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ABSTRACT

The Hidden Markov Model (HMM) has been widely used in many
applications such as speech recognition. A common challenge for
applying the classical HMM is to determine the structure of the hid-
den state space. Based on the Dirichlet Process, a nonparametric
Bayesian Hidden Markov Model is proposed, which allows an infi-
nite number of hidden states and uses an infinite number of Gaussian
components to support continuous observations. An efficient varia-
tional inference method is also proposed and applied on the model.
Our experiments demonstrate that the variational Bayesian inference
on the new model can discover the HMM hidden structure for both
synthetic data and real-world applications.

Index Terms— Nonparametric Bayesian, Hidden Markov
Model, Variational Inference, Speech Recognition

1. INTRODUCTION

The Hidden Markov Model (HMM) has been widely used in many
areas of pattern recognition and machine learning, such as speech
recognition and gene clustering [1, 2]. The HMM includes a se-
quence of multinomial state variables s1, ..., s, and a sequence of
observations o1, ..., or. Each state variable takes its value in the state
space {1, ..., N'}, and each observation o; is drawn independently of
the other observations conditional on s;.

Varying the size of the state space IN greatly affects the per-
formance of HMM. Because of this reason, there are lots of works
trying to find out an optimal N. Among those works, nonparamet-
ric Bayesian methods have attracted more and more attention in re-
cent years. Some of the nonparametric Bayesian models such as the
Dirichlet Process [3, 4] and the Indian Buffet Process [5] have been
widely applied.

In this paper, we extend the Bayesian Hidden Markov Model
[1, 6] to its nonparametric counterpart, by replacing the Dirichlet dis-
tribution by the Dirichlet process. The size of the state space of this
new nonparametric Bayesian HMM model (NBHMM) is infinite,
in which the “effective” states correspond to the states with “’large”
posterior probabilities. Because the exact inference of this model is
intractable, we derive an variational inference method which is effi-
cient even for large-scale problems.

The new NBHMM is different from other existing nonpara-
metric Bayesian HMMs, which include the infinite HMM (iHMM)
proposed in [7] and the hierarchical Dirichlet process HMM (HDP-
HMM) proposed in [3]. First, both existing models employ sampling-
based inference which is usually much slower for large-scale prob-
lems, while we apply the efficient variational inference in the

This work was supported by National Natural Science Foundation of
China (60402029) and China 863 program (2006AA01Z149).

978-1-4244-4296-6/10/$25.00 ©2010 IEEE

2098

NBHMM. Second, the iHMM deals only with discrete observations,
while the NBHMM supports continuous observations via Gaussian
mixtures. Third, note that the transition distribution in both the
iHMM and the HDP-HMM is generated from a hierachical Dirich-
let process. Instead, the transition distribution in the NBHMM is
directly created from a stickbreaking construction, which is simpler
and thus allows more efficent inference.

The rest of paper is organized as follows. Section 2 describes
the new NBHMM. Section 3 introduces the variational inference for
the NBHMM. The experimental results in Section 4 demonstrate the
effectiveness of the NBHMM on learning the structure of the hidden
state space.

2. NONPARAMETRIC BAYESIAN HMM

Fig. 1. Nonparametric Bayesian HMM

The graphical model of the NBHMM is shown in Fig.1. In this
model, the dark nodes o; are observations which take continuous
values. A chain of mixtures of Gaussian models is considered to
generate the sequence of observations. The white nodes s; are the
hidden states, h; are the mixture components, and both of them take
discrete values. In many applications, p(s¢|s¢—1) and p(h¢|s;) are
regarded as the same for different t. We can represent p(s1) with
™ = (ﬂ—i)’f\;h p(St‘St71) with A = (aj)éyilaaj = (a’ji)il\;l’ and
p(he|se) with C = (c;)M1,¢; = (¢ji)fe;. Here N denotes the
size of the state space and K the size of the component space. 7 is a
normalized vector, A is the state transition matrix and C is the state-
to-component matrix. p and X are the parameters of the Gaussian
distribution. For different s; and h¢, ps, n, and X5, 5, are different.

