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Abstract

We provide an introduction to the theory and use of variational
methods for inference and estimation in the context of graphical mod-
els. Variational methods become useful as efficient approximate meth-
ods when the structure of the graph model no longer admits feasible
exact probabilistic calculations. The emphasis of this tutorial is on il-
lustrating how inference and estimation problems can be transformed
into variational form along with describing the resulting approximation
algorithms and their properties insofar as these are currently known.

1 Introduction

The term variational methods refers to a large collection of optimization
techniques. The classical context for these methods involves finding the
extremum of an integral depending on an unknown function and its deriva-
tives. This classical definition, however, and the accompanying calculus
of variation no longer adequately characterizes modern variational meth-
ods. Modern variational approaches have become indispensable tools in
various fields such as control theory, optimization, statistics, economics, as
well as machine learning. The finite element method for solving differen-
tial equations[44], for example, is inherently a variational approach as is
maximum entropy estimation[25].

There are a number of qualitative features that are shared across vari-
ational formulations. The primary component is naturally an optimization
problem. The problem of interest is either transformed into an optimization
problem or directly formulated as such based on a principle as in maximum
entropy estimation (our emphasis in this tutorial is on transforming various



inference and estimation problems into variational problems). The quantity
to be optimized is typically an unknown function which, in simple cases, may
be reduced to a vector (function values at discrete points). The solution to
variational problems is often given in terms of fized point equations that
capture necessary conditions for optimality (characterizing locally optimal
solutions). These are analogous to setting the gradient to zero in ordinary
function optimization. Mean field equations (e.g., [37]) and Euler-Lagrange
equations are prime examples of these fixed point equations. A method
that successively enforces individual fixed point equations provides a com-
mon way of finding solutions to variational problems whenever a closed form
solution cannot be found.

In recent years, a number of variational approaches have been success-
fully used for inference and estimation in large densely connected graphical
probability models for which exact probabilistic calculations are no longer
feasible (see, e.g., [23]). Their success derives primarily from two insights:
first, probabilistic inference problems lend themselves naturally to varia-
tional formulations and, second, the resulting variational optimization prob-
lems admit principled approximate solutions. While there is nothing inher-
ently approximate about variational formulations, as optimization problems
they naturally facilitate finding approximate solutions. For example, any
extremum problem involving an unknown function can be solved approxi-
mately by restricting the space of admissible functions (e.g., in terms of a
finite number of basis functions). Analogous restrictions (factorization) can
be found in the context of probabilistic calculations.

The primary goal of this tutorial is to illustrate how inference and estima-
tion problems can be transformed into variational form along with describing
the resulting approximation algorithms and their properties insofar as these
are currently known. This tutorial is not intended to be exhaustive but
merely to highlight the mathematical structure and properties of a number
of variational approaches for inference and estimation calculations.

The paper is organized as follows: we begin with a detailed handling of
two examples of variational formulations emphasizing their general features.
This is followed by a brief introduction to graphical models and a derivation
of the variational mean field approximation in the context of graphical mod-
els. We then derive structured mean field approximation along with vari-
ational factorization methods closely related to large deviation techniques.
The last two sections concern with variational methods for maximum likeli-
hood and Bayesian estimation. We end with a discussion of open problems.



2 Examples of variational methods

Many variational methods have similar mathematical structure. We illus-
trate this by building on two simple examples of variational methods. The
basic insights derived from these variational methods carry over to mean
field approximation. Specifically, we wish to clarify the transformation of
the problem of interest into a variational form and how the resulting varia-
tional formulations admit approximate solutions.

We start with a well-known variational formulation of a matrix inversion
problem in an estimation context and subsequently derive finite element
methods as a variational solution to Poisson differential equation.

2.1 Matrix inversion

Many estimation methods such as linear regression and Gaussian process
models (e.g., [48]) involve the need to invert large matrices. For the purpose
of illustration, we provide here a variational formulation of this problem.

To fix ideas, suppose we are given a set of input vectors of {x1,...,x,},
x; € R% and corresponding scalar output values {y1,---,yn}- We wish to
find the best linear predictor of the form y = f7'x = ?:1 Bix;, where 3

is the vector of parameters. For simplicity, we will assume that the fitting
criterion is least squares. The least squares optimal parameter setting 5* is
given by #* = C~'b, where

C=>xx;, b= yix; (1)
=1 =1

As the dimension d of the input vectors increases, evaluating 8* = C b can
become burdensome. We formulate here a variational approach to comput-
ing C~1b (see also [12]).

Variational problem starts with a transformation into an optimization
problem. It is perhaps surprising that we can often start with a trivial
transformation. Suppose therefore that we knew the solution to the above
problem, i.e, we had already evaluated 8*. We can then certainly optimize

78 = 58"~ B CE ~ p) &)

with respect to 8 to find §*. The distance measure here is weighted with
matrix C' so that deviations of 8 from §* count more in directions where
input examples x vary considerably. While this is a variational formulation
leading to *, it is important to realize that we couldn’t yet evaluate J(f)



without first computing 8*. To avoid this apparent conflict, we proceed to
expand this trivial objective function. We also make use of the fact that we
know the form of the solution 8* = C~'b:

HB) = 56TCH ~BTCE + 1p7CP Q)
= %bTC_lb —BTb+ %ﬂTCB (4)

In the resulting expression, the first term is a constant as far as the param-
eters B are concerned and we can drop it. Even without the constant term,
the minimum is attained at § = 8*. The new objective that we can actually
evaluate without consulting 8* is given by

J(8) = ~8"b+ 56" Cp (5)

It is easy to verify that this is a convez function of 5. You may find it helpful
to interpret the first linear term as an energy and the second quadratic term
as a potential term playing a role analogous to the entropy in physics.

We have now made some important progress. While we can obtain the
optimal solution 8* by minimizing J(3), we can also find an approximate
solution; we simply perform a partial minimization of J (8). This can be
done, for example, by taking only a few conjugate gradient steps (taking d
such steps would recover the exact solution*). The objective function J(3)
serves as a metric guiding the choice of the approximate solution without
the need to evaluate 8* for reference.

The purpose of this initial exercise was to demonstrate two basic underly-
ing ideas. First, we can transform the original problem into an optimization
problem whose objective can be evaluated without reference to the solution
being sought. While this transformation may require some creativity, we
argue that in many cases it is quite natural. We will return to this point
later on. The second idea is to seek for an approximate solution using the
variational objective to guide the selection of simpler approximations.

2.2 Finite element methods

Many problems in physics can be reduced to solving differential equations.
This includes, for example, finding the temperature distribution over a mate-
rial or gauging material deformations. One of the simplest but nevertheless
representative problems is the following one dimensional Poisson differential
equation:

—u"(z) = f(z), Vz € (a,b) (6)



where u”(z) is the second derivative of u(x) with respect to the scalar ar-
gument z and f(z) is the “source”. We assume that the solution u(z) (e.g.,
deformation) satisfies homogeneous boundary conditions, u(a) = u(b) = 0.
A number of techniques exist for solving this problem. The best known is
perhaps finite element method (see, e.g., [44]) that can be viewed as a vari-
ational method. The associated variational problem possesses a number of
exemplary properties and is the reason for why we are introducing it here.

As in the context of linear regression, we first transform the problem
into an optimization problem and subsequently search for an approximate
solution. How do we find the optimization problem? Let u*(z) denote the
desired solution satisfying the appropriate boundary conditions. Since this
function is forced to be zero at the boundary points we have no degrees of
freedom left for a constant term in the function. An appropriate way to
compare any estimate u(z) to the optimal solution u*(z) can be done in
terms of the Lo norm of its derivative:

1w =3 [[0@) @) ds @

This indeed serves as a valid distance measure. While minimizing this ob-
jective surely recovers u*(x), it is of no use to us unless we already know
the solution. So, as before, we turn this objective into a form that we can
actually evaluate without reference to u*(z). We can do this by expand-
ing the integrand, integrating by parts, and using the form of the solution

(o) = )
J(u) = %/ab u*' (z)%dz — /ab o' (z)u* (z)dz + % /ab o' (z)?dx

= const. — l/bu'(a})u*(m) - /abu(m)u*"(m)dﬂv + %/ab u'(z)%dz

= const. — |0+ /abu(a:)f(:v)daz + % /ab o' (z)%dz (8)

where we have also used the fact that u*(z) must vanish at the boundary
points. If we drop the first constant term that depends only on the solution
u*, we have an objective that can be readily evaluated for any u(z):

- b b
J(u) = —/a u(z) f(z)dz + %/a u'(z)?dz (9)

Similarly to our previous example, J(u) is convex in u(x) (differential opera-
tor is linear; any linear transformation of the argument of a convex function



preserves convexity). The solution is, of course, unique since minimization
of J(u) with respect to u(z) is equivalent to minimizing the original J(u).

As a result, we have transformed the differential equation into an op-
timization problem involving a function u(z) and its derivative u'(z). The
transformation is exact in the sense that minimizing the objective recov-
ers the solution. The main benefit of this variational formulation, however,
comes from the need to find an approximate solution.

