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ABSTRACT 
 
The use of forward-backward (FB) computation based posterior 
probabilities as confidence measures (CMs) for all recognized 
candidates in a lattice seems to be common across various lattice-
based audio indexing systems. However, a major limitation with 
this approach is that its performance for CMs cannot be improved 
easily, since it relies almost entirely on a single information source 
- the acoustic and language-model probabilities. In this paper, we 
propose to formulate computing CMs in the lattice case as a multi-
class sequential labeling problem, using conditional random fields 
(CRFs) as the underlying model. In this approach, various relevant 
features including the FB posterior probabilities could be 
combined together. Note that CRFs are well suited to label 
sequence data and some features are defined over a word sequence. 
This paper presents how we resolve these two issues in the lattice 
case, beyond others’ previous work in CRF-based CMs for the 1-
best case. Once properly implemented, the proposed approach 
achieves significant performance improvements for both CMs in 
the lattice case and lattice-based audio indexing. 
 

Index Terms— Confidence measure, CRF, audio indexing 
 

1. INTRODUCTION1 
 

There is a tremendous increase of audio data, such as web videos, 
meeting recordings, voicemails, etc. Audio indexing refers to the 
task of first processing the audio by automatic speech recognition 
(ASR), and then indexing the recognized results so as to answer 
information-retrieval queries from users [1-3]. A typical query is to 
find in the audio the desired keyword entered by the user.  

Note that real-world audio is still a challenge for today’s 
speech-to-text ASR system. So instead of using only the 1-best 
transcript, modern audio indexing systems search alternative 
recognized candidates as well [2, 3]. The recognized candidates, 
either words or subwords, are represented in a graph structure, 
called lattice. For every recognized candidate in the lattice, a 
posterior probability is calculated from the acoustic and language-
model probabilities using the well-known forward-backward (FB) 
technique [4]. The lattice, or some other further reduced structure, 
is searched to find the word/subword sequence that matches the 
query keyword. The posterior probabilities are then used as 
confidence measures (CMs) of the recognized candidates to sort 
the matches. 

Different audio indexing systems may differ in many aspects 
such as the indexing unit (word, subword, or hybrid) [3], the 

                                                 
1 This work is supported by National Natural Science Foundation 
of China (61075020) and China 863 (2006AA01Z149). 

specific form of the reduced structures, e.g. time-anchored lattice 
expansion (TALE) [2], confusion network (CN) [5]. In contrast, 
the use of FB posterior probabilities as the confidence scores 
seems to be common across various audio indexing systems. While 
there are a lot of studies on CMs for speech recognition [6], most 
of them seek CMs mainly for the recognized 1-best (the 1-best 
case) rather than for all recognized candidates in a lattice (the 
lattice case). Computing CMs for the 1-best case benefits many 
ASR applications, e.g. to detect recognition errors, assist spoken 
dialog, but it is insufficient for lattice-based applications, e.g. audio 
indexing, where computing CMs for the lattice case is required. 

How to effectively compute CMs for the lattice case is the 
main issue studied in this paper. The approach of using FB 
posterior probabilities as CMs appears to be a good choice. After a 
forward-backward computation, we obtain all of them. However, a 
major limitation with this approach is that its performance cannot 
be improved easily, since it relies almost entirely on a single 
information source - the acoustic and language-model probabilities. 
From this perspective, the approach of computing CMs by 
combining various relevant features is more attractive. In this 
approach, computing CMs for the recognized 1-best is formulated 
as a binary classification problem with the posterior probability of 
labeling ‘correct’ as the CM for each word. Various features and 
classification models are proposed, as surveyed in [6]. In a recent 
work [7], improved performances of CMs for the 1-best case are 
obtained by introducing (linear-chain) conditional random fields 
(CRFs) [8] to do sequential labeling and using contextual features. 

In this paper, we propose to formulate computing CMs in the 
lattice case as a multi-class sequential labeling problem, using 
CRFs as the underlying model. In this approach, various relevant 
features including the FB posterior probabilities could be 
combined together. It should be noted that it is not trivial to extend 
CRF-based CMs from the 1-best case (as shown in [7]) to the 
lattice case. Two issues need to be resolved. First, (linear-chain) 
CRFs are probabilistic models suited to label sequence data2, while 
the lattice from the ASR decoder is not sequential. Thus we 
propose to first reduce the lattice to a linearized structure - sausage. 
This is compatible with audio indexing and could be achieved by 
either the TALE or the CN method, both of which align word 
candidates to word positions. Second, some features, e.g. 
contextual features, are defined over a word sequence. We need to 
figure out methods to extract such features from the lattice, which 
is not as straightforward as from the 1-best transcription. This 
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paper presents how we resolve the above two issues. Experimental 
evaluations show that the new approach achieves significant 
performance improvements for both CMs in the lattice case and 
lattice-based audio indexing.  