For the Bayesian HMM, the main difference from the classical
HMM is that the parameters 7, A, C are not treated as unknown
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values, but as random variables.
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Assuming the covariance matrix X is diagonal with the dimension
of D, we place Gaussian-Gamma prior distribution on Gaussian pa-
rameters p and X in this paper. For each dimensiond =1, ..., D,
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One main problem for both the classical HMM and Bayesian HMM
is the difficulty in determining the optimal size of the state space /N
and the component space K. The NBHMM tries to circumvent the
problem by setting the number of states and components (i.e. /N and
K) to be infinite. In order to have an infinite-length multinomial dis-
tribution, we use the Dirichlet process [3] for the priors p(7), p(A),
p(C). In particular, we apply one of the commonly-used representa-
tions of the Dirichlet process called the ”stickbreaking construction”

(81,
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where Z ~, mi = 1 and the same for a;; and c;. The elegancy of

nonparametric Bayesian method is that, although the state space is
infinite, the posteriors p(7r|o), p(a;|o) and p(c;|o) will only have
“large” probabilities in a finite number of states while all others are
nearly equal to zero. In fact, only the states corresponding to "large”
probabilities are effective in explaining the observed data.

3. VARIATIONAL INFERENCE ON NBHMM

The inference problem for the NBHMM model is to compute the
posterior p(s, h,m, A, C, u, X|o), which is intractable in general.
However, the variational inference provides us a way to approxi-
mately compute the posterior efficiently even for large-scale prob-
lems. The basic idea of variational inference is to use a tractable
distribution ¢ to approximate the true posterior distribution p, and
then to minimize the Kullback-Leibler divergence between the two
distribution as measured by K L(q|p) = [ qlog(q/p).

For the approximate posterior distribution ¢, we make two ap-
proximations. First, we assume that (7, A, C, p, ) and (s, h) are
mutually independent. Second, we only compute the probabilities
of the L states of the infinite large state-space. L is called the trun-
cation level of stickbreaking, which should be sufficiently large to
ensure the accuracy. Note that using the truncation level is quite dif-
ferent from setting a finite state-space in a statistical perspective, in

that the truncation level is just an approximation of the infinite states.
Similar truncation is applied to the state-dependent component dis-
tribution (i.e. each row of C). Finally, the approximate distribution
can be represented as follows,

q(s, h)g(n")g(A")q(C)q(p, 27 ") 3)
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where,

q(m) = Beta(rl(,,g),TQ(W;))

q(af;) = Beta(Tyat ), Taat))

q(chr) = Beta(ry(r 100 T2(e,))

Q(1ska|Z5a) = N ik, &5 Sika)

a(;nq) = Gamma(ijra, Rjka)

The parameters 7,/,7q/, Ter, U, 5 , 1, and R of the approximate dis-
tribution ¢ is computed by minimizing K L(q|p) by a coordinate de-

scent algorithm. The resulting variational update steps are as fol-
lows:
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The values of q(s¢), q(s¢, st—1), q(s¢, ht) can be computed by the
forward-backward propagation algorithm similar to the classical

2099



HMM given that,
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where W (e) is the digamma function. In conclusion, the variational
inference iteratively updates the parameters, which is guaranteed to
converge to a local minimum of the divergence K L(q|p).

4. EXPERIMENTS

The hyperparameters of the NBHMM in the experiments are: o, =
l,aa=1l,ac=1v9=0,&% =1,170 =1, Ro = 0.01.

4.1. A Simple Comparison

The synthetic data is generated by a 5-state Markov machine as in
Fig.2 (a). The number in the square node denotes the state-number.
The circle node is introduced to simplify the plotting. This is in-
tended as a toy example of continuous speech recognition which
uses four phonetic states (no.1-4) plus a silence state (no. 5). The
data contains 50 chains, and the length of each chain is 20. The ob-
servations take 2-d continuous values being synthetic samples from
Gaussian distributions, as shown in Fig.2 (b). Different colors mean
that the observations are generated by different hidden states. We fit
both the classical HMM with the size of state-space N = 20 and the
NBHMM with the truncation level L = 20. The Hinton graphs for
the learned transition matrix A of the classical HMM and the mean
of ¢(A) of the NBHMM are plotted in Fig.2 (c)(d). (In the Hinton
graph, a bigger blot represents a larger probability in the transition
matrix.)