To begin with, we must choose the form of the approximate solution. A
natural choice in this context is to find the best function in a linear subspace
spanned by a set of basis functions ¢1(z),. .., ¢x(z) (in finite element meth-
ods these basis functions are derived from local approximating functions
within each discretization interval or element). In other words, we with to
find the best solution of the form

k
a(z) = Z ai¢p;i(z) (10)

where the ranking of the solutions is based on the objective J(u). Note
that the basis functions must confirm to the boundary conditions for our
solution attempt to be admissible. It suffices now to substitute this form
of the solution back into the objective function J(u) and minimize it with
respect to the free parameters, the linear coefficients {«;}. If we omit the
straightforward algebra for clarity, the resulting objective looks like

) b
J(a) = _Zai [/a ¢i(z) f(z)dz

b
+§izjaz-aj [ / «s;(x)qs;(w)dx] (1)

By defining b; = I ¢i(z)f(z)dz and Cj; = [} }(z)d)(z)dz, for i,j =

1,...,k, we can rewrite this optimization problem in a matrix form:
~ 1
J(a) = —ab+ gaTCa (12)

which is conveniently exactly the variational form of the matrix inversion
problem discussed earlier (this is, of course, not generally true for variational
methods).

The necessary (and in this case also sufficient) conditions for optimality
within the space of functions we are considering are obtained by setting the
partial derivatives with respect to the parameters {a;} to zero. In this case,
the resulting fized point equations are

9 -
%J(a) =-b+Ca=0 (13)



implying, as before, that a* = C~'b. In the context of finite element meth-
ods, inverting C is typically somewhat easier since the basis functions ¢;(x)
have by design only local support. The inner product matrix C is therefore
band-diagonal.

We make here a few final observations concerning this example. First,
to find an approximate solution within a variational approach, we must first
specify the form of the solution we are after. Second, by substituting the
desired solution form back into the objective function, we obtain another
variational problem, this time over the remaining free parameters. Finally,
we note that finding a closed form solution for the variational parameters is
rather atypical; variational problems often have to be solved iteratively.

After a brief introduction to graphical models provided in the next sec-
tion, we will use the intuition derived from these two examples to guide our
derivation and understanding of mean fields and beyond.

3 A brief introduction to graphical models

The feasibility of working with probability models over a large number of
variables depends on how dependent the variables are on each other. In
a graphical model, the presence/absence of such dependencies between the
variables are represented in terms of a graph. In the graphical representa-
tion, the nodes V in the graph G correspond to the variables in the prob-
ability model and the edges F connecting the nodes signify dependencies.
The power of such graph representation arises from the rigorous connection
between separation properties in the graph and independence statements
pertaining to the underlying probability model.

There are two main types of graph models, undirected and directed. The
distinction arises from the type of edges used in the graphs and implies a
difference in their independence semantics. The key problem in graphical
representation of probability models is to explicate the structure of any
probability distribution consistent with all the independence properties we
can derive from the graph.

Figure 1a) illustrates an undirected graph model [3, 46]) also known as a
Markov random field or MRF for short. For undirected graph models the or-
dinary graph separation of nodes is isomorphic to conditional independence
statements about the variables associated with the nodes. For example, the
graph in Figure la) states that the variables y; and zo are conditionally
independent given z;.

Independence properties read from the graph impose factorization con-
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Figure 1: a) An undirected graph model (a Boltzmann chain [40, 42]). We
have highlighted the first two cliques of the undirected graph with dotted
lines. b) A simple directed graph model. Here 1, 2, and x3 are marginally
independent of each other while z4 is dependent on the others. Knowing
the value of “effect” x4 renders the “causes” x1, T2, and x3 dependent. This
semantics cannot be captured with an undirected graph.

straints on any probability distribution consistent with the graph. In other
words, the joint distribution must be expressed in terms of a product of non-
negative potential functions ¥.(x.), each depending on a specific subset of
variables. The celebrated Hammersley-Clifford theorem (see, e.g., [3]) spec-
ifies the form of this factorization: the joint distribution must expressible as
a product of potential function over cliques in the graph G:

P(x)=— H Ue(xe) (14)

where C(G) is a collection of cligues' in the graph and x, = {z; }sc. is the
set of variables corresponding to the nodes in clique ¢ (in our notation here
¢ is an index set of variables). Z is the normalization constant or partition
function and plays an important role.

To exemplify these concepts we have indicated the first two cliques in
Figure 1a). Any joint distribution consistent with the conditional indepen-
dence properties we can derive from this chain-like structure must factor
according to P(x) = Y., (z1,y1)¥¢,(x1,22)---. It is important to realize
that the probability distribution P(x) may factor much more than this. For
example, a distribution where all the variables are independent of each other,
expressible as a product of potentials each depending on a single variable,
is also consistent with the graph.

The computational cost of exact probabilistic inference calculations in
undirected graph models depends on the size of the cliques. More precisely,

' A clique here is a maximal set of mutually connected nodes.



the cost is exponential in the size of the largest clique of a triangulated®
graph (e.g., [28]). The cliques of a triangulated graph can be arranged in
a tree structure (the junction tree) where computations can be carried out
efficiently[29, 22]. The graph in Figure 1 is triangulated and its cliques
already form a tree.

3.1 Directed graphical models

The second type of graph models, Bayesian networks, are based on directed
graphs. In directed graphs, the edges signify asymmetric relations between
the variables, loosely speaking the edges follow causal effects. Again, separa-
tion properties in the graph, correspond to independence statements about
the underlying probability model. The separation criterion (the d— sep-
aration criterion [38]) is a bit more involved but imposes a rather simple
structure on the joint probability distribution. We must be able to write
the joint distribution as a product of conditional probabilities[38] of z; given
its parents pa; (the variables with directed arrows into z;):

n

P(x) = [ P(zilxpa,) (15)

i=1

To ensure the joint distribution is well-defined, the directed graph must
be acyclic (there are no directed cycles). Note that we don’t need any
normalization constant Z here — by design Z = 1.

We can always interpret the probability model P(x) corresponding to a
directed graph as an undirected model: we can set the potential functions
equal to the conditional probabilities W, (x,,) = P(z;|Xpq;), vi =i U pa; for
1 = 1,...,n. In the corresponding undirected graph, each set of nodes v;
is fully connected. Such transformation into an undirected graph, known
as moralization, hides some of the independence properties that were pre-
viously explicit in the directed graph. Directed graph models are, however,
regularly transformed into undirected models as part of exact probabilistic
calculations (see, e.g., [29]).

3.2 Additional structure in graphical models

Approximate inference methods rely on additional structure in the joint
distribution beyond what is already explicated by the graph. For example,

2To triangulate the graph, we add edges so that any cycle of four or more nodes has a
chord.



the probability model corresponding to a fully connected graph may factor
into a product of pairwise potential functions depending only the variables
associated with each undirected edge:

P(x) = I Telxe) (16)

ecE

where F is the collection of edges in the graph and we have absorbed the
normalization constant into one of the potentials. Note that we can eas-
ily collect together the edge potentials into larger clique potentials. Mean
field and other approximate inference algorithms heavily exploit this type
of additional factorization structure.

The clique potentials or conditional probabilities may also possess useful
additional parametric structure, other than factorization discussed above.
Such parametric structure as in logistic regression models [31, 33], can be
either directly exploited in approximate inference algorithms or used to im-
pose additional factorization by breaking such conditionals into products of
smaller ones. We will discuss variational methods for this purpose later in
the tutorial.

4 Variational mean field method

We are now ready to apply the intuition from the two examples of varational
methods to a probabilistic inference problem in graphical models. We start
by defining the problem. Let G be the graph corresponding to a proba-
bility distribution P(x) over n variables, x = {z1,...,2,}. Some of these
variables are assumed observed or instantiated, x, = {x;};cy, While others
remain hidden or unobserved, x;, = {z;};cs. Here x, is a shorthand for the
instantiation of values of the variables {z;};c,. The two sets of variables are
disjoint and x = {x,,x;}. We also assume, for notational simplicity, that
each variable z; takes values in the finite set {0,...,r — 1}. The inference
problem here is two fold: a) to evaluate the marginal probability of the
observed data:

log P(x,) = logZP(xv,xh) (17)

Xh

where the summation is over the possible instantiations of the hidden vari-
ables xp,, and 2) compute the posterior probability P(xp|x,) = P(x,,xp)/P(x,)
over the hidden variables. These goals are naturally tied; we can evaluate the
posterior if we already have P(x,). Exact computation of P(x,), however,

10



scales exponentially with the size of the largest clique in the induced (and
triangulated) subgraph of G over the hidden variables or nodes. We will tac-
itly assume that this graph is too densely connected for exact computation
to be practical.