This paper is organized as follows. We detail the proposed 
CRF-based approach for CMs in the lattice case, including the 
CRF model formulation and the features used in the CRFs in 
Section 2 and Section 3 respectively. Evaluation results for both 
CMs and audio indexing are provided in Section 4. Finally, the 
conclusions are made in Section 5. 

 
2. CRFS FOR CMS IN THE LATTICE CASE 

 
A conditional random field is a conditional distribution ݌ሺݕ|ݍሻ 
with an associated graphical structure, which is often a linear-chain 
in most cases. The variable ݕ represents the observations/inputs, 
and the variable ݍ represents the attributes/labels that we wish to 
predict from the observations. Various features are computed 
based on the input observations. The CRF model affords the use of 
rich, non-local features of the input observations.  

Take the computation of CMs in the 1-best case as an 
example. The observation sequence ݕ is defined to be the 1-best 
transcript. Useful features include FB posteriors, part-of-speech, 
word duration, etc. Contextual features based on these base 
features can also be supported. The label variables are structured as 
a linear-chain. Corresponding to the ݊-th position of the 1-best 
transcript, there is a binary label variable ݍ௡, taking the values of 
being ‘correct’ or ‘false’. The posterior ݌ሺݍ௡ ൌ 'correct' | ݕሻ  is 
used as the CM for the ݊-th word. 

Now consider the computation of CMs in the lattice case. 
Suppose that we take the lattice directly as the observations ݕ, and 
for each word candidate, we define a binary label variable as in the 
1-best case. Then these label variables should interact with each 
other. The underlying graphical structure is not easily to be 
determined and certainly become more complicated. We leave the 
possibility of applying general-structure CRFs for future studies. 

In this paper, we propose to first reduce a lattice to a 
linearized structure - sausage. Then, we could define a CRF over 
the sausage. 
 
2.1. Reduce lattice to sausage 
 
Reducing a lattice to a sausage is compatible with audio indexing. 
For audio indexing, the lattice from the ASR decoder is also 
required to be reduced to some forms of smaller-sized and 
linearized structure, which is beneficial for indexing and searching. 
The reduction could be achieved by either the TALE [2] or the CN 
[5] method, both of which align word candidates to word positions. 
The TALE method is used in our experiments due to its simplicity. 

Fig. 1 shows an example of a lattice and the sausage that is 
converted from the lattice. A lattice is a weighted directed graph 
where the arcs represent word candidates with FB posterior 
probabilities. For the sausage, there is a linear sequence of slices, 
each of which includes a number of word candidates (also called 
word arcs). 
 
2.2. Define CRF over sausage 
 
After we obtain the sausage from the lattice, we could define a 
linear-chain CRF over the linear-structured sausage. Suppose that 
the sausage has a total number of ܰ slices and there are a total 
number of ܭ௡  word arcs contained in the ݊ -th slice, which are 

denoted by ܥܴܣଵ
௡, ڮ , ௄೙ܥܴܣ

௡  respectively.  
The observation sequence ݕଵ ڮ ேݕ  is now defined to be the 

sausage, where ݕ௡ represents the ݊-th slice. Corresponding to the 
݊-th slice, we define a multi-valued label variable ݍ௡ that can take 
on a total number of ܭ௡ ൅ 1 values, which are  ܥܴܣଵ

௡, ڮ , ௄೙ܥܴܣ
௡  

plus a special value called ‘null’. Labeling ݍ௡  with ܥܴܣ௞
௡ , ݇ ൌ

1, ڮ , ௡ܭ , means that the word arc ܥܴܣ௞
௡  is correct. Labeling ݍ௡ 

with ‘null’ means that none of the word arcs contained in the ݊-th 
slice is correct. In this manner, the word arcs contained in the same 
slice compete with each other to be the correct one. 

