-the-art SSL results on images (MNIST, SVHN and CIFAR-10),
compared to previous generative SSL methods based on Variational
AutoEncoders (VAEs) and Generative Adversarial Networks (GANs).
It is also shown in [207] that joint-training via EBMs outperforms
VAT (virtual adversarial training) [106] on tabular data from the UCI
dataset repository. Further, joint-training via EBMs has been extended
in [163] to modeling sequences and consistently outperforms conditional
random fields (CRFs) (the supervised baseline) and self-training (the
classic semi-supervised baseline) on natural language labeling tasks such
as POS (part-of-speech) tagging, chunking and NER (named entity
recognition).

Note that although both joint-training and pre-training of EBMs
have been used for SSL in the literature, very few studies evaluated
and compared the two methods. The results from previous individual
works are often not directly comparable to each other, since they are
not evaluated in a common experimental setup. In [164], a suite of
experiments are conducted to systematically compare joint-training
and pre-training for EBM-based SSL. Both the amounts of labeled
and unlabeled data are varied to give a realistic whole picture of the
performances of the two methods for SSL [119]. It is found that joint-
training EBMs outperform pre-training EBMs marginally but nearly
consistently, presumably because the optimization of joint-training is
directly related to the targeted task, while pre-training does not.

In the remainder of this section, we will detail EBM based SSL,
including both pre-training and joint-training. Note that pre-training
only involves the marginal distribution p(x), so the basics for EBM
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based pre-training can be referred to Section 3 for learning with discrete
x such as natural languages, and for learning with continuous x such
as images, be referred to [162]. We will mainly introduce the basics
for EBM based joint-training, i.e., establishing EBMs for modeling
joint distributions, first in the fixed-dimensional case (Section 5.2)
and then in the sequential case (Section 5.3). Although speech and
language processing is primarily concerned with the sequential case, the
introduction of the fixed-dimensional case can lay the foundation for
understanding the more complicated, sequential case.

5.2 Upgrading EBMs to Joint EBMs (JEMs) for Fixed-dimensional
Data

Motivation. Originally, EBMs are established for modeling the mar-
ginal distribution p(x) of observations x, as introduced in Section 3.
Recently, a kind of EBM, called semi-supervised EBM, for modeling
the joint distribution of observation x and label y has been developed
and used for semi-supervised classification [162]. In [49], a similar kind
of EBM has been studied, which is called joint EBM (JEM). It is
established by reinterpreting a standard discriminative classifier of
p(y|x) as an energy based model for the joint distribution p(x, y). It
is demonstrated that energy based training of the joint distribution
improves calibration, robustness, and out-of-distribution detection while
also enabling sample generation which rivals the quality of recent GAN
approaches. Hereafter, these EBMs are collectively referred to as JEMs.

Model definition. Note that different models are needed in unsuper-
vised and semi-supervised learning, because SSL needs to additionally
consider labels apart from observations.

In semi-supervised tasks, we consider the following EBM for joint
modeling of observation x ∈ Rdx and class label y ∈ {1, · · · ,K}:

pθ(x, y) = 1
Z(θ) exp [Uθ(x, y)] . (5.1)

This is different from Eq. (2.13) for unsupervised learning which only
models x without labels. To implement the potential function Uθ(x, y),



144 Joint EBMs With Applications

we consider a neural network Ψθ(x) : Rdx → RK , with x as the input
and the output size being equal to the number of class labels, K. Then
we define

Uθ(x, y) = onehot(y)T Ψθ(x)
where onehot(y) represents the one-hot encoding vector for the label y.
In this manner, the conditional density pθ(y|x) is the classifier, defined
as follows:

pθ(y|x) = pθ(x, y)
pθ(x) = exp [Uθ(x, y)]∑

y′ exp [Uθ(x, y′)] (5.2)

which acts like multi-class logistic regression using K logits calculated
from x by the neural network Ψθ(x). And we do not need to calculate
Z(θ) for classification.

With the definition the joint density in Eq. (5.1), it can be shown
that, with abuse of notation, the marginal density is

pθ(x) = 1
Z(θ) exp [Uθ(x)] (5.3)

where Uθ(x) ≜ log∑y′ exp [Uθ(x, y′)].

Model learning. Suppose that among the data D = {x1, · · · , xn},
only a small subset of the observations, for example the first m ob-
servations, have class labels, m ≪ n. Denote these labeled data as
L = {(x1, y1), · · · , (xm, ym)}. Let pemp denote the empirical distribu-
tion over D. Then we can formulate the semi-supervised learning as
optimizing

min
θ

KL [pemp(x)||pθ(x)]− αd

∑
(x,y)∼L

log pθ(y|x)

 (5.4)

which are defined by hybrids of generative and discriminative criteria,
similar to [76], [82], [212]. The hyper-parameter αd controls the relative
weight between generative and discriminative criteria.

Once the JEM model and the training objective are established,
the inclusive-NRF training algorithm (Algorithm 7) developed in [162]
can be applied. Other algorithms for training EBMs, which can achieve
proper density estimation such as those recently developed in [204], can
also be employed.
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5.3 Upgrading CRFs to Joint Random Fields (JRFs) for Sequential
Data

Motivation. Probabilistic generative modeling is a principled method-
ology that promisingly can learn from data of various forms (whether
labeled or unlabeled) to benefit downstream tasks, which, however, is
particularly challenging for sequence data. Two important sequence
tasks are sequence modeling and sequence labeling.

A basic problem of sequence modeling is to determine the proba-
bilities of sequences. An example is language modeling [20], which, as
described in Section 3.2, is a crucial component in many speech and
language processing tasks. For sequences of length l, xl ≜ x1, x2, ..., xl,
this amounts to calculate p(l, xl), where we make explicit the role of
the length l. Ideally, this density modeling can be improved with ad-
ditional relevant labels. e.g. incorporating part-of-speech (POS) tags
for language modeling. There are some previous studies in [144], [151].
The difficulty is that the labels (e.g. POS) usually are not available in
testing, so a standalone POS tagger is needed to provide hypothesized
labels in testing.