Our first step here is to transform the problem into an optimization
problem. We can do this in the following apparently silly way:

J(Q) = log P(x,) = KL ( Qx, | P, x, ) (18)
where the Kullback-Leibler (KL) divergence is given by

Q(xp)

Plnlxo) (19)

KL (Qxh | th\xv) ZQ xp) log ———

The KL-divergence is always positive and zero only if the variational distri-
bution QQ(xp) over the hidden variables equals the true posterior probability
Q*(xp) = P(xp|xy). Thus by maximizing J(Q) with respect to Q we will al-
ways recover the log-probability of data J(Q*) = log P(x,) —0. We conclude
that our silly optimization problem indeed gives both the desired marginal,
as the maximum value of J(Q), and the posterior Q*(xy).

Note that the non-negativity of the KL-divergence also ensures us that
for any variational distribution ) other than the posterior, we have a lower
bound on the desired log-marginal probability

log P(xy) = J(Q) = J(Q) (20)

Moreover, it can be readily shown that J(Q) is a concave (convex down)
function of the variational distribution @ (see, e.g., [6]).

It remains to show that this trivial transformation into an optimiza-
tion problem is at all useful. It is not even clear that we can evaluate the
objective function for any choice of the variational distribution Q). To ex-
plicate this issue, we will rewrite the posterior probability appearing in the
KL-divergence in terms of the joint distribution P(x,,xp)

Q(xn)

J@ = TogPlr) = S Q) los pi s (21)
= log P(xy) Z Q(xp) log % (22)
= — ZQ xp,) log P?(:,I;zv) (23)



= =) Q(xx)log Q(xz) + > _ Q(xp)log P(xp,x,) (24
= H(Q) + Eq{log P(xp, %) } (25)

where H(Q) is the entropy of the variational distribution and Eg{-} rep-
resents the expectation with respect to Q(xp) (the observed variables x,
remain fixed to their instantiated values). Note that the variational distri-
bution @) tries to balance two competing goals: assign values to the hidden
variables x;, that have high probability under P(xp,x,) (second term) and at
the same time entertain a large number of distinct assignments (the entropy
term).

Now, feasibility of evaluating J(Q) depends on two types of structure.
First, the graph structure (factorization) of the original probability model
P(xp,x,) and, second, any structure imposed on the variational distribu-
tion Q(xp). We start by exploiting the structure in the original probability
model: suppose, for simplicity, that P(xp,x,) factorizes across the edges
in the graph® as in equation (16). In this case, log P(x;,x%,) in the above
expectation reduces to a sum of simpler terms

J(Q) = H(Q) + Eg{log [T ¥(x.)} (26)
eck
= H(Q) +Eq{) log¥(x.)} (27)
eck
= H@Q)+ > D Q%enn) log¥(x) (28)
ecE Xenh

where Q(xeny) is the variational marginal probability over the variables as-
sociated with edge e insofar as they are hidden. Note that for notational
clarity we have dropped here explicit references to hidden/observed vari-
ables. The resulting objective above seems simpler than what we started
from. However, we have merely transformed it and can still recover the
exact solution if we maximize the objective with respect to the variational
distribution ). Again, the benefit arises from further constraining the solu-
tion or the variational distribution (). This is the second type of structure
that we need.

In the context of finite element methods (section 2.2), the approximation
was in terms of a linear basis functions. In case of probability distributions,
the appropriate simplification comes from independence properties. The

3Note that we may not be able to evaluate the partition function of such a joint. The
variational objective J(Q) will therefore be a constant away from the desired log-marginal.
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simplest family of variational distributions is one where all the hidden vari-
ables {z;};iecp are independent of each other. More precisely, we assume that
[37, 10, 7, 15, 41]:

Q(xn) = [[ Qil=:) (29)
i€h
While this is a very simple class of distributions, we still have |h|(r — 1)
degrees of freedom for adjusting the variational marginals {Qi(z;) }icn-
Surely we should now be able to evaluate J(Q)? Indeed, by the fact that
entropy is additive across independent variables, we get

J@Q) = Y H@Q)+D Y Qxern) log ¥(x) (30)
i€h e€E Xenn

The evaluation of the first summation scales like O(|h|r) where |h| is the
number of hidden variables and r is the number of distinct values each
variable can take. Analogously, evaluating the second summation term
scales like O(|E|r?) since each expectation over X, involves (at most)
two variables and there are |E| edges. In our fully factored distribution
@, the marginal probability over the variables associated with each edge
are obtained simply by picking the right two components from the product
[T;en Qi(z;). For more general distributions, obtaining such marginals may
involve considerable effort. In particular, this is true by assumption for the
posterior distribution P(xp|xy).

4.0.1 TUpdating the mean field distribution

Having succeeded in evaluating the objective function for any (restricted)
variable distribution ), we still need to optimize the marginals. In the
context of finite element methods, we could easily solve for the optimal
linear coeflicients. This is no longer true in our setting here and we have
to resort to iterative methods for maximizing the objective function J(Q)
within the class of factored variational distributions Equation (29). Since
the marginals in Q(xp) = [[;cp, Qi(zi) can be adjusted independently, we
can optimize J(@) one marginal component at a time.

We need a bit of notation. As before, let Eg{-} stand for the expectation
with respect to the variational distribution (). Similarly, let Eg{-|z;} be the
conditional expectation with respect to (). Since we will make frequent use
of such conditional expectations, we provide here a more explicit illustration:

Eq{log P(xp,xy) lzk} = ) [H Qi(z;) | log P(xp,%y) (31)

{zi}ienn Li€h\k
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where, e.g., h \ k is the set of hidden nodes other than k. Note that the
expectation specifically does not depend on the variational marginal Qg(-)
over xy; the result is, however, a function of the conditioning variable zy.

To update the k' variational marginal, we view J(Q) as a function of
Qx(-) while keeping the remaining marginals fixed. To emphasize this, we
may treat the entropy terms corresponding to remaining marginals as con-
stants and appeal to the linearity of expectation Eg{-} = 3, Qk(wr)EqQ{-|7x}
to get

J(Q) = const. + H(Qx) + > Qr(zr) Eg{log P(xy,x4) | zx } (32)

Tk

where the dependence of J(Q) on the marginal Q(zx) is explicit. It is easy
to verify via straightforward calculation that maximizing this objective with
respect to the marginal Qg(zy) gives the standard Gibbs’ distribution (cf.

[13]):

1 Eo{lgP
« — eFallog P(xp.xv)|zx} 33
Qk(zk) 7 ¢ (33)
for zy, € {0,...,r—1}. Here Z is the local normalization constant (partition
function).
Zk = Z eEQ{IOgP(xhaxv”-Tk} (34)
Tk

These update equations, collectively for all k, are the mean field equations
(cf. [41]). Successive application of the updates correspond to iteratively
enforcing different mean field equations. Note that since each update is car-
ried out in closed form, the updates monotonically increase the objective
function J(Q). We cannot, however, necessarily find the best factored vari-
ational approximation. This rather unfortunate property follows from the
fact that although J(Q) is concave in @, it is not jointly concave in the new
restricted parameterization in terms of the marginals {Q;(z;) }icp- The or-
der in which the iterative updates are carried out as well as the initialization
of the marginals affect which of the locally optimal solution we arrive at.

Finally, let us briefly explicate in more detail the feasibility of evaluating
the conditional expectations in the updates. For this purpose, let P(x,,xp)
factor across the edges in the graph, i.e., P(xy,%x1) = [I.cg ¥(xe), as before.
Similarly to equation (30), we can write

Eq{log P(xp,x0)lzk} =Y Y. Qeniniy)log e(xe)  (35)

e€E Xen{h\k}Xn\k
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where e N {h \ k} is either an empty set or refers to a single hidden node
k' # k associated with edge e. Thus, Q(x.n{n\k}) is either one or the single
marginal Qy/(zg). Since there can be only n edges that pertain to node k,
the complexity of evaluating the conditional expectation is at most O(nr?).

4.1 Quality of variational approximation

The variational mean field approximation we have explained above is ar-
guably rough. It uses a completely factored distribution to approximate
the posterior distribution P(xp|x,) which may possess strong dependencies
among the hidden variables. We explore here briefly the question of when
this approximation is likely to be reasonable and when we can expect it to
fail.

There are in fact two measures of accuracy that we can use. One is the
tightness of the lower bound on the marginal probability of observed data
that we set out to compute in the first place. In other words, we can take the
difference log P(x,)— J(Q) as a figure of merit for the approximation. With-
out any constraints on the variational distribution @), this difference would
vanish but is unlikely to do so with the factored mean field distribution. The
other measure we can use pertains to how closely the variational marginals
{Qi(z;)} match the true posterior marginals P(z;|x,). Since maximizing
J(Q) with respect to @ is equivalent to minimizing the KL-divergence be-
tween @) and the true posterior, it is reasonable to expect that the marginals
aspire to be close as well. In the example below, however, we demonstrate
that these two measures need not be strongly coupled.

We start by discussing in broad terms when we can expect the varia-
tional approximation to be accurate (cf. [23, 18]). Clearly, if in the poste-
rior distribution the hidden variables are almost independent of each other,
the variational approximation should be nearly perfect (we could, after all,
closely represent the true posterior with a factored variational distribution).
When this (strong) independence assumption no longer holds, we can ex-
pect either accuracy measure to degrade rapidly. Consider, for example, a
mixture of two or more almost identical factored distributions. When the
components become more distinct, the factored variational distribution can
only represent one of the components, not the dependencies arising from
switching between them.