The conditional distribution ݌ሺݕ|ݍሻ is defined as follows: 

ሻݕ|ݍሺ݌ ן ݌ݔ݁ ൝෍ ߶௡ሺݍ௡, ሻݕ
ே

௡ୀଵ

൅ ෍ ߰௡ሺݍ௡ିଵ, ,௡ݍ ሻݕ
ே

௡ୀଶ

ൡ         ሺ1ሻ 

Here ߶௡ሺݍ௡,  ሻ is the node potential function at position ݊, whichݕ
is further computed as 
 ߶௡ሺݍ௡, ሻݕ ൌ ௡ݍother1ሺߣ ൌ 'null'ሻ ൅ ௡ݍҧother1ሺߣ ് 'null'ሻ 

൅ ෍ ෍ ቂߣ௙ሺ஺ோ஼ೖ
೙ሻ

௙ 1ሺݍ௡ ൌ ௞ܥܴܣ
௡ሻ ൅ ҧߣ

௙ሺ஺ோ஼ೖ
೙ሻ

௙ 1ሺݍ௡ ് ௞ܥܴܣ
௡ሻቃ

௙

௄೙

௞ୀଵ

 ሺ2ሻ 

Here ݂ሺ·ሻ denotes a particular (discrete-valued) feature. ݂ሺܥܴܣ௞
௡ሻ 

represents the specific feature value that is computed for word arc 
௞ܥܴܣ

௡, e.g. the discretized FB posterior probability of ܥܴܣ௞
௡. 1ሺ·ሻ 

denotes the indicator function, e.g. 

1ሺݍ௡ ൌ ௞ܥܴܣ
௡ሻ ൌ ൜1 ௡ݍ ݂݅ ൌ ௞ܥܴܣ

௡ 
0 ݁ݏ݅ݓݎ݄݁ݐ݋

 

The summation over ݂ means that we have a number of different 
features computed for each word arc, which will be described in 
the next section.  

Equ. (2) defines the potential function to be a weighted 
combination of a set of indicator functions, which is a common 
practice for applying CRFs. The ߣԢݏ  and ߣҧԢݏ  are the weights 
indexed by the values of various features. The superscript indicates 
which feature the weight is related to. Consider a particular feature 
݂ሺ·ሻ  and suppose that ݍ௡  is labeled with ܥܴܣ௞

௡ . Then, the 
corresponding weight ߣ௙ሺ஺ோ஼ೖ

೙ሻ
௙  will contribute to the conditional 

distribution ݌ሺݕ|ݍሻ. Otherwise (i.e. ݍ௡  is labeled with word arcs 
other than ܥܴܣ௞

௡), the corresponding contrary weight ߣҧ
௙ሺ஺ோ஼ೖ

೙ሻ
௙  will 

contribute to the conditional distribution. Depending on whether 
 - ௡ is labeled with ‘null’ or not, two feature-independent weightsݍ
either ߣother or ߣҧother, are activated, since no features are defined 
for the pseudo word arc ‘null’. 

The ߰௡ሺݍ௡ିଵ, ,௡ݍ  ሻ in Equ. (1) is the edge potential functionݕ
at position ݊, which is computed as  

߰௡ሺݍ௡ିଵ, ,௡ݍ ሻݕ ൌ ௘ሺ௤೙షభ,௤೙,௬ሻߣ
௘                           ሺ3ሻ  
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Fig.1: Example of a lattice and the sausage reduced from the lattice



Here we use only one transition feature ݁ሺݍ௡ିଵ, ,௡ݍ  ሻ whose valueݕ
is 1 if the word arcs given by ݍ௡ିଵ  and ݍ௡  (by referring to the 
sausage ݕ ) are successively appeared in a path during ASR 
decoding and 0 otherwise. 

Once all the weights are estimated from training data, we can 
compute the posterior probability ݌ሺݍ௡ ൌ ௞ܥܴܣ

௡ | ݕሻ as the CM for 
word arc ܥܴܣ௞

௡ based on the trained CRF model. 
 

3. FEATURES FOR CMS IN THE LATTICE CASE 
  
To achieve good performances of CMs using the CRF-based 
approach, we need a set of relevant features that are informative to 
distinguish correctly recognized words from possible recognition 
errors. A lot of features are studied in the literature for CMs in the 
1-best case, from which we select two types of base features – 
fbconf and lmbb, which are reported to have the most impact to 
improve the CM performance [7].  