The task of sequence labeling, as described in Section 4.3, is, given
observation sequence xl, to predict the label sequence yl ≜ y1, y2, ..., yl,
with one label for one observation at each position. Sequence labeling
has been widely applied in various tasks, e.g., POS labeling [30], [85],
named entity recognition (NER) [66], [81], [92], and chunking [66], [159].
As introduced in Section 5.1.2, it is desirable for the labeling model to
leverage both labeled data (namely pairs of xl and yl) and unlabeled
data (namely xl without labels), i.e., to conduct semi-supervised learning
(SSL). Pre-training has proved to be effective [30], [40], which, however,
is task-independent followed by task-dependent fine-tuning. Besides
pre-training, it is worthwhile to explore task-dependent semi-supervised
learning (SSL) in the manner of joint-training, which learns for a task
on a mix of labeled and unlabeled data. Self-training is such a method
with limited success [157].

As introduced in Section 4.1, conditional random fields (CRFs)
[79] have been shown to be one of the most successful approaches to
sequence labeling. A CRF is a discriminative model, which directly
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defines a conditional distribution p(yl|xl), and thus mainly depends
on supervised learning with abundant labeled data. It is proposed
in [163] to upgrade CRFs and obtain a joint generative model of xl

and yl, p(l, xl, yl), called joint random fields (JRFs). Specifically, the
potential function U(xl, yl) in the original CRF p(yl|xl) is borrowed as
the potential function that defines a joint distribution p(xl, yl). This
upgrading, operated in the sequential setting, is similar to upgrade
EBMs to JEMs in the fixed-dimensional setting [49], [162]. Similar to
the fixed-dimensional setting, the conditional distribution of yl given xl

induced from this joint distribution is exactly the original conditional
distribution - the CRF p(yl|xl)4; and the marginal distribution of p(l, xl)
induced from the joint distribution is a trans-dimensional random field
(TRF) language model [185], [189], as described in Section 3.2.2.

This development from CRFs to JRFs benefits both modeling and
labeling of sequence data. For sequence modeling, the marginal like-
lihood p(l, xl) can be efficiently calculated by JRFs, without the step
of producing hypothesized labels by a standalone POS tagger. For se-
quence labeling, JRFs admit not only supervised learning from labeled
data by maximizing the conditional likelihood p(yl|xl) (which is like the
training of a CRF), but also unsupervised learning from unlabeled data
by maximizing the marginal likelihood p(l, xl) (which is like the train-
ing of a TRF LM), thereby achieving task-dependent semi-supervised
learning.

Model definition. We will first briefly review linear-chain CRFs, as
described in Section 4.1.1, but with different notations, which facilitate
the introduction of JRFs. A linear-chain CRF defines a conditional
distribution with parameters θ for label sequence yl given observation
sequence xl of length l:

pθ(yl|xl) = 1
Zθ(xl) exp(Uθ(xl, yl)) (5.5)

4So writing the JRF as p(l, xl, yl) and the CRF as p(yl|xl) is correct, not an
abuse of notation.
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Here the potential function

Uθ(xl, yl) =
l∑

i=1
ϕi(yi, x

l) +
l∑

i=1
ψi(yi−1, yi, x

l), (5.6)

is defined as a sum of node potentials and edge potentials, and Zθ(xl) =∑
yl exp(Uθ(xl, yl)) is the normalizing constant. ϕi(yi, x

l) is the node
potential defined at position i, which, in recently developed neural CRFs
[30], [66], [81], [92] is implemented by using features generated from a
neural network (NN) of different network architectures. ψi(yi−1, yi, x

l)
is the edge potential defined on the edge connecting yi−1 and yi, often
implemented as a matrix A, ψi(yi−1 = j, yi = k, xl) = Aj,k, thereby
defines a linear-chain CRF. In linear-chain CRFs, there are efficient
algorithms for training (the forward-backward algorithm) and decoding
(the Viterbi algorithm).

Inspired from the idea of jointly modeling fixed-dimensional obser-
vations (e.g. images) and labels via JEMs in [49], [162], CRFs can be
similarly upgraded and a joint distribution over sequential observations
and labels can be established, called JRFs [163]. The keypoint is that
we can use Uθ(xl, yl) in Eq. (5.6) from the original CRF to define a
joint distribution pθ(xl, yl):

pθ(l, xl, yl) = πlpθ(xl, yl; l) = πl

Zθ(l) exp(Uθ(xl, yl)) (5.7)

where πl is the empirical prior probability for length l. Notably, a CRF is
a conditional distribution, normalizing over label sequences. In contrast,
a JRF is a joint distribution, normalizing over both observation and
label sequences, with the normalizing constant for length l defined as

Zθ(l) =
∑
xl,yl

exp(Uθ(xl, yl)). (5.8)

Interestingly, it can be easily seen that the conditional distribution
of yl given xl induced from the JRF’s joint distribution Eq. (5.7) is
exactly the original CRF Eq. (5.5). Further, by marginalizing out yl,
the marginal distribution of p(l, xl) induced from the joint distribution
is:

pθ(l, xl) = πl

Zθ(l)
∑
yl

exp(Uθ(xl, yl)) = πl

Zθ(l) exp(Uθ(xl))



148 Joint EBMs With Applications

which acts like a trans-dimensional random field (TRF) language model
[185], [189], with the potential defined by

Uθ(xl) = log
∑
yl

exp(Uθ(xl, yl)).

Notably this marginal potential Uθ(xl) is exactly the normalizing con-
stant logZθ(xl) Eq. (5.8) from the CRF. It can be calculated via the
forward algorithm from the linear-chain potential Uθ(xl, yl).

Model learning. Given different data resources (labeled or unlabeled),
JRF can be trained under different settings (supervised, unsupervised,
or semi-supervised) and applied in different downstream tasks (sequence
modeling or labeling), as illustrated in Figure 5.2. Note that the em-
bedded CRF and TRF inside a JRF share all parameters θ, which is
different from multi-task learning where only bottom-level parameters
are shared [7].