It is clear from Fig.2 that given the improper setup of the size
of the state space, the classical HMM cannot learn the structure of
the Markov machine that generates the data. In contrast, the Hin-
ton graph of the NBHMM indicates that there are five states, corre-
sponding to row 1,2,3,4,6 in Fig.2(d), whose posteriors are different
from their priors due to the impact of the observations. It is also
found that, each of the corresponding 5 rows in the C matrix for the
NBHMM places nearly all weights on only one component. Thus,
only these 5 states are effective in explaining the data. And it can be

u = 2 ST
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(c) Hinton graph for classical HMM (d) Hinton graph for NBHMM

Fig. 2. A simple comaprison of classical HMM and NBHMM

easily read from Fig.2(d), that the transitions between these 5 states
correspond exactly to Fig. 2(a), discovering the true structure of the
Markov machine.

4.2. Simulated Triphone Structure

In order to illustrate the ability of the NBHMM in learning more
complex structures, we simulate an important structure which is
widely used in current speech recognition system - triphone struc-
ture for context-dependent acoustic modeling [9]. It is supposed
that there are two consonants - cl and c2, and two vowels - vl and
v2, each being modeled as two-states. The vocabulary consists of
three words - clvl, clv2 and c2vl, plus a silence unit. Then the
cross-word triphone structure is shown in Fig.3(a). We generate 5
chains, and the length of each chain is 1000. The observations take
2-d continuous values as shown in Fig.3(b).

Again, the Hinton graph resulting from the variational inference
over the NBHMM with L = 40 discovers the nearly-correct struc-
ture. There are 22 “effective” states, slightly more than the real 19
states, which is acceptable considering this difficult structure and
the noise on the observations. Further, it can be read from Fig.3(c)
that the transitions between these 22 states correspond closely to
Fig.3(a). And each of the corresponding 22 rows in the C matrix
for the NBHMM again places nearly all weights on one component.

4.3. Impact on Speech Recognition

Finally, we apply the NBHMM in the task of Chinese isolated
(toned) syllable recognition. There are a total of 1254 syllables
in Chinese. The database consists of 50 males, with each person
speaking all 1254 syllables exactly once. We leave one person’s data
for recognition and use the remaining 49 persons’ data for training.
This procedure is repeated for every person, and the averaged recog-
nition rate over 50 persons is reported here. In the front-end, the
speech was parameterized into 14 MFCCs along with normalized
log-energy, and their first and second order differentials.
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(b) Synthetic observations

(c) Hinton graph for NBHMM

Fig. 3. NBHMM for a simulated “triphone” structure

If we use the whole-syllable classical HMM, some arbitrary size
of the hidden state space has to be prefixed for each syllable. And, it
has been found that the size of the state space has significant impact
on the recognition rate. In our system with each state having 2 di-
agonal Gaussians, the recognition rate of the 6-state classical HMM
for each syllable is 73.4%, while increasing the state-space to 16-
state for each syllable gives a recognition rate of 80.1%. If we use
the NBHMM model for each syllable, the variational inference au-
tomatically converges to using about 14-18 “effective” states for all
the syllables, and the recognition rate is 78.9%. This resulting size
of the state space coincides with the peaky recognition performance
region of using the classical HMM.

We illustrate the resulting Hinton graphs of a Chinese syllable
(’shi4”) for the classical HMM (with N = 66) and the NBHMM
(with L = 66) in Fig.4. As in the previous experiments, the classi-
cal HMM uses too many hidden states (being overfitted), while the
NBHMM converges to use only 16 “effective” states. Besides, each
of the corresponding rows in the C matrix for the NBHMM places
nearly all weights on one or two components.

5. CONCLUSION

In this paper, we proposes a novel Nonparametric Bayesian HMM.
The NBHMM assumes the state space is infinitely large and circum-
vents the difficulty of prefixing the size of state space. We also de-
rive an efficient variational inference for this new model in the case
of continuous observations. The experiments have demonstated its
ability of structure discovery for both synthetic data and real-world
speech recognition application.
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(b) NBHMM
Fig. 4. Hinton graph for Chinese syllable ”Shi4”
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