A difference between the 1-best case and the lattice case for 
computing features is that in the lattice case, the features are 
needed to be computed for all the word candidates in the sausage, 
rather than only for the 1-best transcription as in the 1-best case. 
This will bring some difficulty in generating certain features which 
are defined over a word sequence, e.g. the lmbb feature and all 
contextual features. In the following, we will present our solution 
to extract such features from the lattice. 
 
3.1. Base features 
 
First, there is no difficulty in generating fbconf feature. The FB 
posterior probabilities are computed for each word arc in the lattice. 
In reducing the lattice to the sausage, the FB posterior probabilities 
are naturally retained for the word arcs in the sausage. The fbconf 
feature is then obtained by discretizing the continuous posterior 
probability into 6 classes based on K-mean clustering in our study. 

In a word sequence, the language model back-off behavior 
(LMBB) for each word is the largest degree n of the current n-
gram appeared in the chosen language model [7]. The 3-gram 
language model from our ASR system is used here. This base 
feature includes 3 main classes (‘I1’, ‘I2’, ‘I3’) and 3 other specific 
classes (‘11’, ‘21’, ‘22’) that represent the different cases in the 
beginning of the word sequence. 

The lmbb feature is defined over a word sequence. However, 
during decoding, we can keep track of the best partial path up to 
every word candidate. The immediate predecessor words are stored 
for every word candidate in the lattice during lattice generation. 
For example, in Fig. 1(a), the immediate predecessor word for 
word candidate 9ݓ is 6ݓ, which has the immediate predecessor 
word 3ݓ. So we can determine the lmbb feature for word candidate 
9ݓ  by checking the trigram 9ݓ‐6ݓ‐3ݓ  against the trigram 
language model. 
 
3.2. Contextual features 
 
Using context to enrich base features has shown promising results 
for CMs [7]. Thus we generate contextual features for both the 
fbconf feature and the lmbb feature. The contextual feature is well 
defined over a word sequence, as detailed in [7]. Specifically, a 
contextual feature with the 3-gram pattern ‘-1/0/1’ means that it is 
created by joining the base feature at the previous position, the 
current position, and the next position in the sequence. 

To generate such contextual features, we need to know not 
only the immediate predecessor word which can be uniquely 

determined (as explained above for lmbb feature generation), but 
also the immediate successor word which is not necessarily 
uniquely determined. Our solution is that if there are a number of 
paths passing through the current word, e.g. 6ݓ in Fig. 1(a), we 
choose the best partial path (as measured by the average likelihood 
of the partial path normalized by the number of frames) to 
determine the immediate successor, e.g. 8ݓ  (if the average 
likelihood of the partial path ‘െ6ݓ െ  is larger than that of the ’8ݓ
partial path ‘െ6ݓ െ  .(’9ݓ
 

4. EXPERIMENTAL SETUP AND RESULTS 
 
Evaluation experiments are carried out with a large vocabulary 
Chinese continuous speech recognition system. The benchmarking 
of this system for 1-best transcription is described in [9]. Here we 
use the same acoustic features and HMMs as in [9], but update the 
language model to be a trigram model trained from about 200 
million Chinese words mostly coming from Chinese newspapers. 
A total of about 12 hours of Chinese male spontaneous speech data 
are used, which is divided into a development and a test set of 6h 
each (similar to [7]), for which Chinese Character error rates 
(CCER) of 30.38% and 31.87% are achieved respectively. We use 
the development set to train the CRF classifiers and the test set to 
evaluate performance. The CRF++ tool [10] in its original form 
cannot support the CRF as defined in Section 2, and is modified to 
do training and inference for the new CRF model.  

In the experiments, both the development and test speech data 
are first decoded to generate Chinese word lattices, which are then 
converted to Chinese character lattices. The TALE method is used 
to reduce the character lattices to character sausages. Then, the 
CMs for all the word candidates in the sausage are computed, 
either from the classic FB posteriori probabilities (the baseline) or 
from the posterior probability provided by the CRF classifiers. In 
the following, we first evaluate the pure CM performance of the 
proposed CRF-based approach, and then examine its effectiveness 
in a practical audio indexing system. 
 