Supervised learning of JRFs amounts to the training of the embedded
CRF with the following supervised objective, given labeled data in the
form of empirical distribution plab(xl, yl),

max
θ
Jsup(θ) = E(xl,yl)∼plab(xl,yl)[log pθ(yl|xl)] (5.9)

which can be solved by applying minibatch-based stochastic gradient
descent (SGD). At each iteration, a minibatch of sentences and labels is
sampled from plab(xl, yl), denoted by Dlab, and the stochastic gradients
are:

∂Jsup(θ)
∂θ

∧

= 1
|Dlab|

∑
(xl,yl)∈Dlab

[
∂Uθ(xl, yl)

∂θ
− ∂Uθ(xl)

∂θ

]

Unsupervised learning of JRFs amounts to the training the embedded
TRF, by applying the dynamic noise-contrastive estimation (DNCE)
algorithm developed in [185]. Given unlabeled data (e.g. sentences) in
the form of empirical distribution punl(l, xl), DNCE jointly optimizes
over a JRF and a noise distribution pϕ(l, xl) (generally a LSTM language
model) parameterized by ϕ:
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Figure 5.2: Overview of the JRF model. The node and edge potentials define a
JRF (a joint distribution over xl and yl). Inducing the conditional and the marginal
from the joint yields a CRF and a TRF respectively. A JRF can be trained from
labeled data (acting like a CRF) and also from unlabeled data (acting like a TRF).
In practice, the node potentials are calculated from the logits oi, i = 1, · · · , l, from
the NN, and the edge potential follows a linear-chain definition.
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

max
θ
E

(l,xl)∼
punl(l,xl)+pϕ(l,xl)

2

[
log pθ(l, xl)

pθ(l, xl) + pϕ(l, xl)

]
+

E(l,xl)∼pϕ(l,xl)

[
log pϕ(l, xl)

pθ(l, xl) + pϕ(l, xl)

]
≜ Juns(θ)

min
ϕ
KL

[
punl(l, xl)||pϕ(l, xl)

]
(5.10)

Thanks to optimization of DNCE, the annoying normalizing constants
Zθ(l) in JRFs can be jointly estimated along with the parameter es-
timation. Specifically, we introduce parameters ζl for logZθ(l) and
ζ = (ζ1, ζ2, ..., ζL), where L is a pre-defined maximum length. Hereafter,
we denote by ξ = (θ, ζ) all the parameters in the JRF and rewrite pθ(·)
as pξ(·).

At each iteration, a minibatch of sentences are sampled from punl(l,
xl), denoted by Dunl, two minibatches of sentences sampled from
pϕ(l, xl), denoted by B1,B2 (|B2| = 2|B1| = 2|Dunl|), and the stochastic
gradients are:

∂Junl(ξ)
∂ξ

∧

= 1
|B2|

∑
(l,xl)∈B2

pξ(l, xl)
pξ(l, xl) + pϕ(l, xl)g(l, xl; ξ)

+ 1
|Dunl|+ |B1|

∑
(l,xl)∈Dunl∪B1

pϕ(l, xl)
pξ(l, xl) + pϕ(l, xl)g(l, xl; ξ)

∂KL(punl||pϕ)
∂ϕ

∧

= − 1
|Dunl|

∑
(l,xl)∈Dunl

∂ log pϕ(l, xl)
∂ϕ

where g(l, xl; ξ) denotes the gradient of log pξ(l, xl) w.r.t. ξ = (θ, ζ),
and the two gradient components w.r.t. θ and ζ are ∂Uθ(xl)/∂θ and
−(δ(l = 1), ..., δ(l = L)) respectively.

Semi-supervised learning of JRFs over a mix of labeled and unlabeled
data amounts to combining the above supervised and unsupervised
training with the following semi-supervised objective:

max
ξ
J(ξ) = Jsup(ξ) + αJuns(ξ)

min
ϕ
KL

[
punl(l, xl)||pϕ(l, xl)

] (5.11)

where α is the trade-off weight between supervised and unsupervised
learning, and ξ = (θ, ζ) is defined before.
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The performance of the JRF model. The benefits of JRFs to sequence
modeling and labeling are demonstrated through two sets of experiments
in [163]. First, various traditional language models (LMs) such as Kneser-
Ney (KN) smoothed n-gram LM [20], LSTM LM [199] and TRF LM
[185] are trained on Wall Street Journal (WSJ) portion of Penn Treebank
(PTB) English dataset (without using POS tags). JRF LMs are trained
by using POS tags. These models are then used to rescore the 1000-best
list generated from the WSJ’92 test set, with similar experimental setup
as in [185]. The JRF model is effective in incorporating POS tags and
performs the best with the lowest rescoring word error rate (WER).
Second, experiments on three sequence labeling tasks - POS tagging,
chunking and NER, with Google one-billion-word dataset [18] as the
unlabeled data resource, are conducted. It is found that the JRF based
SSL consistently outperforms the CRF baseline and self-training.

5.4 JEMs and JRFs for Semi-supervised Learning

Now we have introduced the basics for establishing JEMs and JRFs for
fixed-dimensional and sequential data in Section 5.2 and Section 5.3,
respectively. As introduced in Section 5.1.2, there exist two different
methods for EBM based SSL - pre-training and joint-training. Pre-
training of RBMs once received attention in the early stage of training
DNNs [63]. Encouraging SSL results have been shown recently for EBM
based joint-training. In [162], [163], [207], state-of-the-art SSL results are
reported based on EBMs and across different data modalities (images,
natural languages, an protein structure prediction and year prediction
from the UCI dataset repository) and in different data settings (fix-
dimensional and sequence data).

So EBM-based SSL can be applied across different data modalities
(fix-dimensional and sequence data), by either of pre-training and joint-
training. Thus, there are four cases. In this section, we systematically
introduce these four cases, as summarized in Table 5.1, where we take
image classification and natural language labeling as representative tasks.
We continue with the notations in Definition 2.5 of EBMs parameterized
by neural networks.
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Table 5.1: Applications of EBMs across different domains: comparison and connec-
tion (see text for details).

Image classification Natural language labeling

Observation x ∈ RD x ∈
⋃

l Vl

continuous, fixed-dimensional discrete, sequence
Label y ∈ {1, 2, · · · ,K} y ∈

⋃
l{1, 2, · · · ,K}l

Pre-training Uθ(x) = wTh Uθ(x) in Eq. (5.12)
Joint-training Uθ(x, y) = Ψθ(x)[y] Uθ(x, y) in Eq. (5.16)

5.4.1 Pre-training via EBMs for SSL

Pre-training via EBMs for SSL consists of two stages. The first stage is
pre-training an EBM on unlabeled data. It is followed by a fine-tuning
stage, where we can easily use the pre-trained EBM to initialize a
discriminative model and further train over labeled data.

Pre-training of an EBM for semi-supervised image classification
essentially involves estimating pθ(x) as defined in Eq. (2.13) from unla-
beled images. For the potential function Uθ(x), we can use a multi-layer
feed-forward neural network Φθ(x) : RD → R, which, in the final layer,
calculates a scalar via a linear layer, Uθ(x) = wTh, as shown in Figure
5.3(a). Here h ∈ RH denotes the activation from the last hidden layer
and w ∈ RH the weight vector in the final linear layer. For simplicity,
we omit the bias in describing linear layers throughout Section 5.4.