A vparticularly important setting where almost factored distributions
arise is a large densely connected graph model where the (pairwise) cou-
plings between the variables are relatively weak. The net effect from a large
number of fairly weak influences impinging on each variable converges, by
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the law of the large numbers, to a “mean effect”. As a result, the variables
become nearly independent of each other. This averaging effect underlies
some of the success of mean field methods in large physical systems.

An important though rather undesirable property of the naive mean field
approximation is that it exhibits spontaneous symmetry breaking. This hap-
pens when the optimal setting of the variational marginals is asymmetric
even when the variables play a symmetric role in the posterior distribu-
tion. The symmetry breaking and more generally the selection of one of the
posterior modes accounts for sometimes poor correspondence between the
variational and true posterior marginals. The example below is specifically
geared towards clarifying this issue.

4.1.1 Example

For simplicity, we assume a joint distribution over two binary (0/1) variables
r1 and zo. Suppose, in addition, that both variables are hidden and there
are no observed variables x,. In the variational formalism developed earlier,
the “marginal probability” that we are trying to compute is in this case
simply the normalization constant:

logZP(xl,wg) = log Z P(z1,29) =logl =0 (36)

Xh Z1,T2

While there’s no reason to compute this value approximately, the fact that
it’s value does not depend on the properties of the joint distribution, permits
us to easily evaluate the accuracy of the lower bound J(Q) as a function of
controlled changes in the joint.

We add structure to our representation of P(z1,z2) by introducing a
single parameter p that controls how dependent the two binary variables
are. The probability table can be found in Table 1. In particular, the
parameter p signifies the probability mass assigned to two configurations
(z1 = 1,29 = 0) and (z; = 0,29 = 1) that are consistent with the XOR
operation. The remaining probability mass is divided equally among the left-
over configurations. Note that at p = 0.5 the joint distribution is uniform
and can be therefore captured by the factored variational distribution. At
p =1, only the two XOR configurations have non-zero probability and any
factored distribution fails to capture such deterministic dependence between
the variables. By varying p from 0.5 to 1 we can study how the variational
approximation degrades with stronger dependencies.

To obtain J(Q), we can simply substitute the simple distributions into
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P(0,0) = (1 -p)/2 | P(0,1) =p/2
P(l,O):p/2 P(l,l):(l—p)/2
Table 1: Symmetric XOR-dominated joint distribution over binary variables

z1 and z9; the probability mass falling on the two XOR configurations is
controlled by parameter p.

the more general formulas we derived earlier. This gives

1
JQ = H(@Q)+HQ)+ D Qi(x1)Qz(x2)logP(z1,z2) (37)
T1,22=0
where the factored variational distribution is Q(z1,z2) = Q1(z1)Q2(z2)-
Similarly, we can exploit the update equations (fixed point equations) de-
rived earlier:

1

Qi(z1) ZeEQ{logP@mz)\zl} (38)
1

= ZeQz(O)logP(:c1,0)+Q2(1)logP(wl,l) (39)

where the right hand side is evaluated for £; = 0,1 while the other marginal
Q2(z2) is held fixed. The update rule for Q2(z2) is analogous. For any
p € [0.5,1], we can obtain a mean field solution by iteratively employing
the above update rules. As discussed earlier, the solution may depend on
the initial conditions. Here the variational marginals were initialized with
uniform distributions subject to slight random perturbations.

Now, tracking the mean field solutions as a function of increasing p
demonstrates spontaneous symmetry breaking. First, up to a critical value
p*, the variational marginals remain fixed at Q1(z1 = 1) = Q2(ze = 1) =
0.5. These match the true marginals which, by symmetry, are P(z; = 1) =
0.5 regardless of the parameter value p. Beyond the critical value p =
p*, the mean field solution undergoes a symmetry breaking: the objective
J(Q) prefers a solution with unequal marginals @1 and Q2. This symmetry
breaking arises entirely from the approximation as the true marginals remain
fixed. As we can see in Figure 2a), this phase transition has an adverse effect
on the quality of the variational marginals: after p* the variational marginals
suddenly and rapidly diverge from 0.5. The effect is less pronounced and to a
degree opposite for the objective function J(Q); indeed, after the symmetry
breaking, the rapid degradation of the lower bound slows down (see figure
2b)). This symmetry breaking was, after all, forced upon us to improve the
lower bound J(Q).
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Figure 2: a) Qi(z1 = 1) resulting from symmetry breaking as a function
of the parameter p. The dashed line represents the alternative solution
resulting from different initialization. b) the lower bound J(Q) as a function
of p.

While this example is simple and artificial it nevertheless provides us
with some insight into larger problems as well. For example, note that the
slope of the lower bound J(Q) is zero when the joint distribution deviates
from a factored distribution (p close to 0.5). Thus the naive mean field
approximation appears insensitive to the introduction of weak dependencies.
With larger deviations, however, the accuracy is lost at an accelerating pace.

The example also shows that it can be difficult to guarantee that the
variational marginals {Q;(z;)} reflect the true marginals. Even though in
our simple case, it took fairly strong dependencies (large values of p) to
induce the phase transition, more realistic problems with a large number
of variables and associated dependencies offer considerably more ways of
initiating such symmetry breaking. This effect is also not limited to sym-
metries but persists more generally when the posterior involves a number
of competing modes; the variational marginals will typically reflect only the
marginals of one of the modes.

The structured variational approach [43] discussed in the next section is
less susceptible to these errors.

5 Structured variational approach

While the simple variational mean field approach is computationally attrac-
tive, it may not yield sufficiently accurate results. A natural approach to
improving over the simple mean field method is to combine it with exact
probabilistic calculations [43, 19, 24, 2, 47] (for other extensions see [20, 4]).
In other words, we may be able to identify tractable substructures such as
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chains or trees within the larger graph model and these substructures could
be readily handled with exact methods. A viable approach would be to im-
pose a mean field approximation between the substructures while resorting
to exact calculations within each substructure.

The first problem is to identify the substructures. This is a non-trivial
problem for which no serious automated solutions have been proposed (cf.
[19]). We will therefore assume that there are m tractable substructures
identified by an expert or obtained via other means. Let the sets of nodes
corresponding to these substructures be hi,..., h,,; the substructures are
induced subgraphs over these sets. We assume also that the substructures
create a disjoint partition of all the hidden variables: h; N h; = () for ¢ # j
and h = hiU...U hy,.

The second problem is to ensure that we indeed apply exact probabilistic
calculations within each subgraph in the variational framework. This is
achieved by not introducing any constraints on the variational distribution
(Q within each substructure. In other words, the variational distribution
must be composed of unconstrained components {Q(xn, ) tk=1,...m-

Finally, we wish to impose a mean field approximation across the sub-
structures. This is equivalent to requiring that the variational distribution
Q factors across the substructures. Consequently, we assume

m
Q(xn) = [ Qr(xn,) (40)
k=1
without any additional constraints.

5.1 Update equations

The update equations resulting from the structured approximation are ex-
actly analogously to simple mean field. The intuition here is that we can
always interpret the structured mean field method as a mean field approach
over “mega variables” x; . Thus each variational marginal Q(xp,) is up-
dated according to

Qr(xp,) Zi e Ea{log P(xv,xn) [ xny } (41)

h

where the conditional expectation is defined and computed analogously to
mean field. Can these updates be carried out efficiently? This depends
on whether the joint distribution, P(x,,xp), corresponding to a graph G
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has tractable* induced subgraphs over the sets hj. The following example
illustrates this in more detail.

Suppose the probability model P(x,,x}) consist of m coupled Markov
(Boltzmann) chains as shown in Figure 3 (see [42, 11]). In a mean field ap-
proximation, the variables within and across each chain would be assumed
to be independent of each other. Since each Markov chain individually is
perfectly tractable, we can improve the mean field approximation consid-
erably by decoupling only the variables across the chains. Whenever the
chains in the original probability model are only loosely coupled, we would
expect this structured mean field approach to be quite accurate.

t=0 t=1 t=2

Figure 3: Coupled Boltzmann chains. The shaded smaller nodes denote
observed variables.

To develop this further, let x,, = {Zyk,0,.-.,%yk1} be the observation
sequence for the k™ chain, and, collectively, x, = {Xy,, .., Xy, }. Similarly,
let x5, = {Zk0,---,2k 1}, be the sequence of hidden states corresponding

to the k** Markov chain or substructure. If the chains were not coupled,
the probability distribution governing the variables within each chain would
have the following familiar form

1 T

= H R (Tt—1, Thot) Uy (Tt Toht) (42)
k=1

P(xp,, Xy,)

where the potential \If’g(wk,t_l, zk,+) links the successive hidden variables in
time while U} (zy+, Ty ) connects the observation at time ¢, z, ks, to the
corresponding hidden state variable, zj ;. For simplicity, we will refer to this
tractable chain structure with a single potential function ¥ (x,,,xp, ).