4.1. Experiments of confidence measures in the lattice case 
 
We first implement a tool to align the character sausage with the 
reference character sequence using dynamic programming. Once 
the optimal alignment is found, we could determine whether an arc 
in the sausage is correct or not. In this way, the true labels for all 
the arcs in the sausage are created. For the development data, the 
labels are used to train the CRF model. For the test data, the labels 
are used to evaluate the CM performance. Once the confidence has 
been computed, every arc of the sausage can be tagged as either 
correct or false, depending on whether its confidence exceeds a 
certain threshold or not. For all the arcs in the sausage, we compare 
the tagging with the true label and can find two types of errors, 
namely false alarm errors and false rejection errors. Finally, we can 
compute the equal error rate (EER) and plot the detection-error-
tradeoff (DET) curve, which are the two standard evaluation 
metrics for CMs [4]. 

Note that we have 3 base features - fbconf, lmbb, and their 
combination – fbconf+lmbb. For each base feature, we could use 
the base feature itself, or use the contextual feature with the 3-gram 
pattern ‘-1/0/1’. So there are a total of 6 different configurations of 
features. For each configuration, we separately train a CRF model 
and the resulting model is evaluated in the test set. The EERs of 
the CRF-based classifiers using the 6 different configurations of 
features are summarized in Table 1. 



The main results are similar to [7]. First, the EER obtained 
using the fbconf feature is slightly better than the baseline which 
uses the continuous FB posterior probabilities. This confirms that 
the CRF model is powerful for discriminative learning and 
classification and that the discretization does not affect the quality 
of the CM. Second, the lmbb feature is informative enough to 
perform only slightly worse than the baseline. Third, using the 
context feature always results in increased performances. Fourth, 
significant improvements in EER are obtained by combining 
fbconf and lmbb, both in the base case and in the contextual case, 
which can also be seen from the DET curves in Fig. 2. In 
conclusion, the (linear-chain) CRF model is successfully applied to 
compute CMs for all the word candidates in the sausage, 
performing much better than the baseline. 
 
4.2. Experiments of lattice-based audio indexing 
 
In audio indexing, the sausage is searched to find the character 
sequence that match the query keyword entered by the user, e.g. 
‘ ’. We need the CMs for all the word candidates in the 
sausage to sort the matches. The experiments in Section 4.1 
evaluate the pure CM performance of the proposed CRF-based 
approach, which is independent of the keyword set. The following 
experiments examine its effectiveness in a practical audio indexing 
system.  

The experimental keyword set contains a number of 500 
Chinese 2-character noun phrases with a total of 5182 occurrences 
in the 6h test data. For each keyword, the sausage is scanned to 
find matches. Given a certain threshold, the found matches for all 
the keywords are filtered, depending on whether the confidences 
exceed the threshold or not.  Comparing the filtered matches with 
the true labels, we can compute the EER and plot DET curve. It is 
shown in Table 1 the keyword search EERs for audio indexing 
based on the same CRF-based classifiers as used in Section 4.1. It 
can be seen from Table 1 and Fig. 3 that the advantage of the 
proposed CRF-based approach for CMs clearly helps to improve 
the searching accuracies of the audio indexing system. 
 

5. CONCLUSION 
 
Computing CMs in the lattice case means computing CMs for all 
recognized candidates in a lattice, which is useful for lattice-based 
applications, e.g. audio indexing. A major limitation with FB 
computation based posterior probabilities as CMs in the lattice case 
is that its performance for CMs cannot be improved easily, since it 
relies almost entirely on a single information source - the acoustic 

and language-model probabilities. In this paper, we propose CRF-
based CMs for the lattice case. In this approach, various relevant 
features including the FB posterior probabilities could be 
combined together. Once properly implemented, the proposed 
approach achieves significant performance improvements for both 
CMs in the lattice case and lattice-based audio indexing. 
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Table 1: performance comparisons between the baseline and the 
CRF-based approach, using different configurations of features for 
CMs (in terms of EER) and audio indexing (in terms of keyword 
search EER). #weight denotes the total number of weights used in 
the CRF model. 

features used for the CRF CM 
EER 

keyword 
search EER #weight

baseline 42.63% 25.70%  

base 
fbconf 41.58% 24.83% 9 
lmbb 42.96% 26.50% 9 

fbconf+lmbb 41.20% 24.53% 15 

contextual 
fbconf 40.51% 23.98% 297 
lmbb 41.52% 25.50% 65 

fbconf+lmbb 40.13% 23.24% 359 
 

Fig 2: The DET curves for confidence measures 

Fig 3: The DET curves for keyword search in audio indexing 
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