In fine-tuning, as shown in Figure 5.3(b), we throw away w and fed
h into a new linear output layer, followed by softmax(Wh), to predict
y, where W ∈ RK×H denotes the new trainable weight parameters and
y ∈ {1, · · · ,K} the class label. It can be seen that pre-training aims to
learn representations that may be useful for multiple downstream tasks,
and information about the labels is not utilized until the fine-tuning
stage.

Pre-training of an EBM for semi-supervised natural language labeling
(e.g., POS tagging) is similar to the above procedure of pre-training
of an EBM for semi-supervised image classification. In pre-training,
we estimate an EBM-based language model pθ(x) from unlabeled text
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Figure 5.3: Illustration of EBM based semi-supervised image classification. (a)
Pre-training, (b) Fine-tuning, (c) Joint-training.

corpus. Neural networks with different architectures can be used to
implement the potential function Φθ(x) : Vl → R given length l. With
abuse of notation, here x = (x1, . . . , xl) denotes a token sequence of
length l, and xi ∈ V, i = 1, · · · , l. For example, as shown in Figure
5.4(a), we can use the bidirectional LSTM based potential function in
[185] as follows:

Uθ(x) =
l−1∑
i=1

hT
f,iei+1 +

l∑
i=2

hT
b,iei−1 (5.12)

where ei, hf,i and hb,i are of the same dimensions, denoting the output
embedding vector, the last hidden vectors of the forward and backward
LSTMs respectively at position i.

In fine-tuning, as shown in Figure 5.4(b), we add a CRF, as the
discriminative model, on top of the extracted representations, (hf,i, hb,i),
i = 1, · · · , l, to do sequence labeling, i.e., to predict a sequence of
labels y = (y1, . . . , yl) with one label for one token at each position,
where yi ∈ {1, · · · ,K} denotes the label at position i. Specifically, we
concatenate hf,i and hb,i, add a linear output layer to define the node
potential, and add a matrix A ∈ RK×K to define the edge potential, as
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Figure 5.4: Illustration of EBM based sequence labeling. (a) Pre-training, (b)
Fine-tuning, (c) Joint-training.

in recent neural CRFs [81], [92]. The parameters to be fine-tuned are
the weights in the linear output layer and the edge potential matrix A.

5.4.2 Joint-training via EBMs for SSL

The above pre-training via EBMs for SSL considers the modeling of
only observations x without labels y. The joint-training refers to the
joint modeling of x and y:

pθ(x, y) = 1
Z(θ) exp [Uθ(x, y)] (5.13)

Then, it can be easily seen, as detailed in Section 5.2, that the conditional
density pθ(y|x) implied by the joint density Eq. (5.13) is:

pθ(y|x) = pθ(x, y)
pθ(x) = exp(Uθ(x, y))∑

y′ exp(Uθ(x, y′)) (5.14)

And the implied marginal density is

pθ(x) = 1
Z(θ) exp(Uθ(x)) (5.15)

where, with abuse of notation, Uθ(x) ≜ log
∑

y exp [Uθ(x, y)]. Different
from pre-training, the unsupervised objective pθ(x) depends on the
targeted task. The key for EBM based joint-training for SSL is to choose
suitable Uθ(x, y) such that both pθ(y|x) and pθ(x) can be tractably
optimized.
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Joint-training of an EBM for semi-supervised image classification
considers a neural network Ψθ(x) : RD → RK , which, as shown in Figure
5.3(c), accepts the image x and outputs an vector, whose size is equal
to the number of class labels, K. Then we define Uθ(x, y) = Ψθ(x)[y],
where [y] denotes the y-th element of a vector. With the above potential
definition, it can be easily seen that the implied conditional density
pθ(y|x) is exactly a standard K-class softmax based classifier, using the
K logits calculated by the neural network Ψθ(x) from the input x. And
we do not need to calculate Z(θ) for classification. Therefore, we can
conduct SSL over a mix of labeled and unlabeled data by maximizing the
(weighted) sum of log pθ(y|x) and log pθ(x), where both optimizations
are tractable as detailed in [162].

Joint-training of an EBM for semi-supervised natural language la-
beling is similar to the above procedure of joint-training of an EBM
for semi-supervised image classification, with x = (x1, . . . , xl) and
y = (y1, . . . , yl), xi ∈ V, yi ∈ {1, · · · ,K} , i = 1, · · · , l. As shown in
Figure 5.4(c), we consider a neural network Ψθ(x) : Vl → Rl×K and
define

Uθ(x, y) =
l∑

i=1
Ψθ(x)[i, yi] +

l∑
i=1

A[yi−1, yi] (5.16)

where [·, ·] denotes the element of a matrix and A ∈ RK×K models the
edge potential for adjacent labels. With the above potential definition,
it can be easily seen, as detailed in Section 5.3, that the conditional
density pθ(y|x) implied by the joint density Eq. (5.13) is exactly a CRF
with node potentials Ψθ(x)[i, yi] and edge potentials A[yi−1, yi], and the
implied marginal density pθ(x) is exactly a trans-dimensional random
field (TRF) language model [184], [186], [189]. Training of both models
are tractable as detailed in [163], [185].

5.4.3 Comparison of joint-training and pre-training

In [164], a suite of SSL experiments are conducted on standard bench-
mark datasets in different domains, including the CIFAR-10 and SVHN
datasets [162] for image classification and the POS, chunking and NER
datasets [65], [163] for natural language labeling. It is revealed that
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Table 5.2: SSL for image classification over CIFAR-10 with 4,000 labels for
a full training set of 50K images. The upper/lower blocks show the genera-
tive/discriminative SSL methods respectively. The means and standard deviations
are calculated over ten independent runs with randomly sampled labels.

Methods error (%)
CatGAN [165] 19.58±0.46
Ladder network [139] 20.40±0.47
Improved-GAN [149] 18.63±2.32
BadGAN [36] 14.41±0.30
Sobolev-GAN [109] 15.77±0.19
Supervised baseline 25.72±0.44
Pre-training+fine-tuning EBM 21.40±0.38
Joint-training EBM 15.12±0.36
Results below this line cannot be directly compared to those above.
VAT small [106] 14.87
Temporal Ensembling [80] 12.16±0.31
Mean Teacher [172] 12.31±0.28

joint-training EBMs outperform pre-training EBMs marginally but
nearly consistently. Presumably, this is because that the optimization of
joint-training is directly related to the targeted task, but pre-training
is not aware of the labels for the targeted task.