“In general, we would have to consider also the portion of the graph G connecting the
substructures. We assume here that the coupling between the substructures is sparse.
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Now, the joint distribution over all the chains and observations, including
the couplings between the chains, is given by

m T m
P(xp,xy) = % lH ‘Ijk(kaaxhk)] [H I ek (@hors zes)| (43)
k=1 t=1 k=2
Here the first term represents independent chains and the second product
term quantifies the couplings between the state variables in neighboring
chains.

To demonstrate that the structured mean field approach is tractable in
this context, it remains to evaluate the conditional expectations Eg{log P(xy, xp)|xp, }
in equation (41). In computing these expectations, we can safely ignore all
the terms that do not depend on the conditioning variables x, ; these terms
will automatically vanish during normalization. For the k' chain, the only
relevant components of the joint distribution are the interactions within the

k' chain and the couplings between it and the neighboring chains k£ — 1 and
k + 1. Thus,

Eg{log P(xy,%3)|%n, }
= const. + log ¥y (xy,, Xp, )

+> Eq,_,{1og ¢r_1k(Tk-1,, Thy)}
t
+> By, {108 b pr1 (T, Thy1,e) } (44)
t
= const. + log \Dk(ka,xhk) + Z log sz(ﬂft,k) (45)
t

where the expectations Eq, ,{-} and Eg,, {-} are taken with respect to
the variational marginals over the state variables in chains £k — 1 and k + 1,
respectively. In the last expression, we have collected together the contribu-
tions from the neighboring chains into effective terms log &k(xt,k).

As a result, the structured mean field updates are given by

Zihk U (X » Xy, ) X 1:[ bk (Te k) (46)

Qr(Xp,)

where the additional terms beyond the original chain interactions provide
independent evidence to individual state variables zy g, ..., z; 7. This does
not change the structure of the original distribution (¢ (2 ) could be simply
absorbed into W} (xy¢, Zy k). No significant loss in tractability is therefore
incurred due to the influence from the other chains in this structured mean
field approximation.
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We emphasize that the interactions within the substructures, i.e., Uy (xy,,Xp, ),
remained unaffected by the updates. Thus the optimal variational marginal
within each substructure maintains the original strength of dependencies in
addition to the interaction structure. The influences between the substruc-
tures are mediated by the effective potentials, (,z~5, which, in case of pairwise
couplings between the substructures, appear as additional biases on the in-
dividual variables. For a related discussion, see [47].

6 Local variational approach

The variational mean field approximation that we introduced in previous
sections relies on a suitable additional structure in the probability model.
This additional structure was expressed in terms of additional factoring of
the joint distribution beyond what is dictated by the graph (e.g., pairwise
potential functions). In the absence of such factorization, we may still find
useful structure in the probability model. For example, the conditional
probabilities in the directed graph model or the potential functions in the
undirected models may possess parametric structure that we can exploit in
approximate inference calculations.

As an example, consider the noisy-OR probability model [38] over binary
(0/1) variables, where the interactions between the variables are defined in
terms of probabilistic generalizations of the OR function. The conditional
probabilities in these directed graph models are given by

P(z|@pa;, 0i) = fa; | Oi0+ D 0ijx; (47)
JjEpa;

In other words, we pass a linear combination of the parents, z = 6y +
> jepa; 0ijT; through an appropriate transfer function fy,(2), where fo(2) =
exp(—z) and f1(z) = 1 —exp(—z). Note that fo(z)+ f1(z) = 1 for any input
z as required. By setting 6;0 = 0 and increasing all 6;;, we recover the OR
function in the limit: fi(2) = OR({z;};epa;)-

The local conditional probabilities (or potentials) P(z;|xp,,) depend on
|pa;| + 1 variables. As the number of parents increases, these potentials
cannot be used efficiently in the mean field approximation, at least not
directly as stated above. The cost of dealing with such component potentials
would be exponential in the number of variables they depend on, i.e., |pa;|+
1. We attempt here to exploit the parametric form of these conditional
probabilities to impose additional factorization. Ideally, we would like to
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get

P(zilzpe;) = [ sz, =) (48)
Jj€pa;

since in the product form the parents of z; are decoupled. Selective use of
such factorization transformations may render the remaining (approximate)
joint distribution tractable [16]. Alternatively, we may exploit the resulting
factorization as a part of mean field or structured mean field approximation.

It remains to show how such factorization can be achieved. We will intro-
duce a class of variational methods that are closely related to large deviation
methods for this purpose (for a direct application of large deviation theory
towards approximate inference see [26, 27]). The approximate factorization
is provided in terms of upper or lower bounds rather than uncontrolled ap-
proximations. We start with an example from large deviation theory (see,

e.g., [5]).

6.1 Large deviation example

Suppose we wish to derive a standard large deviation result for a sum of
n independent and identically distributed binary (0/1) variables z1,. .., zp.
The tails of the distribution governing the sum vanish exponentially fast.
We wish to capture the probability that the sum deviates from its expected
value npy by more than ne for arbitrary ¢ > 0. Here pg is the generative
probability for the event that z; = 1 for any 7. Consider the following
one-sided probability:

P (i z; > n(po + €)> = Ep, {Step (ixz —n(po + 6)) } (49)

=1 i=1

where where the expectation is taken with respect to the product distribu-
tion over z1,...,%, and step (z) = 1 for z > 0 and zero otherwise. The step
function inside the expectation captures the appropriate event. We can also
interpret the step function as a transfer function fi(z) = step (() z) analo-
gously to the noisy-OR model discussed above. The above large-deviation
probability can be therefore viewed as a marginal probability (marginalized
over the parents) of a binary variable.

Even in this simple case, however, we are unable to obtain a closed form
expression for this expectation. On the other hand, evaluating the expected
value of any factored approximation [T, ¥(z; — (po + €)) with respect to the
product distribution could be done efficiently on a term by term basis (as
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a product of expectations with respect to individual binary variables). To
turn the original expectation into such factored form, we will make use of
the following variational transformation of the step function:

step (z) = I)flzl{)l exp(Az) (50)

where )\ serves as a variational parameter. To understand this transforma-
tion note that when z < 0, increasing A\ decreases exp(Az) since the expo-
nent is negative. Letting A — oo, results in exp(Az) — 0, as desired. On the
other hand, when z > 0, exp(\z) is minimized by setting A = 0. This gives
exp(0 - z) = 1. Note that the optimal setting of the variational parameter is
a function of z. For this function \*(z), step (z) = exp(A*(z) z).

The above transformation is exact and therefore not yet useful to us.
Similarly to other variational methods, however, we can obtain a controlled
approximation by restricting the choice of the variational parameters. Here
we require that the choice of the variational parameter as a function of z,
i.e., A(z), must be a constant: A(z) = A for all values of z. This gives a
simple upper bound on the step function[5]

step (z) < exp(Az), Vz (51)
The usefulness of this bound is immediate in the large deviation context:

step (ixz —n(po + 6)) < exp (5\[2”: z; — n(po + 6)]) (52)

=1 =1

— Jlew (Sm-motal) 63
=1

— exp(-nA(po + ) [[ exp(Sa))  (54)

=1

Since the variables z; are independent we can evaluate the expectation of
the right hand side with respect to the product distribution on a term by
term basis. Moreover, all such expectations are identical since z1,..., T,
are identically distributed. This gives

P (z 3 > n(py + e>> < exp(—nA(po + €)) [Epy exp( Aaf3h)
i=1
= exp(—nA(po +©)) [po exp(3) +1 —po]” (56)

where the last expression comes from taking the expectation with respect
to a Bernoulli distribution P(xz; = 1) = py. We can improve this result by
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utilizing the degree of freedom that we have in choosing M. The optimal
choice for A is found by minimizing the resulting bound:

log P (i z; > n(po + 6))

=1
< min (—nj\(Po +¢€) +nlog [po exp(}) + 1 — po]) (57)
3>0
= —n-max (;\(po +¢€) — log [po exp(A) + 1 — po]) (58)
A>0

where in the last expression we pulled the negative sign from within the
minimization, turning it into a maximization. The term obtained through
the maximization is precisely the large deviation rate function (see, e.g., [5]).
Basic information theoretic bounds (specifically, Chernoff bounds) result
from such simple factorization transformations.

6.2 Representation theorem

To exploit such factorization transformations more generally in probabilistic
inference calculations, we would need to find the appropriate variational
transformation for any given situation. Do such transformations even exist
for any given family of conditional probabilities? Perhaps surprisingly, this
question can be answered affirmatively: the factorization transformation
always exists. The following theorem makes this more precise

Theorem 1 Let P(z;|Xp,;) be a conditional probability model over z; tak-
ing values in a finite set. We assume further that the number of possible
instantiations of the parents X,q, is finite. Let X be a variational parameter
taking values in a finite or finitely dimensional set F. Then there exists
non-negative pairwise potentials

such that
P(ziPpa;) = max J[ @(zi,2;A) = min [ Tz, 25|3) (60)
€ Jj€Epa; € Jj€pa;

for all (z;,Xpqg; ).