Full detailed experimental results are referred to [164]. Here we
present some results for illustration. In [164], the standard data split for
training and testing is used. When changing the amount of labeled and
unlabeled data for training, varying proportions (e.g., 10%, 100%) of
labels are selected from the original full set of labeled data. Hereafter,
the amount of labels is thus described in terms of proportions. “100%
labeled” means 50K images for CIFAR-10, and 56K, 7.4K, 14K sentences
for POS, chunking and NER, respectively.

SSL for Image Classification. In [164], different generative SSL meth-
ods are compared over CIFAR-10. As in previous works, 4,000 labeled
images are randomly sampled for training. The remaining images are
treated as unlabeled. It can be seen from Table 5.2 that semi-supervised
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EBMs, especially the joint-training EBMs, produce strong results on par
with state-of-art generative SSL methods.5 Furthermore, joint-training
EBMs outperform pre-training+fine-tuning EBMs by a large margin
in this task. Note that some discriminative SSL methods, as listed in
the lower block in Table 5.2, also produce superior results but heavily
utilize domain-specific data augmentations, and thus are not directly
compared to the generative SSL methods.

SSL for Natural Language Labeling. In this experiment, different SSL
methods are evaluated for natural language labeling over three tasks -
POS tagging, chunking and NER. The following benchmark datasets
are used - PTB POS tagging, CoNLL-2000 chunking and CoNLL-2003
English NER, as in [28], [65], [92], [163]. Varying proportions of labels
are sampled as labeled training data and use the Google one-billion-
word dataset [18] as the large pool of unlabeled sentences. A large scale
of experiments are conducted, covering the labeling proportions of 2%,
10% and 100% with “U/L” (the ratio between the amount of unlabeled
and labeled) of 50, 250 and 500 for three tasks, which consist of a
total of 27 settings. The network architectures in [163] is used. After
some empirical search, hyper-parameters (tuned separately for different
methods) are fixed, which are used for all the 27 settings.

Table 5.3 only show the relative numerics, absolute numerics are
referred to [164]. The main observations are as follows.

• The joint-training EBMs outperform the supervised baseline in 25
out of the 27 settings. Since we perform one run for each setting,
this indicates 2 outliers.

• The effects of increasing the labeling sizes on the improvements
of the joint-training EBMs over the supervised baseline with
a fixed “U/L” are mixed. For POS/chunking/NER, the largest
improvements are achieved under 2%/10%/100% labeled, respec-
tively. It seems that the working point where an SSL method
brings the largest improvement over the supervised baseline is

5As discussed in [162], Bad-GANs could hardly be classified as a generative SSL
method.
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Table 5.3: Relative improvements by joint-training EBMs compared to the su-
pervised baseline (abbreviated as sup.) and the pre-training+fine-tuning EBMs
(abbreviated as pre.) respectively. The evaluation metric is accuracy for POS and
F1 for chunking and NER. “Labeled” denotes the amount of labels in terms of the
proportions w.r.t. the full set of labels. “U/L” denotes the ratio between the amount
of unlabeled and labeled data.

joint over sup. joint over pre.
Labeled U/L POS Chunking NER POS Chunking NER

2%
50 7.9 16.5 -2.7 4.7 3.4 3.7
250 12.6 16.6 1.5 4.2 0.9 0.1
500 15.1 20.3 4.5 4.1 -0.3 -1.5

10%
50 5.6 18.0 0.9 3.8 3.0 5.0
250 6.0 18.3 -1.2 3.8 9.4 -0.7
500 8.5 21.8 1.0 5.2 3.7 -4.1

100%
50 3.1 10.3 6.5 3.5 5.3 1.1
250 5.0 13.6 8.3 3.5 7.4 3.6
500 6.2 14.0 8.4 4.3 6.4 2.5

task dependent. Suppose that the working point is indicated by
the performance of the supervised baseline, then the SSL method
brings the largest effect when the performance of the supervised
baseline is moderate, i.e., neither too low nor too high.

• Joint-training EBMs outperform pre-training EBMs in 23 out
of the 27 settings marginally but nearly consistently. A possible
explanation is that pre-training is not aware of the labels for the
targeted task and is thus weakened for representation learning.
In contrast, the marginal likelihood optimized in joint-training is
directly related to the targeted task.

• It seems that the degrees of improvements of the joint-training
EBMs over the pre-training EBMs are not much affected when
varying the labeling sizes and the “U/L” ratios.
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5.5 JRFs for Calibrated Natural Language Understanding

Motivation

In this section, we describe how the joint EBMs (JEMs), as introduced
in Section 5.2, can be used for calibrated natural language understand-
ing. Calibration refers to how well a classification model’s confidence
(reflected by its output posterior probability) aligns with its actual ac-
curacy. As deep learning models achieve amazing accuracy in computer
vision and natural language processing (NLP), more research attention
has been drawn to the calibration aspect of these models. As shown by
[54], the high accuracy from deep models does not always lead to better
calibration. This motivates an important line of works attempting to
achieve a better trade-off between accuracy and calibration.

Most existing calibration methods (see references in [60]) generally
rescale the posterior distribution predicted from the classifier after
training. Such post-processing methods require a held-out development
set with a decent number of samples to be available. In another line
of work, [49] shows that one can train a joint EBM together with
the standard training of a neural classifier. Although calibration is
not explicitly addressed during EBM training, the calibration of the
resulting classifier is shown to be greatly improved. However, the training
framework proposed by [49] is designed for image classifiers, and it can
not be readily applied to discrete text data. [60] investigates JEM
training during the finetuning of pre-trained text encoders (e.g., BERT
or RoBERTa) for natural language understanding (NLU) tasks.

The JEM model for NLU

[60] considers the finetuning of pre-trained text encoder on NLU tasks.
Assume samples from the data distribution pdata are in the form of
(x, y) pairs, where x usually refers to a single or a pair of sentences, and
y refers to the corresponding label. The number of classes are denoted
by |Y|.

Given input x, a text encoder model (e.g., BERT or RoBERTa) is
firstly used to encode x, and the resulting embedding is denoted by
enc(x). For the target classification task, a classifier fCLS, which could
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be a simple linear transform or a multi-layer perception (MLP), will
be applied to enc(x). The output logits are denoted as fCLS(enc(x)),
whose dimension is equal to the number of possible classes |Y|. The y-th
logit is denoted by fCLS(enc(x))[y]. The posterior distribution pθ(y|x)
is obtained by applying a softmax operation to the logits, where θ refers
to the parameters in the model.

In standard finetuning, the cross-entropy (CE) loss and gradient
based optimizers are used to train the classifier:

LCE = E(x,y)∼pdata(− log pθ(y|x)). (5.17)

In the following, we will introduce how a JEM model can be defined on
top of the text encoder for calibrated NLU.

[60] considers a JEM model in a residual form, similar to Section
3.3.3 and Section 4.4.1. The energy function for modeling the marginal
distribution of x is defined as follows:

Eθ(x) = − log pN(x) + Êθ(x) (5.18)

where pN(x) is the base distribution, which will also be used as the
noise distribution during NCE training. [60] examines three variants of
the residual energy function Êθ(x).

• Variant scalar. Another linear layer gS is introduced to define
the energy function, whose output is a scalar:

Êθ(x) = gS(enc(x)).

• Variant hidden. Similar to [49], [162], starting from a softmax
based classifier, an EBM can be defined with the logits as follows:

Êθ(x) = −LogSumExp|Y|
y=1(fCLS(enc(x))[y]).

Different from the scalar variant, here the energy function directly
uses the logits for prediction (visualized in Figure 5.5). Hence the
impact on the model’s classification behavior could be larger.

• Variant sharp-hidden. The hidden variant has a potential weak-
ness that, the correlation between input x and the prediction
y is not addressed because the energy is distributed among all
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Figure 5.5: Comparison of the scalar and the hidden variants of energy functions.
The modules introduced for EBM are shaded in green. [60]

the logits. Motivated by this potential issue, the following sharp
variant is proposed, which can be viewed as an approximation to
the hidden variant, and is found to work well in practice [60].

Êθ(x) = −max
y

fCLS(enc(x))[y].

NCE training of the JEM model

Similar to the discussion in Section 4.4.1, NCE is applied to train the
residual JEM model. NCE trains the model to discriminate between real
samples from pdata and noise samples from a given noise distribution
pN. The NCE loss is the same as Eq. (4.33):

LNCE = − E
x+∼pdata

log 1
1 + ν exp(Eθ(x+)) − ν E

x−∼pN
log 1

1 + exp(−Eθ(x−))/ν

where ν is the ratio of noise samples to real samples.
In [60], LCE and LNCE are jointly optimized during training, that

is:
Ljoint = LCE + LNCE

For constructing the noise distribution pN(x), [60] finetunes the
GPT-2 language model [135] with samples from the target training
set. However during NCE training, the energy model is found to easily
discriminate between data samples and noise samples, which makes
training ineffective [60]. To alleviate this issue, an objective similar to
the masked language model (MLM) loss [40] is adopted during the
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finetuning of the noise model. With a given mask ratio M (e.g., 0.4),
[60] randomly masks part of x, and trains the model to complete it:

LMLM = − E
x∼pdata,xm∼mask(x,M)

log pN(x|xm)

During noise sample generation, adopting the same mask ratio M , a
masked xm is fed to pN (x is from the training set), and the generated
sample are used as the noise sample. In this way, the noise distribution
is made closer to the data distribution.

Evaluation of the Calibration performance

To measure calibration performance, expected calibration error (ECE)
metric is used, following [49], [54]. Given an input sample x, for each
label y, we say that the model predicts that x belongs to label y with
confidence pθ(y|x). Assuming the test-set contains n samples, we will
have n× |Y| predictions.

ECE first partitions all predictions into B equally-spaced bins by
its confidence. Following [49], B = 20 is used, which means the width
of each bin is 0.05. For example, the first bin contains all predictions
that have confidence in the range of [0, 0.05). Then for each bin ECE
computes how the average of confidence is different from its actual
accuracy:

ECE = 1
|Y|

|Y|∑
y=1

B∑
b=1

|Byb|
n
|acc(Byb)− conf(Byb)| (5.19)

where n is the number of test samples. acc(Byb) is the ratio of samples
(x) whose true label is indeed y in the bin Byb, and conf(Byb) is the
average confidence in that bin.

[60] uses the RoBERTa-base model as the text encoder and finetune
it on eight GLUE tasks [182]. It is found that EBM training is able
to reach a better trade-off between accuracy and calibration. In most
tasks, all three EBM variants get substantial improvement in ECE
with little or no loss in accuracy comparing to the (strong) baseline
methods.
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Figure 5.6: The entropy of the posterior (pθ(·|x)) versus energy value Êθ(x) for
SST-2 test-set samples. [60]

How does the model get better calibration? Figure 5.6 from [60]
give some analysis. Figure 5.6 shows the energy value Êθ(x) versus the
entropy of the posterior distribution

H(pθ(·|x)) = −
|Y|∑
y=1

pθ(y|x) log pθ(·|x)

for samples in the SST-2 test set. It is shown that models trained with
the hidden and sharp-hidden variants tend to assign more conservative
predictions (reflected by higher entropy) for higher-energy (less likely)
samples. It is hypothesized that this is due to the strong coupling
between the energy function and the classification logits. However, this
interesting trend (Figure 5.6) is not observed in all datasets (e.g., QNLI).



6
Conclusion

6.1 Summary

Energy-based models (EBMs) form an important aspect of modern arti-
ficial intelligence and signal processing. Unlike most other probabilistic
models which are self-normalized, EBMs specify probability density
functions up to an unknown normalizing constant, and thus are also
referred to as non-normalized probabilistic models. Such model defini-
tion of not imposing normalization enables a great power and flexibility
to the modeling process. One is generally free to choose any nonlin-
ear regression function as the energy function, as long as it remains
normalizable in principle. Accompanied with such flexibility, we have
also shown the advantages of EBMs in naturally overcoming label bias
and exposure bias suffered by locally-normalized models (Section 4.1.2)
and in hybrid generative-discriminative and semi-supervised learning
(Section 5).

On the other hand, although the flexibility of EBMs can provide
significant modeling advantages, both computation of the exact likeli-
hood and exact sampling from these models are generally intractable,
which makes training of EBMs especially difficult and limits their appli-
cations. Moreover, the sequential nature of speech and language also

164
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presents special challenges and needs treatment different from processing
fix-dimensional data (e.g., images).

We are making progress. This monograph presents a systematic in-
troduction to energy-based models, including both algorithmic progress
and applications in speech and language processing, which is organized
into four sections.