We emphasize that this is merely an existence proof and does not mean
that we can find any useful transformations, those that lead to efficient and
accurate approximate inference. Finding a suitable transformation for any
specific family of conditional probabilities (apart from the log-concave class
of generalized linear models discussed below) remains an open problem.
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6.3 Example: log-concave models

Useful variational transformations of conditional probabilities leading to ad-
ditional factorization can be found systematically for a log-concave class of
generalized linear models[16, 21, 17]. This family of conditional probabilities
includes, e.g., noisy-OR and logistic regression models. More precisely, it is
characterized by conditional probabilities of the form

P(zi|Tpq;, 0i) = fa, <9i0 + Z 9ij$j> (61)

Jj€pa;

where the transfer function f;,(-) is log-concave: log fy;(2) is a concave
function of its argument z for all values of z;. We will exploit both the
concavity property and the linear predictive structure.

We start by noting that the product decomposition in Equation (48) is
equivalent to an additive decomposition on the log-scale. In other words,
to achieve P(z;|%pq;, 0i) = [1jcpa; Yij(%i, 75), it suffices to find the following
additive approximation in our context

log fa; (9i0 + > 9z'j$j) ~ Y i(wi,x)) (62)

Jj€pa; JjEpa;

(simply choose ;;(z;, z;) = log ¥;j(x;, ;) to preserve equality). Now, since
the argument of log fz,(-) here already has the desired additive structure,
we merely need to find a linear approximation to log fg.(-). The fact that
log fz,(z) is also concave guarantees that we can find a linear upper bound
approximation via first order Taylor expansion. Figure 4 illustrates this for
the log-logistic function. For example, expanding log f1(z) around any point
zo gives

g i) < ZBIE () iog fi(e0) (63
_ {“)log(;aﬁ (Z) ‘Z:ZO y Blog;a];1(z) ‘Z:ZO 20 — log fl(zO) (64)
= )\12 — F1 ()\1) (65)

where \; = 0log f1(z)/0z. For concave (convex) differentiable functions,
the offset in the brackets or Fj(A;) can indeed be expressed in terms of
the gradient A\; °. Note here that varying the point of expansion, z, is

®Note, for example, that for strictly concave differentiable functions, the gradient is a
monotonically decreasing function and therefore invertible. Any point 2o in our example
can be expressed as a function of the gradient A\; evaluated at zo.
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equivalent to varying A; in the gradient space. We may therefore take A\;
as the variational parameter without explicitly referring to zg. This simple
explanation captures a more general duality property of concave (convex)
functions[39]: any concave function such as log f1(z) has a conjugate or dual
function Fi(z), also concave, such that

log f1(2) = min{A12 — F1 (A1)} (66)

where A\; takes values in the domain of Fj(-). The duality comes from the
fact that F;(A1) as a concave function can be similarly expressed in terms
of log f1(z) (the conjugate of the conjugate function is the function itself).

Finally, substituting our linear upper bound from Equation (65) for the
log-conditional probability (separately for each z;) gives

log fz; (Hio + > 9z‘j$j) < Az (91‘0 + > 9z’j$j) = Fp,(Ag;)  (67)

JjEpa; JEpa;

The additive expansion follows from identifying 1 (z;, z;) = Ag;6;2; and
absorbing the remaining terms into one of such potentials. This is a varia-
tional transformation and comes with an adjustable parameter(s) Az, that
can be used to optimize the approximation in the appropriate context, just
as in the large deviation example. Table 2 explicates such transformations
for typical members of the log-concave family.

Name log f(2) Conjugate function F'(\) Domain for A
Noisy-OR | log(1 — exp(—=2)) (14 X)log(l+ A) — Alog A [0, o0]
Logistic —log(1 +exp(—z)) | —AlogA — (1 —A)log(1— M) | [0,1]

Table 2: Upper bound variational transformations for noisy-OR and logistic
functions.

7 Parameter estimation with variational methods

We explain here how the variational lower bound on the marginal likelihood
discussed earlier can be used for maximum likelihood (ML) parameter esti-
mation. This variational approach leads to the standard EM-algorithm [8]
with another maximization step taking the place of the original E-step. The
variational approach remains applicable, however, even when the E-step in
the EM-algorithm can no longer be computed exactly and guarantees mono-
tonically increasing sequence of lower bounds on the log-likelihood.
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Figure 4: A concave function (log of the logistic function) and its linear
(variational) upper bound.

To fix ideas, let D = {x.,...,x} be a set of i.i.d observations. We
assume for notational simplicity that the set of observed variables is the
same throughout the observations. In other words, we can use the same
division between observed and hidden variables x = {x,,x;} for all data
points. Our goal is to maximize the log-likelihood of the data D:

J(6) =) log P(xq|6) (68)

t=1

where 0 denotes the adjustable parameters in the joint distribution P(x,,x3|6).
We assume that the parameter estimation problem can be carried out ef-
ficiently when the observations are complete. To transform the above log-
likelihood objective J(#) into a form that involves only complete data, we
introduce a separate variational transformation for each of the log-marginal
probabilities in the above sum. This gives

T

JO) > YD Qulxn)log P(xq, x4|0) + H(Qr) (69)
T

= J(Qtaxfne) = J(QlaaQTae) (70)
t=1

Recall that maximizing each J(Qq,x};0) with respect to Q; recovers the
corresponding log-marginal likelihood or log P(x!|#). Thus by maximizing
J(Q1,-..,Qr;0) with respect to all the variational distributions Q1, ..., Qr,
we recover the ML objective J(0)
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Now, to take advantage of the variational formulation, we do not maxi-
mize J(6) directly but instead maximize the variational objective J(Q1, ..., QT;0)
in two alternating maximization steps[34]. In the first step, we maximize
the variational objective with respect to the distributions Q1, ..., Q7 while
keeping the parameters 0 fixed. If no constraints are imposed on the varia-
tional distributions, we obtain Q}(x5,) = P(xp|x,8) for all ¢ and the max-
imum value of the variational objective equals J(#). In the second step,
the variational distributions @1, ..., Q7 remain fixed and we maximize the
variational objective with respect to the parameters 6 alone.

This two step max-max algorithm leads to a monotonically increasing
log-likelihood of data. To see this, let’s denote each maximization step by
successively priming the corresponding parameters. We obtain the following
chain of inequalities

J(0) = J(QY,---,Qpi0) < J(Q1,..., Q730
< J( Illa"'a ’Ill“;el):‘](el) (72)
Thus J(0) < J(¢'), where the inequality is strict whenever either of the last
two maximization steps could improve the variational objective J(Q1, ..., Qr;6).
If not, we have reached a local optimum.

The algorithm presented above is in fact precisely the standard EM-
algorithm. The E-step of the EM-algorithm corresponds to the first maxi-
mization step with respect to the variational distributions Q1,..., Q7. In-
deed, this maximization step results in setting the variational distributions
equal to the posterior probabilities over the hidden variables. Evaluation of
the variational objective in Equation (69) with Q(x;,) = P(x|x.,0) gives
the expected complete log-likelihood of the data as in the E-step. The ad-
ditional entropy terms in the variational objective are kept fixed during the
second maximization step and are therefore inconsequential. See also [34].

Unlike the EM-algorithm, however, the variational formulation remains
applicable even when we can no longer handle the posterior probabilities
P(xy|xt,0). Indeed, we can restrict the variational distributions Q1,. .., Qr
to be within, for example, a class of completely factored (mean field) dis-
tributions. The first maximization step will be therefore carried out incom-
pletely, only within the restricted class. However, we can still guarantee a
monotonically increasing lower bound J(Q1, ..., Qr;0) on the log-likelihood
J(6) [10, 41]. Whether this guarantee suffices in practice depends on the
accuracy of the (structured) mean field approximation.
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8 Variational Bayesian methods

Parameter estimation within the Bayesian framework reduces to an inference
problem, that of evaluating the posterior probability over the parameters
given the observed data. Omne could therefore suspect that the variational
framework we have developed earlier for approximate inference could be
used in this context as well. While this is indeed the case, there are a cou-
ple of additional difficulties. First, the parameters (excluding the model
structure) are typically continuous rather than discrete making it harder to
represent the posterior probabilities. Second, each parameter setting needs
to be evaluated across all the observed data, not merely in the context of a
single observation. In computing the distribution over the parameters, the
data points cannot be treated individually but rather as a set. Moreover,
in the context of incomplete observations, it no longer suffices to infer the
posterior probabilities over the hidden variables independently for each ob-
servation; the posteriors are contingent on a specific parameter setting and
we must consider all such settings. Incomplete observations are therefore
quite difficult to handle exactly within the Bayesian framework.