In Section 2, we provide a self-contained introduction to the basics
for EBMs, including model definitions, learning algorithms, and sam-
pling/generation algorithms. There are two remarkable features in our
introduction. First, we start with the framework of probabilistic graphi-
cal models (PGMs). The PGM framework enables readers to appreciate
EBMs from the perspective of undirected graphical models and easily
understand the differences between undirected graphical models and
directed graphical models, and between globally-normalized and locally-
normalized. Graphical models provide a natural tool for formulating
variations on classical methods, as well as for exploring entirely new
models. Second, our introduction to the stochastic approximation (SA)
methodology is very useful for readers to develop new algorithms for
learning EBMs, particularly learning with Monte Carlo sampling. The
SA methodology is more general than the ordinary stochastic gradient
descent (SGD) technique, while SGD is only one instance of SA.

The next three sections are dedicated to how to apply EBMs in three
different scenarios, i.e., for modeling marginal, conditional and joint
distributions, respectively. As visualized in Figure 1.2, our organization
is comprehensive and distinctive. A wide range of applications in speech
and language processing are covered, including language modeling,
representation learning over text, speech recognition, sequence labeling
in NLP, text generation, semi-supervised learning, and calibrated natural
language understanding.

6.2 Future Challenges and Directions

EBM based methods represent an important class for the probabilistic
approach to many fields. Despite the progress achieved in these years,
much more work needs to be carried out.
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• Applications of EBMs are still mainly limited by lack of
effective and efficient training techniques. Training tech-
niques are crucial to problem solving with EBMs, and will remain
an active direction for future research. EBMs have been especially
difficult to train. We mainly introduce maximum likelihood train-
ing with MCMC sampling, noise-contrastive estimation (NCE)
and briefly covers score matching (SM). There has been persistent
and ongoing interest in developing effective modeling and training
techniques for learning EBMs (see [204] and its references), but
those methods are mostly first studied for fix-dimensional data.
There is vast room to improve training techniques for EBMs,
especially for sequential data such as speech and language.
Moreover, as we have discussed, learning EBMs over discrete
data are more challenging than over continuous data, due to the
combinatorial explosion of the state space. Langevin sampling,
a particular MCMC sampling method which utilizes gradients,
has been dominantly used in training EBMs over continuous data.
A recent progress in [48], [132] begins to use gradients of the
likelihood function with respect to its discrete inputs to propose
updates in a Metropolis-Hastings sampler. More further research
is needed.

• More downstream applications of EBMs are worthwhile
for exploration. Considering the potential advantages of EBMs
in modeling flexibility, overcoming label bias and exposure bias,
and hybrid generative-discriminative and semi-supervised learning,
the results reviewed in this monograph are only preliminary. There
are many interesting tasks which could be approached by EBMs.
The applications of EBMs require more skill and experience, apart
from using the mainstream deep learning toolkits. To help the
readers to get familiar with the techniques for developing and
applying energy-based models, we summarize some open-source
toolkits in Appendix C.

• We look forward to more foundational and interdisci-
plinary research around EBMs. There is an opportunity for
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developing physics-based methods that could address the diffi-
culty of calculating or sampling the partition function of EBMs
[67]. There are emergent areas of research at the interfaces of
machine learning, quantum computing, many-body physics, and
optimization (see references in [67]).
Many recent biologically plausible algorithms utilize the frame-
work of energy-based models [103], [155]. Biologically plausible
algorithms compute gradients that approximate those computed
by back-propagation (BP), and operate in ways that more closely
satisfy the constraints imposed by neural circuitry. We anticipate
that progress in neuroscience and EBM based machine learning
will benefit from an interplay between both fields.
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A
Notations and Definitions

A.1 Notations

Example Description
zi:j For any generic sequence {zn}, we shall use zi:j to

denote zi, zi+1, · · · zj . Similarly, wherever a collection
of indices appears in the subscript, we refer to the
corresponding collection of indexed variables, e.g.,
cl,1:H ≜ {cl,1, cl,2, · · · cl,H}.

x x generally denotes a random variable, which can ei-
ther be scalar- or vector-valued, and often denotes the
observation variable. For simplicity, we also use the
same notation x to denote the values taken by the
random variable x, e.g., in the argument of its density
function, which should be clear from the context.

h The hidden variable.
y The class label, or the output variable.
|B| The cardinality/size of a set B
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xT , AT A superscript T denotes the transpose of a vector x or
matrix A

∆K The K-dimensional probability simplex.∑
x f(x) The summation over x is a shorthand, which should be

an appropriate combination of summation and integra-
tion, depending on the components of x being discrete
variables, continuous variables, or a combination of the
two.

pora(·) The (unknown) oracle density, sometimes also known
as the data distribution and denoted as pdata(·).

pemp(·) The empirical density. For a training dataset consisting
of n independent and identically distributed (IID) data
points {x1, · · · , xN}, we have

pemp(x) ≜ 1
N

N∑
i=1

δ(x− xi)

pθ(·), p(·; θ) The (target) model density, parameterized by θ.
qϕ(·), q(·;ϕ) The auxiliary density introduced in training, parame-

terized by ϕ.
Uni[a, b] Uniform distribution for a continuous variable over

interval [a, b], or for a discrete variable over integers
from a to b.

A.2 Definitions

Term Description
σ(v) The sigmoid function, σ(v) ≜ 1

1+e−v , also called
the logistic sigmoid function. It is also known as a
squashing function, since it maps the whole real line
to [0, 1], which is necessary for the output to be
interpreted as a probability.
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logit(σ) The logit function, logit(σ) ≜ log( σ
1−σ ) for 0 < σ <

1, also known as the inverse of the sigmoid function.
It represents the log of the ratio of probabilities for
two classes, also known as the log odds.

softmax(z1:K) The softmax function, softmax(z1:K)k ≜
exp(zk)∑K

j=1 exp(zj)
, which realizes normalization from RK

to ∆K (the K-dimensional probability simplex). It
is also known as the normalized exponential and
can be regarded as a multiclass generalization of the
logistic sigmoid.

δ(x = a) An indicator function of x which takes the value 1
when x = a and 0 otherwise.

H[q] The entropy is defined as H[q] ≜ −
∫
qlogq.

KL[p||q] The inclusive KL-divergence between two distri-
butions p(·) and q(·) is defined as KL[p||q] ≜∫
plog

(
p
q

)
, which by default is called the KL-

divergence, and is sometimes referred to as the for-
ward KL-divergence, relative entropy.

KL[q||p] The exclusive KL-divergence is defined as KL[q||p] ≜∫
qlog

(
q
p

)
, which is sometimes also referred to as

the reverse KL-divergence.