We start with the simpler setting where each observation is assumed to
be complete, i.e., we have a value assignment for all the variables in the
probability model. For a moment, we will drop the subindex v denoting the
set of visible variables. The goal here is to evaluate the posterior probability
over the parameters given the observed i.i.d. data:

T
POID) = Frpy PDIO)PO) = ﬁ [H P(xtw)] PO)  (13)
t=1

where P(0) is the prior probability over the parameters and P(D) is the
marginal data likelihood:

T
P(D) = / ll‘[ P(xtw)] P(6)do (74)
t=1

Our ability to evaluate P(D) determines whether the estimation problem is
tractable. Computing P(D) is the type of inference problem that we have
already solved variationally. The relevant joint distribution is now P(D,§) =
P(D|0)P(6), which factors across the data points. Each component P(x!|6)
of this joint, must itself factor into smaller components for their product to
remain tractable. When the observations are complete, this is indeed the
case. If we assume, in addition, that we have distinct parameters associated
with different factors, that such parameters are a priori independent of each
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other, and that the prior distributions are conjugate to the corresponding
likelihoods, we can typically evaluate the marginal data likelihood in closed
form (as in [14]). However, parameter independence and conjugate form for
the priors may not reflect our prior knowledge. Other prior distributions and
associated independence assumptions may necessitate approximate methods
for evaluating the posteriors.

The typical approximate computations involve sampling methods [35].
While these are important and useful in various aspects of Bayesian calcu-
lations, we will not discuss them here. A number of excellent sources are
available [36]. Our focus here is an alternative and to a degree complemen-
tary approach based on variational methods.

Formally, the application of the variational approach to a Bayesian pa-
rameter estimation problem is straightforward: we introduce a variational
distribution (@) over the parameters and evaluate a lower bound J(Q) on
the log-marginal likelihood of the data (cf. [30]):

log P(D) > H(Qs) + [ Q(6)log P(D|9)dp (75)

— HQp) + / Q(0) log P(9)d0 + 3" / Q(0)log P(x'|0)d0  (76)
t

Without imposing any constraints on @), however, we recover log P(D) by
maximizing the lower bound J(Q) with respect to the variational distribu-
tion. Moreover, at the maximum Q*(0) = P(0|D), as desired.

Additional factorization present in P(x!|0) further simplifies the neces-
sary expectations with respect to the variational distribution (). For exam-
ple, P(x|6) may factor according to a directed graph, permitting us to write
it as P(x|0) = [1; P(xi|Tpa;,0:), where each conditional probability depends
on a distinct set of parameters 6;. Now, so long as the prior distribution P(0)
factors across the parameters associated with the conditional probabilities,
so does the posterior. We may therefore assume without loss of generality
that Q(0) = [1; Qi(#;). The variational lower bound reduces in this case to

ogP(D) > Y [H(Q) + [ Qu(0)10g PO a8

+ ; / Qi(6;) log P(z}|z},., 0;) doi] (77)

Of course, we can still recover the true marginal likelihood and the true
posterior by maximizing this with respect to all the variational distributions
Qi(6;). In many cases, however, even the component posteriors P(6;|D)
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cannot be evaluated in closed form. This is, for example, the case with
logistic regression models, where

ID(;L'Z = 1|.’L'f)ai,0i) = fl (920 + Z Hijxj> (78)

Jj€pa;

and fi1(z) = (1 +e7?)"! is the logistic function. In this case we can still
apply the variational formalism by constraining the variational posteriors
{Qi(0;)} to have simpler parametric forms such as multivariate Gaussian
distributions. The variational lower bound J(Q) can be evaluated in closed
form if we combine this restriction with additional approximations of the
following expectations

[ Qu0i)10g Plallst, . 00) o

= — / Qi(6;) log (1 + ei(zwzfl)(e"ﬁzjefmi 0ijwj)> do; (79)

which can be efficiently lower bounded by taking the expectation inside the
logarithm (— log(-) is a convex function); see [41] and the references therein
for a refined lower bound. We may also impose additional factorization
of the logistic function (as alluded to earlier in this tutorial) or resort to
transformations that are more specifically tailored to the logistic function[19,
18].

Bayesian estimation of parameters and hyper-parameters may also some-
times preclude exact computations. The prior distribution over the param-
eters P(0;) in this case is a marginal over some hyper-parameters «;:

P(9;) = / P(6i] ;) P(c)dev (80)

and we wish to infer a posterior probability over both the parameters and
hyper-parameters P(6;,c;|D). Whenever the marginal P(6;) cannot be
evaluated in closed form, we may still rely on the variational approach
provided that we restrict ourselves to factored variational distributions:
Q0;, ;) = Q(0;)Q(y;) (see [9]). Our earlier assessment of the accuracy
of the variational mean field approach applies to this case as well. We can
expect this approach to be accurate whenever the parameters 6; and the
hyper-parameters o; are only loosely coupled. However, as discussed earlier,
it may be dangerous to use the resulting product of variational marginals
Q(0;)Q(w;) as a proxy for the true posterior P(6;, a;|D), particularly if the
true posterior contains multiple modes.
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8.1 Incomplete cases

The situation becomes substantially more complex when there are incom-
plete cases in the data set. We start by making a few simplifying assump-
tions. First, we assume a fixed division between hidden and observed vari-
ables, x = {x,,xp}, for all data points. We also refrain from discussing a)
joint distributions P(x,,xp|0) whose components are not in the exponential
family as well as non-conjugate prior distributions. These aspects were dis-
cussed in the previous section and in the references therein. Finally, we will
assume that for any fixed setting of the parameters 6, the posterior proba-
bilities over the hidden variables P(xp|x!,6) can be computed in a feasible
manner (cf. [18, 1]).

Now, when the observed cases in the dataset are not complete, the likeli-
hood term pertaining to the parameters still factors across the observations

T

P(D|9) :H x!|6) (81)

but the components P(x|0) = Yt P(x!,x}|0) may lack any further fac-

torization®. The fact that we are force to infer both the posterior over the
hidden configurations of variables and the parameters is a serious impedi-
ment. Even worse, the posteriors over the hidden variables corresponding
to each observation depend on the specific setting of the parameters 6 (i.e.,
P(x!|x!,0)). We can, however, still apply the variational framework so long
as we explicitly remove such direct dependencies between the parameters
and the hidden configurations. Put another way, we impose the following
factored structure on the variational distribution[30, 19, 18, 1, 9]:

Qs -+ xp,0) = Qu(xp) - Qr(xy) Q) (82)

The lower bound on the marginal data likelihood corresponding to this
variational distribution can be obtained fairly easily. Since in the variational
distribution the hidden variable configurations and the parameters are inde-
pendent, we can introduce the variational lower bounds in two stages, first
for the parameters and then for each of the marginals log P(x}|#). In other
words,

log P(D) > H(Qy) +/Q(0) 10gP(0)d9+Z/Q(0) log P(x!|6)d#

5Note that the hidden variables may affect only part of the model and therefore the
marginal probabilities of each observation may still possess useful factorization [18].

33



> H(Q)+ [ QO)og PO)

+3 | H@) + 3 [ Qi) Q(0) log Plxt, x}16)d8
t xz

(83)

The first lower bound comes from Equation (76) and the second as in mean
field. We emphasize that by maximizing the resulting lower bound with
respect to the variational distributions, we can no longer hope to recover
the true marginal likelihood. This is because the true posterior over both
the parameters and the hidden configurations cannot be represented within
our restricted class of variational distributions.

To make use of the lower bound, we optimize it with respect to the
variational distributions. This can be done by successively maximizing the
bound with respect to one of the variational marginals while keeping all
other marginals fixed. With only minor modifications, we can borrow the
update equations from our earlier derivations (see section 4.0.1). First, we
fix Q(0) and update all Q4(x}) according to

Qu(xh) 1 e Fo{log P(x},x}|0)} (84)
Zt

for all x; and ¢ = 1,...,T. The expectation is taken with respect to the
current (fixed) estimate Q(#). Note that the exponent in this update rule
is a function of x} only. Moreover, since we have removed the parameters
as common correlates between the hidden variable configurations, the vari-
ational distributions {Q;(x})} can be updated independent of each other.

In the second iterative step, we update the variational parameter distri-
bution while keeping {Q:(x})} fixed:

1 . log P(0)+3", B, {log P(xt xt [0)}

Q) + (85)

where the expectations in the exponent are taken with respect to each
Q:(x!). Although we cannot find the true posterior distribution over the pa-
rameters (except in special cases), these updates nevertheless monotonically
increase the lower bound on the marginal data likelihood.

We make here a few final observations about the accuracy of the vari-
ational Bayesian approach. First, the true posterior over the parameters
in this case will almost surely contain multiple modes. These modes arise
from different possible configurations of the hidden variables corresponding
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to each observation. The factored nature of our posterior approximation
makes the previous analysis about the accuracy of variational mean field
applicable. We suspect therefore that the variational posterior Q(#) is likely
to reflect only one of the posterior modes. The identity of the selected mode
depends on the initialization of the variational distributions, the order in
which the updates are carried out, as well as possible differences in the
posterior weight of the modes.

9 Discussion

The focus of this tutorial has been on the formulation of variational methods
for inference and estimation problems in graphical models along with the
associated algorithms. Although the topics covered are diverse, this tutorial
remains in many respects complementary to [23].

We have dispensed with discussing a number of variational approaches
to inference and estimation. For example, mean field approximation and its
higher order extensions can be viewed as recursive propagation algorithms[21,
19]. We may also go beyond the simple disjoint factorization assumption in
the context of structured mean field approach and use, for example, directed
graphical models as variational approximating distributions[2, 47] (see also
[45]). Variational approximations can also be used for inference in mixed
graphical models containing both continuous and discrete variables[32]. In
terms of Bayesian estimation, variational methods lend themselves natu-
rally to on-line approximation algorithms[18, 1] and remain applicable to
structured Bayesian priors[9], which was briefly mentioned in the text.

Although we have treated variational methods in this tutorial as stand-
alone approximation techniques, they can be naturally combined with other
approximation techniques such as sampling methods. In [17] upper/lower
bounds are used in a rejection sampling setting while [9] uses variational
distributions as proposal distributions in the context of an importance sam-
pling method. A number of other combinations and extensions are possible
as well.

One of the main open problems in the use of variational approxima-
tion methods is characterizing their accuracy. We would like to obtain per-
formance guarantees for specific classes of graphical models (upper/lower
bounds that can be obtained from several variational formulations provide
such guarantees only for specific instantiations of the inference problem and
would not serve as a priori guarantees). Another open problem concerns
focusing the inference calculations within the overall variational approach.
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This is particularly important in the context of decision making.

Finally, we note that the graph structure of the relevant probability

model is typically not fixed a priori in many estimation/inference problems.
This leaves us the option of either using a simple graph model with exact
inference algorithms or adopting more expressive models but with the cost
of having to employ approximate inference methods. There has been little
work in characterizing the conditions under which one approach is preferable
to the other. Is the error from the simpler model class greater or less than
the error resulting from approximate inference?

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

8]

Hagai Attias. Inferring parameters and structure of latent variable
models by variational bayes. In Proceedings of the Fifteenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-99), pages
21-30, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

D. Barber and W. Wiegerinck. Tractable variational structures for ap-
proximating graphical models. In M. S. Kearns, S. A. Solla, and D. A.
Cohn, editors, Advances in Neural Information Processing Systems, vol-
ume 11. The MIT Press, 1999.

J. Besag. Spatial interaction and the statistical analysis of lattice sys-
tems. Journal of the Royal Statististical Society B, 2:192-236, 1974.

C. M. Bishop, N. Lawrence, T. Jaakkola, and M. I. Jordan. Approx-
imating posterior distributions in belief networks using mixtures. In
Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Ad-
vances in Neural Information Processing Systems, volume 10. The MIT
Press, 1998.

J. Bucklew. Large deviation techniques in decision, simulation, and
estimation. John Wiley & Sons, 1990.

T. Cover and J. Thomas. Elements of information theory. John Wiley
& Sons, 1991.

P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz
machine. Neural Computation, 7(5):889-904, 1995.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical
Society B, 39:1-38, 1977.

36



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

7. Ghahramani and M. Beal. Variational inference for bayesian mixtures
of factor analysers. In S. A. Solla, T. K. Leen, and K.-R. Mller, editors,
Advances in Neural Information Processing Systems, volume 12. The

MIT Press, 1999.

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete
data via an EM approach. In Jack D. Cowan, Gerald Tesauro, and
Joshua Alspector, editors, Advances in Neural Information Processing
Systems, volume 6, pages 120-127. Morgan Kaufmann Publishers, Inc.,
1994.

Z. Ghahramani and M. I. Jordan. Factorial hidden markov models.
Machine Learning, 29:245, 1997.

M. N. Gibbs and D. J. C. MacKay. Efficient implementation of Gaussian
processes for interpolation. Unpublished manuscript, 1996.

M. Haft, R. Hofmann, and V. Tresp. Model-independent mean field
theory as a local method for approximate propagation of information.
Network: Computation in Neural Systems, 10:93-105, 1999.

David Heckerman, Dan Geiger, and David M. Chickering. Learning
bayesian networks: The combination of knowledge and statistical data.
Machine Learning, 20:197, 1995.

G. Hinton, P. Dayan, B. Frey, and R. Neal. The wake-sleep algorithm
for unsupervised neural networks. Science, 268:1158-1161, 1995.

T. Jaakkola and M. Jordan. Computing upper and lower bounds on like-
lihoods in intractable networks. In Proceedings of the Twelfth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-96), pages
340-348, Portland, Oregon, 1996.

T. Jaakkola and M. Jordan. Variational probabilistic inference and the
gqmr-dt database. Journal of Artificial Intelligence Research, 10:291—
322, 1999.

T. Jaakkola and M. Jordan. Bayesian parameter estimation via varia-
tional methods. Statistics and Computing, 10:25-37, 2000.

T. S. Jaakkola. Variational methods for inference and learning in graph-
ical models. Ph.d. thesis, MIT, 1997.

37



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

T. S. Jaakkola and M. I. Jordan. Improving the mean field approx-
imation via the use of mixture distributions. In Michael I. Jordan,
editor, Proceedings of the NATO ASI on Learning in Graphical Models.
Kluwer, 1997.

T. S. Jaakkola and M. I. Jordan. Recursive algorithms for approximat-
ing probabilities in graphical models. In Michael C. Mozer, Michael 1.
Jordan, and Thomas Petsche, editors, Advances in Neural Information
Processing Systems, volume 9, page 487. The MIT Press, 1997.

F. Jensen, S. Lauritzen, and K. Olesen. Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics
Quarterly, 4:269-282, 1990.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An intro-
duction to variational methods for graphical models. Machine Learning,
37(2):183, 1999.

M. L. Jordan, Z. Ghahramani, and L. K. Saul. Hidden markov decision
trees. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche,
editors, Advances in Neural Information Processing Systems, volume 9,
page 501. The MIT Press, 1997.

J. Kapur. Mazimum entropy models in science and engineering. John
Wiley & Sons, 1989.

M. Kearns and L. Saul. Large deviation methods for approximate prob-
abilistic inference. In Proceedings of the Fourteenth Annual Conference
on Uncertainty in Artificial Intelligence (UAI-98), pages 311-319, San
Francisco, CA, 1998. Morgan Kaufmann Publishers.

M. Kearns and L. Saul. Inference in multilayer networks via large
deviation bounds. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11. The

MIT Press, 1999.
S. Lauritzen. Graphical Models. Oxford University Press, 1996.

S. Lauritzen and D. Spiegelhalter. Local computations with probabil-
ities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society B, 50:154-227, 1988.

D. J. C. MacKay. Ensemble learning for hidden Markov models. Un-
published manuscript, 1997.

38



[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]
[40]

[41]

[42]

[43]

P. McCullagh and J. Nelder. Generalized linear models. Chapman and
Hall, 1983.

K. Murphy. A variational approximation for bayesian networks with
discrete and continuous latent variables. In Proceedings of the Fifteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI-99),
pages 457-466, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

R. Neal. Connectionist learning of belief networks. Artificial Intelli-
gence, 56:71-113, 1992.

R. Neal and G. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Michael I. Jordan, editor,
Proceedings of the NATO ASI on Learning in Graphical Models. Kluwer,
1997.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo
methods. Technical Report CRG-TR-93-1, Dept. of Computer Science,
University of Toronto, 1993.

R. M. Neal. Bayesian Learning for Neural Networks. Number 118 in
Lecture Notes in Statistics. Springer, New York, 1996.

G. Parisi. Statistical field theory. Addison-Wesley, 1988.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

R. Rockafellar. Convex Analysis. Princeton University Press, 1972.

L. Saul and M. L. Jordan. Learning in Boltzmann trees. Neural Com-
putation, 6(6):1174-1184, 1994.

L. K. Saul, T. S. Jaakkola, and M. I. Jordan. Mean field theory for
sigmoid belief networks. Journal of Artificial Intelligence Research,
4:61-76, 1996.

L. K. Saul and M. I. Jordan. Boltzmann chains and Hidden Markov
Models. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances

in Neural Information Processing Systems, volume 7, pages 435—442.
The MIT Press, 1995.

L. K. Saul and M. I. Jordan. Exploiting tractable substructures in
intractable networks. In David S. Touretzky, Michael C. Mozer, and

39



[44]
[45]

[46]

[47]

[48]

Michael E. Hasselmo, editors, Advances in Neural Information Process-
ing Systems, volume 8, pages 486-492. The MIT Press, 1996.

H. R. Schwarz. Finite element methods. Academic Press, 1988.

A. Storkey. Dynamic trees: A structured variational method giving effi-
cient propagation rules. In Proceedings of the Sizteenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-00), San Francisco,
CA, 2000. Morgan Kaufmann Publishers.

J. Whittaker. Graphical models in applied multivariate statistics. John
Wiley & Sons, 1990.

W. Wiegerinck. Variational approximations between mean field theory
and the junction tree algorithm. In Proceedings of the Sizteenth Annual
Conference on Uncertainty in Artificial Intelligence, 2000.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for re-
gression. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems,
volume 8, pages 514-520. The MIT Press, 1996.

40