B
Background Material

B.1 Maximum entropy models

Theorem B.1. When confronted by a probability distribution p(x)
about which only a few facts are known, the maximum entropy principle
(maxent) offers a rule for choosing a distribution that satisfies those
constraints [31], [94]. According to maxent, one should select the p(x)
that maximizes the entropy

H(p) = −
∑

x

p(x) log p(x) (B.1)

subject to the constraints. When there is a reference distribution q(x),
one should select the p(x) that minimizes the relative entropy or
Kullback-Leibler divergence1

KL(p||q) =
∑

x

p(x) log p(x)
q(x) (B.2)

Assuming the constraints assert that the averages of certain functions
fk(x) are known, i.e.,

Ep(x) [fk(x)] = Fk, k = 1, 2, · · · (B.3)

Then, it can be shown that by introducing Lagrange multipliers (one
for each constraint, including normalization),

• The distribution that maximizes the entropy has the following
form

p∗(x) = 1
Z

exp
(∑

k

wkfk(x)
)

(B.4)

1When q(x) is uniform, this is the same as maximizing the entropy.
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• The distribution that minimizing relative entropy relative to q(x),
has the following form

p∗(x) = 1
Z
q(x) exp

(∑
k

wkfk(x)
)

(B.5)

where {wk} are set such that the constraints Eq. (B.3) are satisfied, and
Z is the normalizing constant. The two forms in Eq. (B.4) and Eq. (B.5)
are often collectively referred to as maximum entropy distributions.

Theorem B.1 gives the form of maximum entropy distributions
that satisfy certain moment constraints. In an opposite way, when
given that a distribution satisfies the form of Eq. (B.4) or Eq. (B.5),
the following theorem establish the connection between the maximum
entropy distribution and the maximum likelihood distribution.

Theorem B.2. Assume that a variable x comes from a probability
distribution of the form in Eq. (B.4) or Eq. (B.5), where the functions
fk(x) are given, and the parameters {wk} are not known. A dataset
{x(n)} is supplied. Then, it can be shown that by differentiating the log
likelihood, the maximum-likelihood (ML) parameters wML satisfy

Ep(x) [fk(x)] = 1
N

∑
n

fk(x(n)), k = 1, 2, · · ·

= Epemp(x) [fk(x)]
(B.6)

where the left-hand is the model average under the fitted model, the
right-hand the empirical average over the training data points, and
pemp(·) denotes the empirical density over the training data points.

Combining the above two theorems, we can easily see that maximum
entropy fitting with Fk’s being set as the empirical averages is equivalent
to maximum likelihood fitting of a log-linear distribution [94], [129].

B.2 Fisher equality

Formally, for any density function pθ(x), the partial derivative w.r.t.
θ of the log density function, ∂

∂θ logpθ(x), is called the “score”. Under
certain regularity conditions, the expectation of the score w.r.t. the
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density itself is 0. This formula is often referred in presenting Fisher
information2, so we call it Fisher equality, which, is frequently used in
this monograph.

Epθ(x)

[
∂

∂θ
log pθ(x)

]
= 0. (B.7)

Further, based on the above basic Fisher equality, we have the
following very useful theorem.
Theorem B.3. Consider any latent-variable model pθ(x, h), which con-
sisting of observation x and latent variable h, then we have

∂

∂θ
log pθ(x) = Epθ(h|x)

[
∂

∂θ
log pθ(x, h)

]
(B.8)

which means that the gradient of the log marginal likelihood is equal to
the expected log joint likelihood, where the expectation is taken over
the posteriori distribution.

Proof.

∂

∂θ
log pθ(x) = Epθ(h|x)

[
∂

∂θ
log pθ(x)

]
= Epθ(h|x)

[
∂

∂θ
log pθ(x, h)− ∂

∂θ
log pθ(h|x)

]
= Epθ(h|x)

[
∂

∂θ
log pθ(x, h)

]
where in the second line, according to Fisher equality, we have

Epθ(h|x)

[
∂

∂θ
log pθ(h|x)

]
= 0,

and thus we obtain the final line. For simplicity, Eq. (B.8) is also referred
to as Fisher equality. ■

2https://en.wikipedia.org/wiki/Fisher_information

https://en.wikipedia.org/wiki/Fisher_information


C
Open-source Toolkits Related to EBMs

• Trans-dimensional random field (TRF) LMs: https://github.com/
thu-spmi/SPMILM

• Energy-based cloze models for representation learning over text
(Electric): https://github.com/google-research/electra

• CRF-based ASR Toolkit (CAT): https://github.com/thu-spmi/
CAT

• Neural CRF Transducers for Sequence Labeling: https://github.
com/thu-spmi/SPMISeq

• Controlled text generation from pre-trained language models (mix-
and-match): https://github.com/mireshghallah/mixmatch

• Learning neural random fields with inclusive auxiliary generators:
https://github.com/thu-spmi/Inclusive-NRF

• JEMs and JRFs for semi-supervised learning: https://github.com/
thu-spmi/semi-EBM
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Tree-width, 103
Trigram, 77

Undirected graphical model
(UGM), 9, 19

Variational autoencoder (VAE),
7, 19

Variational inference (VI), 49
Variational learning, 49
Variational methods, 49

Weighted finite-state transducer
(WFST), 107

Whole-sentence maximum
entropy (WSME), 71

Word error rate (WER), 72
Word morphology, 22


	Introduction
	The Probabilistic Approach
	Features of EBMs
	Organization of This Monograph

	Basics for EBMs
	Probabilistic Graphical Models (PGMs)
	EBM Model Examples
	Learning EBMs by Maximum Likelihood
	Learning EBMs by Noise-contrastive Estimation (NCE)
	Generation From EBMs

	EBMs for Sequential Data With Applications in Language Modeling
	Autoregressive Language Model (ALM)
	Energy-based Language Model (ELM)
	ELMs for Speech Recognition
	Energy-based Cloze Models for Representation Learning Over Text

	Conditional EBMs With Applications
	CRFs as Conditional EBMs
	CRFs for Speech Recognition
	CRFs for Sequence Labeling in NLP
	EBMs for Conditional Text Generation

	Joint EBMs With Applications
	Basics for Semi-supervised Learning
	Upgrading EBMs to Joint EBMs (JEMs) for Fixed-dimensional Data
	Upgrading CRFs to Joint Random Fields (JRFs) for  Sequential Data
	JEMs and JRFs for Semi-supervised Learning
	JRFs for Calibrated Natural Language Understanding

	Conclusion
	Summary
	Future Challenges and Directions

	Acknowledgements
	Appendices
	Notations and Definitions
	Background Material
	Open-source Toolkits Related to EBMs
	References
	Index


